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 Research Article 
Abstract 

Using 25 years monthly discharge data (1988 to 2013), the discharge of River Kaduna was investigated for the possibility of 

accurate forecast.  With the aid of ADF (Augmented Dickey-Fuller) test, auto-correlation and partial auto-correlation functions 

the discharge was found to exhibit a stochastic non-stationary seasonal time series behavior which becomes stationary after 

first seasonal differencing. Based on this, the study predicted the discharge of the river from 2014 to 2018 using seasonal 

autoregressive integrated moving average model and validates this with the actual discharge of the river for the corresponding 

period. Hence, the study concluded that SARIMA (1, 0, 1) (0, 1, 1)12 mode is the most appropriate based on the selection 

criteria, and could adequately predict the discharge of River Kaduna with minimal errors. 
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1. Introduction 

Water management decision making process requires 

accurate forecasts of the short-term water demand (Oliveiraa, 

et al., 2017). This short-term water demand forecast can be 

used in the areas of water reservoir design, future studies, and 

quality distribution problems (Oliveiraa, et al., 2017). River 

Kaduna which is the main tributary of River Niger (Garba, et 

al., 2013) is the main source of domestic, agricultural and 

industrial water use for a large proportion of rural and urban 

populations in Kaduna state. Any unusual adjustment or 

extreme events on this river will have dangerous 

consequences for not only the people of Kaduna State but the 

country at large. It is therefore necessary to use available 

scientific means to predict, based on past records, as accurate 

as possible the future flow of the River to aid forecasting and 

decision making by relevant water management agencies and 

authorities. 

Seasonal auto regressive integrated moving average 

(SARIMA) model has proven to be a suitable candidate for 

this (Oliveiraa, et al., 2017), several scientists and 

researchers have used it to predict a wide varieties of seasonal 

time series. Other models that have been used to predict river 

flows include artificial neural network (Oluwatobi, et al., 

2018), multi-linear regression (Patel, et al., 2016), genetic 

programming and M5 (Londhe & Charhate, 2010; Patel, et 

al., 2016; Oluwatobi, et al., 2018). Autoregressive integrated 

moving average (ARIMA) models have the ability to predict 

using data with any form or pattern, irrespective of the 

existence of autocorrelations, with linear or not linear 

relationship (Manoj & Madhu, 2013; Zupan, 1994). A 

SARIMA model is an auto regressive integrated moving 

average (ARIMA) that has incorporated seasonal component 

into the model (Goh & Law, 2001; Sankaran, 2014).  

The ARIMA model was first presented by Box and Jenkins 

in 1970, hence it is also referred to as the Box-Jenkins Model 

which is used to predict a single variable (Manoj & Madhu, 

2013). A 12 seasonal ARIMA is in the general form 

SARIMA(p,d,q)(P,D,Q)12, where (p,d,q) is the non-seasonal 

component and (P,D,Q) is the seasonal component of model, 

with non-seasonal and seasonal autoregressive order AR(p) 

and AR(P), non-seasonal and seasonal moving average order 

MA(q) and MA(Q), non-seasonal and seasonal differencing 

order of d and D respectively (Box & Jenkins, 1970; 

Bowerman & O’Connell, 1993) this can also be represented 

mathematically as; 
 

(1 −  B)𝑑(1 −  𝐵𝑠)𝐷ⱷ𝑝(𝐵)Փ𝑃(𝐵𝑠)𝑋𝑡 = θ𝑞(𝐵)Θ𝑄(𝐵𝑠)𝑒𝑡         (1) 

 

Where B is the backward shift operator, (1- B)d is the non-

seasonal difference operator, (1-BS)D is the seasonal 

difference operator and can also be represented by ∇𝑑 and 

∇𝐷respectively, φp, ΦP, θq, ΘQ are polynomials of order p, P, 

q, Q respectively, et denotes a purely random process (Box & 

Jenkins, 1970; Bowerman & O’Connell, 1993; Gijo, 2011). 

The method of estimating the model parameters is maximum 

likelihood probability (MLE), this selects the set of values for 
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the model parameters which maximizes the likelihood 

function given below (Hurlin, 2013); 

 

𝑚𝑎𝑥 {𝑓(z; 𝜃) =  
1

𝜎√2𝜋
𝑒

(−
(𝑧−𝑚)2

2𝜎2 )
}                                 (2)  

 

 ∀ 𝑧 ∈ R, and  𝜃 = (
𝑚
𝜎2), where 𝜃 is the parameter to be 

estimated; m is mean; 𝜎2 is variance.  
 

2. Materials and Methods 
 

2.1 Data collection and analysis 
 

Daily time series data of the discharge of River Kaduna were 

collected from Nigeria Hydrological Service Agency 

(NIHSA) from 1988 to 2018 at its Goni-Gora Bridge station. 

The study used 25 years (1988-2013) as training or 

calibration set, and 5 years (2014-2018) as validation set. 

These data were converted to monthly averages in m3/s, some 

of the software for the research data analysis include; IBM-

SPSS used for running the SARIMA Model and carrying out 

the Ljung-Box test, Eviews used for the Augmented Dickey-

Fuller (ADF) and Microsoft excel for plotting some of the 

graphs. 
 

2.2 Data testing 

The data were tested for stationarity and seasonality to 

ascertain the applicability of SARIMA. A stationary time 

series is one that has a constant statistical properties over time 

(savit, 1996). Data can be stationarized by one or more 

seasonal or/and non-seasonal differencing, the number of 

these differencing determine the seasonal or/and non-

seasonal order D and d respectively. Augmented Dickey-

Fuller (ADF) test (Dickey & Fuller, 1979; Montgomery, et 

al., 1990; Gijo, 2011) was used to test for stationarity and 

hence, determined the order of differencing of the time series, 

the null (Ho) and alternative (Ha) hypotheses for the ADF test 

are; Ho (The time series is non-stationary), Ha (The series is 

stationary).  

The ADF test equation for a flat time series turning around 

with a mean ≠ 0 is; 
 

∆Xt = ∝0 +  θ𝑋𝑡 − 1 +  ∑(𝛼𝑖∆𝑋𝑡−𝑖)   + 𝑍𝑡   

𝑝

𝑖=1

     (3) 

 

Where 𝛼o is the constant, Zt is a white noise and θ and  𝛼𝑖 are 

coefficients, the t statistic was performed on the θ to 

determine if the series stationarity is at level (means the 

original data without differencing) or if it requires 

differencing. The SARIMA model will only be applicable if 

the Ho (null hypothesis) is rejected, the hypothesis was first 

tested on the original data by applying the ADF test without 

differencing. The two conditions that must be met before 

rejecting the Ho are; the p value soul be significant at 0.05 (p 

< 0.05) and the t statistics should be more negative (less) than 

ADF test statistic at 1% level of significance (ADF test < t 

statistics at 1% level) (Dickey & Fuller, 1979; Mingda Z., 

2018). If this occurred without differencing it implies that Ho 

is rejected at 0 differencing order if not a difference is applied 

and the test is conducted again until stationarity is achieved 

(Mingda Z., 2018). 
Seasonality can be tested by ranking events below or above 

a specific median number (Nwogu, et al., 2016). Hewitt, et 

al., (1971) consider seasonality as six month peak followed 

by six months trough, even though, other scholars like 

Nwogu, et al., (2016) consider lower periods acceptable. 

Beside the regular peak and the trough as measure of 

seasonality the study also adopted the autocorrelation 

function (ACF) and partial-autocorrelation function (PACF) 

plots to determine seasonality, moving average and 

autoregressive orders (Dickey & Fuller, 1979; Gijo, 2011). 
 
2.3 Model structure and parameterization  

The data pattern determines the structure of model applied, 

and river flows normally follow a seasonal time series 

pattern. The order of seasonal and non-seasonal differencing 

‘D’ and ‘d’ is determined by the number of  seasonal and non-

seasonal differencing applied to the data before stationarity 

is achieved (Chatfield, 1996; Gijo, 2011). The ACF plots for 

the original and differenced data determine the presence and 

the order of a seasonal and non-seasonal Moving Average 

model, while the corresponding PACF plot determines that 

of the Autoregressive Model (Chatfield, 1996; Gijo, 2011; 

Manoj & Madhu, 2013)  

 

2.4 Model selection 

The accuracy of the forecasting model needs to be evaluated 

in order to determine the model with the smallest error (Goh 

& Law, 2001). There are different ways of  measuring and 

interpreting models forecast errors, the most commonly used 

are the Mean Absolute Percentage Error (MAPE), the Mean-

Squared Error (MSE), Mean-Absolute Error (MAE) and the 

Root-Mean-Squared Error (RMSE) (Goh & Law, 2001), 

other model accuracy evaluation criteria include; coefficient 

of determination (R2), Akaike information criteria (AIC or 

AICC), Bayesian information criteria (BIC) (Mamudu, et al., 

2020),  the expression of some of which are shown below. 

While R2 tends to reward more parameters in model (favours 

model complexity), BIC penalized more parameter 

(penalized model complexity) and AIC strike a balance 

between the two (Kuha, 2004) and hence more accurate in 

measuring the fits accuracy for statistical models in 

econometrics. At higher lag AIC and AICc tend to have the 

same value. 
  

𝐴𝐼𝐶  = 2𝑘 +  𝑛 𝑙𝑛 {
𝑅𝑆𝑆

𝑛
}                                              (4) 

 

𝐴𝐼𝐶𝑐  = 2𝑘 +  𝑛 𝑙𝑛 {
𝑅𝑆𝑆

𝑛
} + 

2𝑘(𝑘 + 1)

(𝑛 − 𝑘 − 1)
                   (5) 

𝐵𝐼𝐶 (Schwartz’s 𝐵𝐼𝐶) = 𝑘 𝑙𝑛(𝑛) + 𝑛 𝑙𝑛 {
𝑅𝑆𝑆

𝑛
}         (6) 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐵𝐼𝐶 =
 𝑘 𝑙𝑛(𝑛)

𝑛
+ 𝑙𝑛 {

𝑅𝑆𝑆

𝑛
}                (7) 
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𝑅2 = 1 − {
∑ (𝐴𝑖−𝐹𝑖)2𝑛

𝑖

∑ (𝐴𝑖−𝐴̅𝑖)2𝑛
𝑖

}                                               (8)

  

          𝑘 = 𝑝 + 𝑞 + 𝑃 + 𝑄 + 1                                      (9) 

 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ (

|𝐴𝑖 − 𝐹𝑖|

𝐴𝐼

)

𝑁

𝑖=1

× 100                            (10) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
{∑(𝐴𝑖 − 𝐹𝑖)

2

𝑛

𝑖=1

}                                   (11) 

𝑀𝐴𝐸 =
1

𝑛
{∑|𝐴𝑖 − 𝐹𝑖|

𝑁

𝑖=1

}                                            (12) 

 

Where k is the number of parameters or repressors, n is the 

number of time series database and RSS is the residual sum 

of square, p, q, P, Q, are the non-seasonal and seasonal AR 

and MA orders. Where Ai is the actual value, Fi is the forecast 

value 𝐴̅ is the mean actual value. (Mamudu, et al., 2020). In 

selecting the best model, consideration is given to the one 

that has the least AIC, AICc, BIC (both Normalized 

and Schwartz), coupled with the smallest errors and the 

highest R2. The Ljung-Box test is used to test model fitness; 

the Ho is that the model does not show lack of fit while Ha is 

that the model shows lack of fit, hence a significant p value 

means the null hypothesis is ejected and hence the model is 

ejected for lack of fit. 

 

2.5 Model evaluation (model performance,   validation 

and forecasting) 
 

2.5.1 Model performance 

As a means to measure the accuracy of the different possible 

models the study evaluated and compare; the Mean Absolute 

Percentage Error (MAPE), Mean-Absolute Error (MAE) and 

the Root-Mean-Squared Error (RMSE), and coefficient of 

determination (R2) for the shortlisted models. These are all 

acceptable criteria for measuring model accuracy (Mamudu, 

et al., 2020). 

 

2.5.2 Model validating and forecasting  

The forecast values for 2014 to 2018 were used to validating 

the accuracy of the selected model, since the model was built 

with values from 1988 to 2013. 
 

3. Result and Discussion 
 

3.1 Model structure, parameterization and selection 

Figure 1 is the plot of the average monthly discharge of River 

Kaduna from 1988 to 2018 at level, that is, without 

differencing. The graph shows a seasonal pattern; supporting 

the possibility of using seasonal auto-regressive integrated 

moving average (SARIMA) for the forecast.  

 
Figure: 1 Time series discharge data of River Kaduna at level (d = 0) 

 

3.1.1 Test for stationarity and seasonality 

ADF test was carried out on the original data without 

differencing, the results are shown in Table 1. The ADF test 

statistics is -2.96052, while the t statistics is -3.448943 and 

therefore not significant at 1% level of significance but 

significant at 5% indicating that the series is stationary with 

95% confidence (Mingda Z., 2018). The p-value is 0.0434, 

significant at (0.05); both the p value and ADF test have 95% 

confidence, however, stationarity is needed with 99% 

confidence, but since stationarity is at 95% only seasonal 

differencing is required to bring it to 99%. 

 
Table 1: Lag Length: 11 (Automatic - based on SIC, maxlag=16) 

  t-Statistic   Prob. 

Augmented Dickey-Fuller 

test statistic 

-2.926052  0.0434 

Test critical 

values: 

1% level -3.448943  

 5% level -2.869629  

 10% level -2.571148  
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The study further carried out the ADF test of the first 

seasonal differencing; the plot of this new series is shown in 

Figure 4 while the result of this second ADF test is shown in 

Table 2.  The result shows ADF statistics = -5.30552, more 

negative than the t-statistics = -3.449738 significant at 1% 

level of significance. (The ∇0∇12
1  series is stationary with 

99% confidence) and the p value is 0.00 which is also 

significant at 0.05. 

 
Table 2: Lag Length: 12 (Automatic - based on SIC, maxlag=16) 

   t-Statistic   Prob.* 

Augmented Dickey-Fuller test 

statistic 

-5.305552  0.0000 

Test critical 

values: 

1% level  -3.449738  

 5% level  -2.869978  

 10% level  -2.571335  

Source: Eviews 

Therefore, zero non-seasonal differencing and first seasonal 

differencing the data become stationary, hence the study 

rejects Ho based on both criteria. On the other hand, for the 

seasonality test the ACF and PACF plot is employed. A close 

inspection of the ACF and PACF plot in Figures 2 and 3 show 

an exponential decay and a continuous swing from positive 

to negative this is an indication of seasonality (Gijo, 2011). 

This is coupled with the fact that the data reflect a six month 

peak followed by six months trough as suggested by Hewitt 

et. al. (1971). 

 

 

 
Figure 2: Autocorrelation function (ACF) for average 

monthly discharge 

 

 

 
Figure 3: Partial autocorrelation function (PACF) for 

average monthly discharge 

 

 
Figure 4: Discharge at level and first seasonal difference 

(∇0∇12
1 ) 

 

3.1.2 Model identification and parameterization 

Based on the above, the model is identified as 

SARIMA(p,0,q)(P,1,Q)12, where values for p, q, P and Q 

which represent the order of the seasonal and non-seasonal 

components of AR and MA are to be determined. Based on 

the ACF plot the study observed that the autocorrelation 

coefficient decreased significantly after lag 2. This shows the 

presence of a non-seasonal MA(2) model, while the PACF 

value drop significantly after lag 1, indicting the presence of 

a non-seasonal AR(1) (Manoj & Madhu, 2013; Gijo, 2011). 

The available options for the non-seasonal component of the 

model will be SARIMA(1,0,2)(P,1,Q)12 or 

SARIMA(1,0.1)(P,1,Q)12, however, by using the principle of 

parsimony (Manoj & Madhu, 2013) the models,  

SARIMA(1,0,1)(P,1,Q)12 was chosen.  

Regarding the seasonal part, the ACF and PACF at first 

seasonal differencing were examined to determine the non-
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seasonal order of MA(Q) and AR(P) respectively, these plots 

are as shown  in Figure 5 and 6. The ACF of the first seasonal 

differencing show a sharp decrease in auto correlation after 

lag 2 and become non-significant, indicating a seasonal 

MA(2). The significant correlation at lag 12 may be due to 

error. There are no positive seasonal autocorrelation for the 

PACF for the first 3 lags, this has two implications; firstly, 

no further seasonal differencing is required and secondly, no 

seasonal AR part in the model (Sankaran, 2014). Hence, the 

following models are possible candidates for the forecast; 

SARIMA(1,0,1)(0,1,2)12, SARIMA(1,0,1)(0,1,1)12, 

SARIMA(1,0,1)(0,1,0)12, 

 

 
Figure 5. Autocorrelation function for 1st seasonal difference 

 

 

 
Figure 6. Partial Autocorrelation function for 1st seasonal 

difference 

 

3.1.3 Model selection 

In selecting the best model, consideration is given to the 

model with the least errors from the different error 

measurement criteria stated above and as well as having the 

least AIC, AICc, BIC (both Normalized and Schwartz) and 

the highest R2. Table 3 shows all the selection criteria, and 

SARIMA(1,0,1)(0,1,1)12 prove to be the best, it has the least 

normalized BIC, BIC, AIC, AICc, while having the same R2 

value of 0.765 and MAE value of 0.806 with 

SARIMA(1,0,1)(0,1,2)12. SARIMA(1,0,1)(0,1,1) also has 

lower RMSE of 1.325 against 1.327 of the 

SARIMA(1,0,1)(0,1,2)12.   This model, 

SARIMA(1,0,1)(0,1,2)12 performed well with MAPE of 

57.035 as against 57.23 of the selected model. However, 

SARIMA(1,0,1)(0,1,0)12 has the least BIC while falling short  

in every other criteria, hence this can be considered an 

abnormality which may have resulted from the few model 

parameters in SARIMA(1,0,1)(0,1,0)12. Moreover, this mode 

is actually not in contention because it fail the Lung-Box Q 

test with a significant p-value of 0, where the two contending 

models both have non-significant p-values. 

 

Table 3: Models Fit Summary 
 

Model 

SARIMA 

(1,0,1)(0,1,0) 

SARIMA 

(1,0,1)(0,1,2) 

SARIMA 

(1,0,1)(0,1,1) 

Number of 

Predictors 

1 1 1 

Model 

Fit 

statistics 

Stationary 

R-squared 
0.06 0.437 0.437 

R-squared 0.608 0.765 0.765 

RMSE 1.708 1.327 1.325 

MAPE 62.524 57.035 57.23 

MAE 1.049 0.806 0.806 

MaxAPE 681.145 477.219 481.19 

MaxAE 6.554 6.911 6.94 

Normalized 

BIC 
1.147 0.679 0.657 

Ljung

-Box 

Q(18) 

Statistics 78.205 9.248 9.384 

DF 16 14 15 

Sig. 0 0.815 0.857 

Number of 

Outliers 
0 0 0 

BIC 9.81 22.61 16.71 

AIC 355.98 176.7 175.4 

AICC 356.01 176.81 175.47 
 

Source: IBM SPSS 
 

The software result for the different SARIMA models are 

shown in Appendix 1A to. Based on the overwhelming 

evidence from these Results, the model 

SARIMA(1,0,1)(0,1,1)12 was selected as the best fit model 

for the forecast. Table 4 shows the model parameters from 

which the forecast equation below is obtained; 

(1 − 𝐵12) × 0.652B𝑋𝑡 = 0.388𝐵 × 0.938𝐵12 × 𝑒𝑡  (13)        
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Table 4: Model parameters 

 Estimate SE t Sig. 

Discharge-

Model_1 

Discharge No 

Transformation 
Constant 0.005 0.029 0.161 0.872 

AR Lag 1 0.652 0.127 5.135 0.000 

MA Lag 1 .388 .154 2.516 .012 

Seasonal Difference 1    

MA, Seasonal Lag 1 .938 .058 16.208 .000 

MONTH, 

period 12 

No 

Transformation 

Numerator Lag 0 .002 .003 .651 .516 

Source: IBM SPSS 

 

3.2 Model evaluation (model performance, validation 

and forecasting) 

 

3.2.1 Model performance and validation 

Figure 7 is a plot of the actual discharge, fit values from the 

model (calibration period) of Jan. 1988 to Dec. 2013 and five 

years forecast period of Jan. 2014 to Dec. 2018. The model’s 

RMSE, MAPE and the MAE are 1.325, 57.23 and 0.806 

respectively with an R2 of 0.765 (calibration period). This 

SARIMA model was able to replicate the seasonality and 

trend of the discharge, replicating the peak and trough for all 

the five years. 

Figure 8 shows the comparison of the forecast results from 

2014 to 2018 with the actual discharge for the same period, 

while figure 9 is a scattered plot of actual discharge against 

forecast. The model’s RMSE, MAPE and the MAE are 

1.2995, 0.764 and 1.01 respectively with an R2 of 0.8016 

(validation period). 

 

 

 
Figure 7: Observed, fit and 5 years forecast graph. 

 

 

 

 
 

Figure 8: Forecast discharge for 2014 to 2018. 

 
Figure 9: Actual and forecast discharges against time 

 

 

3.3 Model future forecast  

Figure 8 shows the forecast result from Jan. 2014 to Dec. 

2018, from the graph the highest average monthly discharge 

occurred always in the month of August. The highest 

predicted average monthly discharge between 7.5m3/s to 7.6 

m3/s always occurs in August.  
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4. Conclusion 

The monthly discharge of River Kaduna at GoniGora Bridge 

exhibits stochastic seasonal time series behaviour which 

becomes stationary after first seasonal differencing, hence, it 

could therefore be predicted with certain time series models. 

Selecting the right model for accurate forecasting requires 

both adequate knowledge of time series and a good 

understanding of the theoretical frame work involved in time 

series models. It was observed that SARIMA (1,0,1)(0,1,1)12 

could accurately predict the discharge of River Kaduna with 

minimum errors. Even though the study predicted 5 years 

discharge (2014-2018), it is advisable to always review the 

accuracy of the model as more recent data becomes available, 

reliability should always be placed on short term forecast. 

The study recommends the construction of flood control 

reservoirs in flood prone areas to control excess runoff during 

the periods of July, August and September and compensate 

for low flow period around December and January.  The 

application of artificial neural network (ANN) or a hybrid of 

ARIMA and other autoregressive model to test for more 

efficient forecast should also be considered 
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