PERCENTAGE BODY FAT IN BREAST CANCER PATIENTS AT THE UNIVERSITY COLLEGE HOSPITAL, IBADAN: A CASE-CONTROL STUDY

Abdus-salam Abbas A, 'Ogunnorin Babatunde Olutoye, 'Adenipekun Adeniyi A ²Olabumuyi Adeniyi Adedayo ³Olabumuyi Olayide

¹Radiation Oncology Department University of Ibadan, Ibadan Nigeria. ²Radiation Oncology Department, University College Hospital, Ibadan Nigeria ³Community Medicine Department, University College Hospital, Ibadan, Nigeria

ABSTRACT

BACKGROUND: Breast cancer is the most important female malignancy in terms of incidence and mortality in Nigeria and globally. This burden of breast cancer requires preventive efforts directed at modifiable risk factors especially within a population at risk. Percentage body fat has previously been found to be higher among breast cancer patients compared to matched controls in global studies.

OBJECTIVE: To investigate the association between percentage body fat and breast cancer in the University College Hospital (UCH), Ibadan.

METHODOLOGY: The percentage body fat, estimated through two different techniques (bioelectric impedance assay and skin fold thickness), of 70 breast cancer patients and 71 age and gender matched controls were compared.

RESULTS: The cases of breast cancer had lower mean percentage body compared to their controls. However, the difference was only significant when estimated by skinfold thickness (SFT). There was an independent association between low percentage body fat (SFT) and breast cancer on multiple logistic regression with an OR of 0.921(P < 0.005).

CONCLUSION: The study indicated an independent significant association between low percentage body fat and breast cancer. This pattern is peculiar to our environment and is due to the advanced stages at which breast cancer patients present to the UCH, Ibadan. As such, there is a need for advocacy to encourage patients to present early. Furthermore, larger longitudinal or cohort studies need to be done in Nigeria to precisely define the relationship between percentage and breast cancer.

KEYWORDS: Risk factor, breast cancer, percentage body fat, anthropometry

RUNNING TITLE: Percentage body fat in breast cancer at UCH, Ibadan

NigerJmed2019: 237-247 © 2019. Nigerian Journal of Medicine

INTRODUCTION

The global importance of breast cancer cannot be overestimated. It is the commonest female malignancy in the world. Breast cancer accounted for over 600,000 deaths in women in 2018 making it the leading cause of deaths attributable to cancer among women globally.¹ Breast cancer is of similar importance in Nigeria. There were close to 30,000 cases in 2018 resulting in an age standardized incidence rate of 41.7/100000.¹ Close to half of the incidences of breast cancers in Nigeria result in mortalities, as breast cancer is estimated to be responsible for 11564 deaths in 2018 with an age standardized mortality rate of 18.8/100000.¹

Correspondence to: Olabumuyi Adeniyi Adedayo Radiation Oncology Department University College Hospital Ibadan, Nigeria Tel: +234 808 111 3888, +234 806 734 3731 E-mail address: niyi.oogaa@gmail.com Due to the importance of breast cancer both in Nigeria and globally, efforts to reduce its disease burden are imperative. These efforts need to be directed not only to treat and cure the disease in patients diagnosed with breast cancer, but also to prevent breast cancer in Nigerians who do not have it. This can be achieved by screening the atrisk populations and identifying modifiable risk factors.

One related group of modifiable risk factors which are yet to be fully understood include diet rich in red meat, processed meat and fat; low physical activity (sedentary lifestyle) and anthropometric indices such as weight, height, body mass index (BMI), waist circumference, hip circumference and waist-to-hip ratio (WHR). In the Cancer Prevention Study II cohort, it was found that women with a higher BMI had a higher risk of dying from breast cancer.² In a pooled analysis of prospective studies, the risk of breast cancer was radiation therapy, hormonal therapy). The found to be 30% higher in postmenopausal women exclusion criteria for cases were: Patients with with a BMI over 31kg/m2 compared with women uncontrolled chronic comorbidities such as hypertension and diabetes mellitus, show that in premenopausal women elevated BMI and indices of adiposity are associated with a reduced risk of breast cancer.⁴⁶ radiation therapy, hormonal therapy). The exclusion criteria for cases were: Patients with uncontrolled chronic comorbidities such as hypertension and diabetes mellitus, hypo/hyperthyroidism; patients on drugs known to affect lipid metabolism (HMG CoA reductase inhibitors (statins), Bile acid sequestrants,

Studies have showed that the relationship between BMI (anthropometry) and breast cancer is complex as, in addition to menopausal status, the association varies by race, age, and possibly hormone receptor status.⁷ Anthropometric indices are surrogates for body fatness as such the impact of body fat might not be well characterised.⁸ For instance, weight (the numerator in BMI) does not differentiate between lean mass and fat mass.⁹ Also waist circumference and waist-hip-ratio (WHR) are indirect measures of central adiposity.⁹

Given these limitations of anthropometry in association with breast cancer, a more accurate assessment of the relationship between adiposity and breast cancer may be to directly measure body fat. Percentage body fat can be derived through skin fold thickness (SFT).¹⁰ Other methods to determine percent body fat include the bioelectric impedance assay (BIA) and dual energy x-ray absorptiometry (DEXA).

This study was thus undertaken to investigate the effect of adiposity on breast cancer risk among patients in the University College Hospital Ibadan by measuring percentage body fat through the SFT and BIA techniques.

MATERIALS AND METHODS

The study was conducted at the University College Hospital (UCH) Ibadan. The case group comprised of 70 patients with newly diagnosed breast cancer recruited at the Radiation Oncology and Surgical Oncology clinics, UCH between August 2016 and January 2017. The control group consisted of 71 age-matched non-breast cancer patients recruited at the Family Medicine Clinic and Chief Tony Anenih Geriatric Centre Outpatient Clinic, UCH between February 2017 and May 2017.

For cases, the inclusion criteria were a histologically diagnosed patient with invasive breast cancer and those who had not had previous cancer treatment (mastectomy, chemotherapy,

hypo/hyperthyroidism; patients on drugs known to affect lipid metabolism (HMG CoA reductase inhibitors (statins), Bile acid sequestrants, Nicotinic acid, Fibric acids, hormone replacement therapy and other hormonal agents); patients with poor performance status (ECOG \geq 3); and patients with obvious nutritional impairment (severe mucositis, naso-gastric tube feeding, or parenteral feeding). The inclusion criterion for controls was the patient's gender and age (±1year) matches a case. The exclusion criteria applied to controls were: Patients with breast disease; patients with uncontrolled chronic comorbidities such as hypertension and diabetes mellitus, hypo/hyperthyroidism, patients on drugs known to affect lipid metabolism (HMG CoA reductase inhibitors (statins), Bile acid sequestrants, Nicotinic acid, Fibric acids, hormone replacement therapy and other hormonal agents), patients with poor performance status (ECOG \geq 3), patients with obvious nutritional impairment (severe mucositis, naso-gastric tube feeding, or parenteral feeding).

The study was (cross-sectional) case-control in design. Height, weight, BMI, estimated percentage body fat estimated from SFT's at four anatomical sites (triceps, biceps, subscapular, and suprailiac regions) according to Durnin and Womersley formula, and percentage body fat by BIA were measured in the cases and controls.

A questionnaire was used to retrieve information including sociodemographic data, clinical data and the above listed measures. Weight was measured to the nearest 0.1Kg and height to the nearest 0.1cm and from these values BMI was derived as weight divided by height squared expressed as Kg/m^2 . Skinfold thickness was measured at 4 anatomical sites: the biceps, triceps, subscapular and suprailiac skinfold thicknesses using a calliper (Lange Skinfold Calliper). For each skin fold thickness, the average value of three readings was used. An indirect estimate of the percentage body fat calculated from the sum of the four skinfold thicknesses was derived using the formula proposed by Durnin and Womersley. The percentage body fat was also estimated through the Bioelectrical impedance assay method (BIA) using the Omron Fat Loss Monitor (HBF-306, confounding variables in the comparison of Omron Corporation). The study was approved by outcomes between cases and controls. Level of the joint ethical review committee of the University significance was set at 5%. of Ibadan/University College Hospital, Ibadan (approval number: UI/EC/15/0460). Statistical analysis

The IBM SPSS v21 was used to analyse the data. Descriptive statistics (means and standard deviation for quantitative variables and frequencies and percentages for qualitative) were presented and appropriate tables and charts were used. The t-test was used to compare the mean levels of the quantitative outcomes between cases and controls.

the significant variables to further adjust for significant (P = 0.047) (table 1).

RESULTS

All the cases were women, their ages ranged from 23 to 82 years with a mean age of 52.1±12.0 years. While the age rage and mean age of the agematched apparently healthy controls was 24 to 83 years and 52.5±12.6 years respectively. There was no significant difference between the cases and controls with regards to ethnicity, marital status, religion, education and occupation. However, over 83% of the controls were employed as opposed to Multiple logistic regression analysis was done on 68.6% of cases, this difference was statistically

Variable	Disease	P Value			
	Case		Control		
	Ν	%`	Ν	%	
Marital status (N)	70		71		0.126
Not currently married	25	35.7	17	23.9	
Currently married	45	64.3	54	76.1	
Religion (N)	70		71		0.670
Christianity	49	70.0	52	73.2	
Islam	21	30.0	19	26.8	
Level of Education (N)	69		71		0.204
< Secondary	22	31.9	30	42.3	
= Secondary	47	68.1	41	57.7	
Occupation (N)	70		66		0.676
Professional/Civil servant	21	30.0	22	33.3	
Artisan/Trader/Others**	49	70.0	44	66.7	
Employment status (N)	70		71		0.047^
Employed	48	68.6	59	83.1	
Unemployed	15	21.4	5	7.0	
Retired	7	10.0	7	9.9	
Ethnicity (N)	70		71		0.786
Yoruba	59	84.3	61	85.9	
Others*	11	15.7	10	14.1	

Table 1:Cross tabulation of	Demographic	parameters with	disease status o	f study p	opulatio
				-	

^ statistically significant at 0.05

** Others include: Peace Corps officer, Librarian, Farmer and House-wife

* Other includes: Igbo, Hausa, Urhobo, Igala and Mandingo

There were more cases who attained menarche at an early age and menopause and a later age. But these differences were not statistically significant. In addition, a non-significant higher proportion of cases breastfed for a shorter duration compared to controls (table 2).

Variable	Disease status				P Value
	Case		Control		
	Ν	%	Ν	%	
Menarche (N)	70		71		0.795
=13y	13	18.6	12	16.9	
>13y	57	81.4	59	83.1	
Age at 1 st confinement (N)	60		62		0.817
=30v	54	90.0	55	88.7	
>30y	6	10.0	7	11.3	
Duration of Breastfeeding (N)	62		58		0.186
=1y	23	37.1	15	25.9	
>1y	39	62.9	43	74.1	
Menopause (N)	42		34		1.000*
=55y	38	90.5	31	91.2	
>55y	4	9.5	3	8.8	
Parity (N)	70		69		0.713
0-2	19	27.2	16	23.2	
3-5	36	51.4	40	58.0	
Greater or Equals 6	15	21.4	13	18.8	

Table 2: Reproductive factors associated with the disease status of study population

* Fisher's exact value reported

The difference between the cases and controls with regards to family history of breast cancer and presence or absence of comorbidities was not statistically significant. The proportion of cases that were either currently taking alcohol or had taken in the past (14.5%) was higher than that of the controls (5.6%). However, this difference was not statistically significant. None of the cases nor controls had a history of smoking. The cases had significantly higher systolic and diastolic blood pressures compared to the controls (table 3).

Table3: Medical and so	cial factors associate	ed with disease stat	tus of the study	populatior

Variable	Disease status		P Value
	Case (%)	Control (%)	
Family History (N)	70	71	0.275*
No	92.9	97.2	
Yes	7.1	2.8	
Comorbidities (N)	70	71	0.178
Present	18.6	28.2	
Absent	81.4	71.8	
Systolic BP (mmHg)*	137.1±25.0	129.7±16.4	0.044^
Diastolic BP (mmHg)*	85.4±13.0	79.1±10.6	0.002^
Alcohol history (N)	62	71	0.141*
Never used	85.5	94.4	
Current/Past users	14.5	5.6	
Users			
Tobacco history (N)	70	71	NA
No	100.0	100.0	
Yes	0.0	0.0	

* Fisher's exact value reported

^ statistically significant at 0.05

NA Not applicable

The cases had statistically significantly lower significantly lower triceps SFTs among all the weights than the controls (P = 0.002). This was also participants and among the postmenopausal the relationship among the postmenopausal women. Similarly, the cases had significantly women among whom the mean weight was 66.7Kg lower biceps SFTs this was reflected in all the compared to 77.1Kg in the controls (P = 0.003). The participants and in both the postmenopausal and premenopausal cases also had a lower mean premenopausal subdivisions. The cases also had weight compared to the controls. However, the significantly lower subscapular SFTs but this was difference was not statistically significant (P = only seen when all the participants were 0.160) (table 4). The average height in the two compared. However, the difference in suprailiac groups was the same. Therefore, the cases had a SFTs between the cases and controls was not lower mean BMI compared to controls (P = 0.001). statistically significant. The estimated percentage There was no significant difference in the BMI body fat by SFTs was significantly lower in the among the premenopausal women, even though cases when comparing all participants and in the the premenopausal cases had lower BMIs postmenopausal women. The percentage body fat compared to the controls. The postmenopausal by BIA was lower in the cases among all cases also had lower mean BMIs (25.0Kg/m²) participants and both the postmenopausal and compared to postmenopausal controls premenopausal subdivisions. However, the (29.5Kg/m^2) , this difference was statistically differences were not statistically significant. significant (P = 0.05) (table 4). The cases had

m 11 4	· ·	1	C 11		• 1•	•	1	. 1
Lable 4.	Comparing mea	n values o	t anthro	nometric ·	Indices	In cases	and	controls
I ubic 1.	comparing met	III values o	I ununu o	pometric	maices	III cubeb	una	controlo

Variable	Menopausal	Case		Control	Control	
	status					
		Ν	$\overline{X}\pm SD$	Ν	$\overline{X} \pm SD$	
Weight (Kg)	Premenopausal	28	68.2±17.0	37	74.9±20.0	0.160
	Postmenopausal	42	66.7±14.8	34	77.1±13.9	0.003^
	Both	70	67.3±15.6	71	76.0±17.3	0.002^
Height (m)	Premenopausal	28	1.6±0.1	37	1.6±0.1	0.309
	Postmenopausal	42	1.6±0.1	34	1.6±0.1	0.376
	Both	70	1.6±0.1	71	1.6±0.1	0.218
BMI	Premenopausal	28	25.3±6.2	37	28.0±6.5	0.102
(Kg/m^2)						
	Postmenopausal	42	25.0±5.2	34	29.5±6.2	0.001^
	Both	70	25.1±5.6	71	28.7 ± 6.4	0.001^
Triceps SFT	Premenopausal	28	18.9±8.9	37	24.0±11.4	0.056
(mm)						
	Postmenopausal	42	20.3±8.7	34	29.0±9.9	< 0.001^
	Both	70	19.8±8.7	71	26.4±10.9	< 0.001^
Biceps SFT	Premenopausal	28	13.2±7.8	37	19.4±9.5	0.006^
(mm)						
	Postmenopausal	42	14.4±8.2	34	19.8±8.8	0.008^
	Both	70	13.9±8.0	71	19.6±9.1	< 0.001^
Subscapular	Premenopausal	28	19.3±8.0	37	24.1±11.1	0.057
SFT (mm)						
	Postmenopausal	42	19.0 ± 9.4	34	21.6±11.8	0.300
	Both	70	19.2±8.8	71	22.9±11.4	0.031^
Suprailiac	Premenopausal	28	14.6±6.7	37	13.7±7.0	0.608
SFT (mm)						
	Postmenopausal	42	13.2±5.5	34	15.5±6.1	0.081
	Both	70	13.7±6.0	71	14.6±6.6	0.433
% body fat	Premenopausal	28	32.5±7.0	37	35.3±7.8	0.140
(SFT)						
	Postmenopausal	42	35.5±6.2	34	39.5±5.2	0.003^
	Both	70	34.3±6.6	71	37.3±7.0	0.010^
% body fat	Premenopausal	28	28.7±8.9	37	29.8±9.5	0.612
(BIA)						
	Postmenopausal	42	34.5±9.2	34	35.8±8.4	0.526
	Both	70	32.1±9.4	71	32.7±9.4	0.706

^ statistically significant at 0.05

Table 5: Showing corr	elation between the	e statistic	cally significa	nt variables
	Employment	Systolic	Diastolic BMI	% body fat SFT
	atatua	PD	PD	

		Employment status	Systolic BP	Diastolic BP	BMI 0	% body fat SFT	% body fat BIA
Employment status	Pearson Correlation	1	.246**	.203*	.056	.105	.184*
	P Value		.004	.018	.512	.217	.030
	Ν	141	136	136	141	141	139
Systolic BP	Pearson Correlation	.246**	1	.739**	.120	.198*	.290**
	P Value	.004		.000	.166	.021	.001
	Ν	136	136	136	136	136	134
Diastolic BP	Pearson Correlation	.203*	.739**	1	.052	.136	.186*
	P Value	.018	.000		.545	.114	.032
	Ν	136	136	136	136	136	134
BMI	Pearson Correlation	.056	.120	.052	1	.751**	.717**
	P Value	.512	.166	.545		.000	.000
	Ν	141	136	136	141	141	139
% body fat SFT	Pearson Correlation	.105	.198*	.136	.751**	1	.651**
	P Value	.217	.021	.114	.000		.000
	Ν	141	136	136	141	141	139
% body fat BIA	Pearson Correlation	.184*	.290**	.186*	.717**	.651**	1
	P Value	.030	.001	.032	.000	.000	
	Ν	139	134	134	139	139	139

** Correlation is significant at the 0.01 level * Correlation is significant at the 0.05 level

Table 5 shows the results of Pearson correlation analysis of the statistically significant variables on bivariate analysis (employment status, systolic BP, diastolic BP, BMI, percentage body fat by SFT), though percentage body fat by BIA was not statistically significant on t test, we also included it in the correlation analysis. Employment status was not moderately or strongly correlated with any of the above factors. Systolic BP was not moderately or strongly correlated to any of the factors in the analysis except diastolic BP, this was the same picture in diastolic BP. BMI was strongly correlated to percentage body fat measured both by SFT and BIA, with Pearson correlation values of 0.751 and 0.717 respectively (P value < 0.001). However, percentage body fat by SFT was only moderately correlated to percentage body fat by BIA, with a Pearson correlation value of 0.651 (P value < 0.001).

Table 6.1 ogistic	Regression	of employ	ment status	evetalic BP	and n	ercentage	hody fat h	v SFT
Table 0.Lugistic	Regression	or employ	ymem status,	systone Dr,	anu p	ercemage	Ubuy lat D	y SFT

Variable	Model 1				Model 2				Model 3			
	P Value	OR	Confidence	e level of OR	P Value	OR	Confiden	ce level of OR	P Value	OR	Confiden	ce level of OR
			Lower	Higher			Lower	Higher			Lower	Higher
Employment												
status (N)												
Employed		1.000				1.000				1.000		
Unemployed	0.021^	3.609	1.210	10.764	0.037^	3.238	1.070	9.793	0.052	3.089	0.990	9.635
Retired	0.656	1.289	0.422	3.941	0.963	1.027	0.323	3.271	0.762	1.203	0.363	3.985
Systolic BP					0.086	1.015	0.998	1.033	0.028^	1.021	1.002	1.041
% body fat									0.005^	0.921	0.870	0.975
SFT												
Model ? 2	5.966, df 2	2, 0.051			9.010, df	3, 0.029			17.874, df	4, 0.001		
Nagelkerke R²	0.057				0.085				0.164			

^ statistically significant at 0.05

used to analyse the risk/association of non- values were found to be statistically significantly correlating variables which were hitherto higher among the cases than the controls. This may significant on bivariate analysis (employment be due to the anxieties associated with a new status, systolic blood pressure, and percent body fat SFT). This was to confirm the independence of the association between percentage body fat and breast cancer. Though diastolic blood pressure was statistically significant with t test, we did not include it in the logistic regression models as it strongly correlated with systolic blood pressure in the correlation analysis (table 5). Percentage body fat by BIA was not statistically significant on t test, it was thus not used in the logistic regression model, rather we used percentage body fat by SFT. In addition, since percentage body fat and BMI were strongly correlated, we did not include BMI in the logistic regression models. Model 3 indicates that elevated systolic blood pressure was an independent associated factor for breast cancer (P = 0.028). With an odds ratio (OR) of 1.021, every 1mmHg increase in systolic blood pressure, increases the likelihood of breast cancer by 2.1%. Low percentage body fat SFT was independently associated with breast cancer (P = 0.005). The OR of 0.921 indicates every 1% increase in percentage body fat, as measured by skin fold thickness, reduced the likelihood of breast cancer by 7.9%. The model also hinted at the fact that the association between unemployment and breast cancer was confounded by low percentage body fat SFT, as it lost its statistical significance in the model.

DISCUSSION

This study was embarked on to observe the correlation of adiposity with breast cancer. The mean age (52.1±12.0 years) of the study sample indicates breast cancer continues to be a disease of the middle aged and elderly. The study also illustrated the negative impact a diagnosis of cancer has on one's capacity to get employed and or to remain employed. A study by Park et al noted that cancer patients in Korea were more likely to lose their jobs and less likely to get re-employed compared to those who are not afflicted with the disease.¹¹ However, it is needful to investigate the true picture of the association between breast cancer and unemployment. As further analysis in our study showed unemployment did not remain an independent risk factor upon logistic regression indicating that there are other factors that may be relevant confounders.

Table 6 shows stepwise logistic regression models The mean systolic and diastolic blood pressure diagnosis of breast cancer. However, these mean blood pressure values, though higher than the mean value of the controls, were still within the normal limits.

> Studies showed a higher incidence of breast cancer among those with a daily consumption of four or more alcoholic drinks per day.¹² In this study, quantity of alcohol consumed daily was not recorded as the values are difficult to estimate with certainty in this cohort of patients. However, cases had more proportions of women who had taken alcohol in the past or current alcohol users, though the association was not significant.

> The mean height among the cases and controls in this study sample was similar in both postmenopausal and premenopausal women. However, previous studies by Adebamowo et al and Ogundiran et al revealed taller women were at increased risk for breast cancer.^{13,14} It is not clear why our study did not follow this trend.

> This study revealed a statistically significant higher weight in controls compared to cases. Factoring in the constant mean height in the entire study population, one would expect the significantly higher BMI of the controls in this study. This pattern is particularly significant among the postmenopausal women in this study (P value = 0.001). Among the premenopausal women, there was also a higher mean BMI in the controls compared to the cases of breast cancer. However, this was not significant (P value = 0.102). Cases with low BMI compared to controls is not in keeping with findings in global literature, except in premenopausal breast cancer. This is due to anovulatory menstrual cycles associated with premenopausal obesity which result in low serum oestrogen levels.^{15,16} However, previous studies in our environment, particularly the studies done in our centre differ from global findings. The study by Adebamowo et al showed no significant association,¹³ while the study by Ogundiran et al revealed an inverse association between BMI and breast cancer indicating low BMI to be associated with breast cancer (P-trend 0.009).¹⁴ This was similar to the finding in this study.

global association between low BMI and reported an increased risk of breast cancer in premenopausal breast cancer can not explain the women with the highest quintile of percentage results this study noted. For one, the inverse body fat compared to the lowest RR 1.65 (95% CI association between BMI and breast cancer among 1.12-2.43) Ptrend < 0.01.8 Another population the premenopausal women in this study was not based cohort by Krebs et al in the US with a follow significant. Furthermore, this inverse association up period of just over 11 years had similar findings. between BMI and breast cancer persisted The women who later had breast cancer had higher significantly among postmenopausal women in mean percentage body fat compared to the women our study. If it were the anovulatory theory that who did not develop breast cancer during the was responsible for the premenopausal inverse follow up period.²⁰ risk, the association in the postmenopausal women should have flipped into a direct risk as seen Considering the fact that the study conducted among postmenopausal women in global studies.

This study noted a lower mean percentage body fat breast cancer; ethnicity may explain the reason among the breast cancer cases compared to the why this study showed a relationship which is in controls in spite of the method of assessment. contrast to many previous findings. However, However, the difference was only significant using ethnicity is unlikely to be the sole reason for the the skin fold thickness (SFT) method. This same findings in this study. This is because the OR's in pattern was seen in the postmenopausal women. the African American study were only <1 (similar However, in the premenopausal women, to this study) among premenopausal women. In percentage body fat was lower in the cases by both postmenopausal women the OR's were >1 techniques but none was significant. This study, indicating percentage body fat was a risk for breast contrary to previous studies inversely associates cancer, though, as their 95% confidence intervals percentage body fat with breast cancer with an OR included the null value, they were also not 0.921 (95% CI 0.870-0.975). A study conducted in significant.¹⁹ Brazil by Martins et al also utilised skin fold thickness and bioelectric impedance assay (BIA) to The Pearson correlation analysis done showed that compare percentage body fat between cases of BMI was strongly correlated to percentage body fat breast cancer and controls. That study noted by SFTs and percentage body fat by BIA. In percentage body fat was higher in cases than addition, the same correlational analysis revealed controls, though only significantly higher with the percentage body fat by SFT and percentage body BIA technique.¹⁷

Similarly another case-control study in Uruguay adiposity as percentage body fat by SFT which is noted a significantly higher percentage body fat by the acceptable technique for epidemiological SFT in the cases of breast cancer.¹⁸ However, in a studies on percentage body fat.^{21,22} The reading of similar case control study done among African percentage body fat measured by the BIA Americans, there was no statistically significant technique are highly dependent on the hydration difference between the women with breast cancer status of the participant and when the participant and the controls.¹⁹ The trends noted by these tookameal.^{23,24} comparative cross sectional case control studies (excluding the one done among African Assuchforadequate and consistent readings, strict Americans) were corroborated by longitudinal protocols regarding the time of the day the and prospective cohort studies. For instance, the measurement is taken and the amount of water and longitudinal study utilizing data from the meals taken before the procedure are followed. Women's Health Initiative (WHI). On follow up, Such strict protocols were not followed in this study, incident cases of breast cancer were recorded and as it would be difficult to do so among the patients we they were found more in women with higher recruited at their respective outpatient clinics. This percentage body fat. The hazard ratio of highest could be the reason why percentage body fat BIA was quintile to lowest quintile was 1.5; CI 1.33-1.99 not statistically significant and why it was only (Ptrend = 0.007).⁹ The Swedish population based moderately correlated to percentage body fat SFT.

The anovulatory menstrual cycle effect noted in the prospective cohort study by Borgquist et al

among African Americans showed no significant relationship between percentage body fat and

fat BIA were only moderately correlated. This study then proves BMI to be as good a surrogate for

As such, the same explanation for the inverse relationship between the factors studied are thus association of BMI with breast cancer could also limited to associations and not cause-effect or risk pertain to the inverse association between percentage body fat SFT and breast cancer. This implies, the advanced presentation, lower The controls used were apparently healthy socioeconomic status (unemployment) and possibly poorer nutrition in the cases of breast cancer recruited might be an additional reason for the pattern seen.

The key to this inverse association would be an explanation peculiar to our environment. Adding up the sociodemographic and clinicopathologic presentations indicate the cases of breast cancer were more likely to be unemployed, and would more likely present in advanced stages with higher grades of differentiation. Hence, in our environment, breast cancer patients present at stages in which the wasting effect of breast cancer has set in or is already in play. Additionally, the socioeconomic status of patients with breast cancer is relatively lower, as they are usually unemployed. In Nigeria, the ratio of oncological centres with radiotherapy machines to citizen is abysmally low, (9 centres to 203,452,505 citizen²⁵). Patients thus need to travel from distant regions of the country to seek oncological care. The living conditions of most of the patients that travel from distant regions are usually suboptimal. Hence, the nutritional status of cases of breast cancer compared to population controls or apparently healthy hospital controls, who usually reside within the city where the studies are done, would be unfavourable.

CONCLUSION

The study indicated newly diagnosed patients with breast cancer in UCH, Ibadan have significantly higher blood pressures, and were likely to be unemployed compared to age matched apparently healthy controls.

The study also showed the breast cancer patients had lower weights, BMI and percentage body fat as measured by skin fold thicknesses compared to the controls and these differences were satistically significant. On logistic regression, low percentage body fat was proven to be an independent **REFERENCES** associated factor with breast cancer.

LIMITATIONS

This study was cross-sectional by design. The findings noted were those seen in the participants of the study on the day they were recruited. The

factors.

patients of the family medicine department and Chief Tony Anenih Geriatric Centre clinics. It was ascertained that the controls recruited had no clinical evidence of breast cancer or complaints of any other breast pathology. However, mammography studies were not done in them. This implies a remote possibility of a control having a yet to be discovered early breast cancer.

RECOMMENDATIONS

The inverse relationship between adiposity (BMI and percentage body fat) and breast cancer in our environment needs to be further investigated. This requires larger, better funded and more carefully conducted studies. This would be helpful to analyse by categories such as group staging, Tstage and other cut-off points such as those for percentage body fat proposed by Gallagher et al.²⁶

BMI was strongly correlated to percentage body fat by SFT and it is more easily determined by measuring weight and height compared to measuring skinfold thicknesses at varying anatomical sites. We thus recommend its continued use epidemiologically and for personal purposes at community level to measure and track adiposity. We do not recommend the use of percentage body fat by BIA for research purposes except if strict protocols regarding hydration and meals of the participants are followed.^{23,24} On the other hand, this study adds more credence to the fact that measuring percentage body fat by the skin fold thickness technique is adequate for epidemiological intent.²¹ The DEXA technique is the gold standard.²² It is however expensive and capital intensive. Also, it is not feasible to frequently track adiposity over a period of time. It is not advisable to expose a person to x-rays weekly or monthly.

- 1. Cancer today, http://gco.iarc .fr/today/home(accessed 25 November 2018).
- Calle EE, Rodriguez C, Walker-Thurmond K, et al. 2. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of US adults. New England Journal of Medicine 2003; 348: 1625-1638.

- 3. Van den Brandt PA, Spiegelman D, Yaun S-S, et al. Pooled analysis of prospective cohort studies on height, weight, and breast cancer risk. American 16. journal of epidemiology 2000; 152: 514-527.
- 4. Baer HJ, Tworoger SS, Hankinson SE, et al. Body fatness at young ages and risk of breast cancer throughout life. American journal of epidemiology 17. 2010;171:1183-1194.
- 5. Feigelson HS, Jonas CR, Teras LR, et al. Weight gain, body mass index, hormone replacement therapy, and postmenopausal breast cancer in a large prospective study. Cancer Epidemiology Biomarkers & Prevention 2004; 13: 220-224.
- 6. Amadou A, Hainaut P, Romieu I. Role of Obesity in the Risk of Breast Cancer: Lessons from 19. Anthropometry. Journal of Oncology 2013; 2013: 1-19.
- 7. Chandran U, Hirshfield KM, Bandera EV. The role of anthropometric and nutritional factors on breast cancer risk in African-American women. Public health nutrition 2012; 15: 738-748.
- 8. Borgquist S, Jirström K, Anagnostaki L, et al. Anthropometric factors in relation to different tumor biological subgroups of postmenopausal breast cancer. International Journal of Cancer 2009; 124:402-411.
- 9. Rohan TE, Heo M, Choi L, et al. Body fat and breast cancer risk in postmenopausal women: a longitudinal study. Journal of cancer epidemiology; 2013, http:// www.hindawi.com/ journals/jce/2013 /754815/abs/ (2013, accessed 9 October 2015).
- 10. Durnin JV, Womersley J. Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. Br J Nutr 1974; 32: 77–97.
- 11. Park J-H, Park J-H, Kim S-G. Effect of cancer diagnosis on patient employment status: a nationwide longitudinal study in Korea. Psychooncology 2009; 18: 691-699.
- 12. Halperin EC, Brady LW, Wazer DE, et al. Perez & Brady's Principles and Practice of Radiation Oncology. Lippincott Williams & Wilkins, https://books.google.com/books?hl=en&lr=&id =GEwlAgAAQBAJ&oi=fnd&pg=PA1036 &dq=perez+and+brady&ots=0hzgDrhyd0&sig=t TyP71uIoewF5yNSbNX5_cXMdnU (2013, accessed 17 March 2015).
- 13. Adebamowo CA, Ogundiran TO, Adenipekun AA, et al. Obesity and height in urban Nigerian women with breast cancer. Annals of epidemiology 2003; 13:455-461.
- 14. Ogundiran TO, Huo D, Adenipekun A, et al. Case-Nigerian women. American journal of epidemiology 2010; 172: 682-690.
- 15. Renehan AG, Tyson M, Egger M, et al. Body-mass index and incidence of cancer: a systematic review

and meta-analysis of prospective observational studies. The Lancet 2008; 371: 569–578.

- Van den Brandt PA, Spiegelman D, Yaun S-S, et al. Pooled analysis of prospective cohort studies on height, weight, and breast cancer risk. American journal of epidemiology 2000; 152: 514-527.
- Martins KA, Freitas-Junior R, Monego ET, et al. Anthropometry and lipid profile in women with breast cancer: a case-control study. Revista do Colégio Brasileiro de Cirurgiões 2012; 39: 358-363.
- 18. Ronco AL, Boeing H, De Stefani E, et al. A casecontrol study on fat-to-muscle ratio and risk of breast cancer. Nutrition and cancer 2009; 61: 466-474.
- Bandera EV, Chandran U, Zirpoli G, et al. Body fatness and breast cancer risk in women of African ancestry. BMC cancer 2013; 13: 475.
- 20. Krebs EE, Taylor BC, Cauley JA, et al. Measures of adiposity and risk of breast cancer in older postmenopausal women. Journal of the American Geriatrics Society 2006; 54: 63-69.
- 21. Determining body composition in adults -UpToDate, https://www.uptodate .com/ contents /determining-body-composition-inadults?search= percentage% 20body%20fat &source=search result&selectedTitle=1~150&us age_type= default &display_rank=1 (accessed 10 February 2019).
- 22. Nutritional Status Assessment in Adults Technique: History and Physical Examination, Anthropometric Measures, Nutrition Screening, https://emedicine.medscape.com/article/214186 1-technique (accessed 10 February 2019).
- 23. Validation of tetrapolar bioelectrical impedance method to assess human body composition. -PubMed - NCBI, https://www.ncbi.nlm. nih.gov/ pubmed/3700310 (accessed 10 February 2019).
- 24. Bioelectrical impedance: effect of 3 identical meals on diurnal impedance variation and calculation of body composition | The American Journal of Clinical Nutrition | Oxford Academic, https://academic. oup.com/ajcn/article /74/4/ 474/ 4737410 (accessed 10 February 2019).
- Africa: Nigeria The World Factbook Central 25. Intelligence Agency, https://www.cia. gov/ library /publications/resources/the-world-factbook/ geos/ni.html (accessed 10 February 2019).
- 26. Gallagher D, Heymsfield SB, Heo M, et al. Healthy percentage body fat ranges: an approach for developing guidelines based on body mass index, http://ajcn.nutrition.org (accessed 21 October 2017).
- control study of body size and breast cancer risk in 27. What are the guidelines for percentage of body fat loss? ACE Fit | Fitness Information, http://www.acefitness.org/acefit/healthyliving-article/60/112/what-are-the-guidelinesfor-percentage-of/ (accessed 12 May 2015).