Abstracts

ORBIT AND OCULOPLASTY

Adverse Effects of Local Anaesthesia During an Evisceration

Ubah J. N., Adekunle M. O., Adejumo O. O.

Ladoke Akintola University of Technology, Teaching Hospital, Osogbo, Nigeria. E-mail: ubahjn@gmail.com

Introduction: Peribulbar technique is widely used by ophthalmologists. No local anesthetic technique is entirely free of severe systemic adverse events and they cannot be reliably predicted. We present a case report of complications arising from peribulbar injection of 2% Xylocaine (lidocaine) for evisceration.

Case Report: A 43-year-old male farmer presented on account of pain, and loss of vision involving his right eye. On examination, the vision in the affected eye was light perception. The cornea was densely infiltrated and the central part was melting with descemetocele.

Evisceration under local anesthesia was advised. 7 ml using of 2% xylocaine with 1:100,000 Adrenaline was administered by peribulbar method using a 23 guage needle. About 5 min after the local anesthesia was infiltrated, while 360° peritomy was being performed, the patient developed generalized tonic clonic seizures, became aggressive, unresponsive and hypertonic. The seizure was arrested with intravenous Diazepam 10 mg and thiopentone 200 mg given intramuscularly. Supportive treatment was also given and continued for about one hour after which he became calm, relaxed and regained full consciousness. Surgery was suspended. The rest of his stay in the hospital was uneventful. Investigations carried out were normal. He later had uneventful evisceration under general anesthesia.

Discussion: Systemic side effects of locally injected anesthetic agents occur if very large dose is injected or a normal dose is inadvertently injected intravenously. These include: vasovagal reactions, confusion, respiratory depression, convulsions and hypotension. For healthy adults, the maximum recommended dose of Lidocaine HCL with epinephrine should not exceed 7 mg/kg (3.2 mg/lb) of body weight. When used without epinephrine, the maximum individual dose should not exceed 4.5 mg/kg (2 mg/lb) of body weight.[5] The total recommended doses of Xylocaine is 20–300 mg.[6] Systemic side-effects like stress of the day’s event, eye drops and other agents used in the eye, and causes that may be entirely unrelated to anesthesia or surgery could have contributed to the side-effects.[7] Local anesthesia administration generally carries low rate of complications,[8] but could be devastating when they occur. Adverse effects have been reported.[9] In the patient being reported, only 14 mg (7 ml) of 2% Xylocaine was given. There could have been inadvertent intravenous injection. The treatment of toxicity of local anesthesia essentially is supportive. Local anesthesia is very popular in ophthalmic surgeries. Knowledge of the possible complications should also be borne in mind. Adequate precautions should be taken to handle these adverse effects when they occur.

REFERENCES

Congenital Ptosis in a Tertiary Hospital in Lagos: Clinical Variety and Visual Status

Balogun Bolanle G., Balogun Modupe M., Adekoya Bola J., Diaku-Akinwumi Ijeoma N.¹

Department of Surgery, Ophthalmology Unit, ¹Department of Pediatrics, Lagos State University Teaching Hospital/College of Medicine, 1-5 Oba Akinkjobi Street GRA Ikeja, Lagos, Nigeria. E-mail: appleclinic@yahoo.com

Introduction: Congenital ptosis is drooping of the upper eyelid present at birth or within the first year of life. Severe ptosis results in poor visual development,[1] amblyopia[2,3] and astigmatism.[4] Ptosis is cosmetically unacceptable and may impact negatively on carrier development and the quality of life of affected individuals.[5-7] There is paucity of literature on the clinical types and visual status of these patients in the study environment thus stimulating this study.

Methods: Descriptive prospective study of congenital ptosis from January 2007 to June 2014. Data on age, gender, diagnosis and refractive errors were recorded. Refractive errors were measured using auto-refraction, objective retinoscopy and subjective refraction.

Results: Totally 37 patients aged 8 months–27 years presented. 54.1% males. Unilateral ptosis in 89.2%, left sided ptosis 60.6%. 21.6%.

Table 1 : Clinical variety of congenital ptosis

<table>
<thead>
<tr>
<th>Variety of congenital ptosis</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simple congenital</td>
<td>21</td>
<td>56.8</td>
</tr>
<tr>
<td>Marcus gunn jaw wink phenomenon</td>
<td>2</td>
<td>5.4</td>
</tr>
<tr>
<td>Congenital aponeurotic</td>
<td>2</td>
<td>5.4</td>
</tr>
<tr>
<td>Blepharophimosis</td>
<td>2</td>
<td>5.4</td>
</tr>
<tr>
<td>Non-isolated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Congenital third nerve palsy</td>
<td>4</td>
<td>10.8</td>
</tr>
<tr>
<td>Congenital ptosis+superior rectus weakness</td>
<td>1</td>
<td>2.7</td>
</tr>
<tr>
<td>Congenital horner’s syndrome</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Congenital ptosis+isotropia+nyastagmus</td>
<td>5</td>
<td>13.5</td>
</tr>
<tr>
<td>Total</td>
<td>37</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Figure 1: Visual status of the patients (refractive errors)
After generous local anesthesia, metallic object was removed following X-ray was done which confirmed an anterior orbital metallic foreign body. Spring with the external extent lying as far as the neck inferiorly. Orbital the medial canthal region and nasal cavity. Also seen was a metallic affected eye revealed complete mechanical ptosis, with bleeding from not wearing protective device at the time of injury. Examination of the brake of a motorcycle. The retaining spring sprang back accidentally impacted orbital foreign body in the right eye sustained while trying to fix the direction denoted by the shape of the curved tip of the spring within the anterior orbit as revealed on X-Ray film. Visual acuity (VA) done after removal was 6/24 + 1. The conjunctiva was moderately injected with mild chemosis. Pupil was round, regular and briskly reactive. The contralateral eye was essentially normal. Fundoscopy findings were essentially normal in both eyes. Tetraxus toxoid injection, intravenous (IV) ceftriaxone and frequent topical ciprofloxacin, analgesic, acetazolamide were given. Oral antibiotics were commenced after 72 h of administration of IV antibiotics. First day post removal of foreign body, unaided VA was 6/6. Ptosis and conjunctival chemosis were resolving. There was mild subconjunctival hemorrhage inferiorly with normal intraocular pressure. No Retinal hemorrhage or tear was seen. Patient was given one week appointment but did not show up. The management of this patient would have been bedeviled by the twin problem of non-availability and non-affordability of recommended investigative procedure if cheaper and easily available alternative had been ignored.

Conclusion: It is important to encourage early presentation by educating parents especially at the ante-natal and well-baby/immunization clinics.

REFERENCES

Impact Foreign Body to the Anterior Orbit

Ajayi iyade, Omotayo Olusola, Ajite Kayode, Alegbeleye Titilope Department of Ophthalmology, Ekiti State Teaching Hospital, Adoekiti, Nigeria. E-mail. iyisedeye2008@yahoo.com

Introduction: Orbital foreign body may present with varying signs and symptoms and they usually occur from high missile objects. Small and inert objects could be retained in the orbit unnoticed while larger objects are usually very obvious because of the external extension in most cases. The role of radiological investigations cannot be overemphasized.

Case Report: A 41-year-old welder presented with 6 h history of impacted orbital foreign body in the right eye sustained while trying to fix the brake of a motorcycle. The retaining spring sprang back accidentally with resultant penetration and impaction in the anterior orbit. Patient claimed to have good vision in both eyes prior to the injury. He was not wearing protective device at the time of injury. Examination of the affected eye revealed complete mechanical ptosis, with bleeding from the medial canthal region and nasal cavity. Also seen was a metallic spring with the external extent lying as far as the neck inferiorly. Orbital X-ray was done which confirmed an anterior orbital metallic foreign body. After generous local anesthesia, metallic object was removed following the direction denoted by the shape of the curved tip of the spring within the anterior orbit as revealed on X-Ray film. Visual acuity (VA) done after removal was 6/24 + 1. The conjunctiva was moderately injected with mild chemosis. Pupil was round, regular and briskly reactive. The contralateral eye was essentially normal. Fundoscopy findings were essentially normal in both eyes. Tetraxus toxoid injection, intravenous (IV) ceftriaxone and frequent topical ciprofloxacin, analgesic, acetazolamide were given. Oral antibiotics were commenced after 72 h of administration of IV antibiotics. First day post removal of foreign body, unaided VA was 6/6. Ptosis and conjunctival chemosis were resolving. There was mild subconjunctival hemorrhage inferiorly with normal intraocular pressure. No Retinal hemorrhage or tear was seen. Patient was given one week appointment but did not show up. The management of this patient would have been bedeviled by the twin problem of non-availability and non-affordability of recommended investigative procedure if cheaper and easily available alternative had been ignored.

Conclusion: Plain X-Ray should be done to determine the orientation of radiopaque objects when penetrating orbital injuries occur in places where computed tomography scan is not readily available. This helps to minimize the risk of iatrogenic ocular damage.

Abstracts

Figure 1: At presentation with impacted foreign body in place

Figure 2: Plain X-Ray showing the metallic foreign body

Figure 3: Foreign body after removal
Abstracts

Non Surgical Treatment of Periocular Skin Cancer

Oworu O.
Department of Eye, Huddersfield Royal Infirmary, England, United Kingdom. E-mail: Gbemsol@aol.com

Introduction: Non-surgical treatment of periocular skin cancer includes topical preparations such as 5 Fluorouracil cream (Efudex) and Topical Imiquimod Cream (Aldara). Other treatment modalities include cryotherapy, PDT and radiotherapy. Efudex can be used in the treatment of actinic keratosis, Superficial BCC and in situ squamous cell carcinoma. The mechanism of action is believed to be by direct cytotoxic effect on neoplastic cells. The recommended treatment is 5% cream twice daily for 3 weeks. After 3–5 days treatment, the sun damaged skin usually becomes very inflamed, red angry and sore. After 11–14 days the skin will start to peel and crack which looks terrible before the skin finally heals. Efudex does not appear to penetrate very deeply into the skin, and may not destroy deeper cancer cells. Aldara is an immunomodulatory agent belonging to the Imidazquinoline family. It is recommended for small superficial BCC. It acts by activating antigen-presenting cells and by inducing secretion of proinflammatory cytokines with a resultant cytotoxic effect. Side effects include itching, burning, redness, ulceration, scabbing, flaking and pain. Treatment is applied 5 times a week for 6 weeks. The long term cure rate is around 80%. Cryotherapy can be used in the treatment of extrafacial lesions including superficial BCC, solar keratosis and viral warts. It utilizes liquid nitrogen and works by causing intra and extra cellular ice crystals which then causes cell rupture and tissue disruption. It is suitable for lesions <6 mm. Treatment could either be a continuous freeze or freeze thaw cycles. It can cause loss of pigment in the treated area as well as scarring hence may not be suitable for dark skinned patients.

Photodynamic therapy (PDT) works by activating of a tissue-localized photosensitizer by visible light, resulting in cell damage and death. Topical 5 aminolevulinic acid (5-ALA) is applied to lesions for 1–18 h with or without occlusion. ALA appears to be taken up selectively by the diseased tissue and is converted to the photosensitizer protoporphyrin IX. Activation of the photosensitizer with light of appropriate wavelength leads to the release of reactive oxygen species (singlet O₂). This modifies cell function subsequently causing cell death. Methyl aminolevulinate (MAL) an ester of ALA is more lipophilic than free ALA and penetrates more effectively through cutaneous tissue. MAL 160 mg/g only needs to be applied for 3 h. MAL is licensed in Europe for the treatment of actinic keratosis and BCC (both nodular and superficial). PDT can be painful and produces a dose dependent photo toxicity reaction (erythema and edema) that lasts for several days. Radiotherapy can be used in the treatment of BCC (nodular and superficial BCC) and SCC. It is suitable for extracranial lesions (except Merkel cell tumor) and may be a viable option for frail elderly patients who do not wish surgical excision or who have inoperable tumor. It is important to remember that radiotherapy may be carcinogenic and previous radiotherapy may make subsequent surgery more challenging.

Summary: In deciding the best non-surgical treatment to offer, considerations should include patient’s preference, age and general health, clinical and histological subtype, size and site of tumor.

REFERENCES

Surgical Management of Periocular Carcinoma

Oworu O.
Department of Eye, Huddersfield Royal Infirmary, Huddersfield, England, UK. E-mail: Gbemsol@aol.com

Introduction: Basal cell carcinoma (BCC) is the most common skin cancer worldwide accounting for 90% of head and neck cancer of which 10% occur around the eyelid. Basal cell carcinomas are slow growing, rarely metastasising malignant tumors and mortality is <0.1%. Perivascular and perineural invasion is associated with aggressive tumor. In Nigeria, nasopharynx appears to be the commonest site for head and neck cancer, followed by sinonasal and laryngeal involvement in that order. Majority of the cancer is epithelial in origin [Figure 1] mostly squamous cell carcinoma (SCC). There is paucity of data on periorbital involvement of head and neck cancer in Nigeria so this is a potential area of research. The aim of treatment includes total tumour eradication using a method that achieved the smallest risk of recurrence using the most effective method that is acceptable to the patient Mohs micrographic surgery remains the gold standard but this is not generally available even in the UK. Incision biopsy is required for histological diagnosis. Suggested excision margin are 3–4 mm for BCC, 5 mm for SCC and 10 mm for melanoma. Reasons for Incomplete excision include inadequate surgical...
Though orbital microsporidosis, HIV encephalopathy, and noninfectious disease like neoplasms involving all parts of the victim to both opportunistic and nonopportunistic infections together affect the patient by depleting the CD4+ T cell count of <100/mL is associated with retinal microvasculopathy, the CD4+ T cell count of <250/mL is associated with Pneumocystosis and Toxoplasmosis, and the CD4+ T cell count of <100/mL is associated with retinal microvasculopathy, conjunctival microvasculopathy, cytomegalovirus (CMV) retinitis, varicella zoster virus (VZV) retinitis, mycobacteium avium complex infections, Cryptococcus, microsporidiosis, HIV encephalopathy, progressive multifocal leukoencephalopathy, and aspergillosis induced orbit in such cases the CD4+ cell count drops to as low as <100/µl. The CD4+ T cell count of <100/mL is associated with retinal microvasculopathy. The CD4+ T cell count of <100/mL is associated with retinal microvasculopathy. The CD4+ T cell count of <100/mL is associated with retinal microvasculopathy.

Introduction: Though the HIV affects purely the humans, it actually originated from the Chimpanzees as the Simian immunodeficiency virus (SIV) which got mutated into the HIV after coming in contact with some humans.[1,2] The HIV compromises the immune system of the patient by depleting the CD4+ T-Lymphocytes thus exposing the victim to both opportunistic and nonopportunistic infections together with and noninfectious disease like neoplasms involving all parts of the human body. Oculoplasity is a field that deals with specific eye structures including the orbit and the adnexae of the eyeball. Today the field of oculoplasty has expanded to include the entire face particularly for aesthetic reasons as in face lifting procedures. The oculoplastic tissues involved in the HIV patients are the orbit, eyeball adnexae, the lids, the conjunctiva and the lacrimal drainage system.

Aim of the Study: The aim of this study is to highlight the commonest oculoplastic complications in HIV patients in our hospitals between 2007 and 2010.

Methodology: All case folders of the HIV positive cases that presented to our hospitals between 2007 and 2010 were retrieved and reviewed.

Results: Out of the 20 cases that were analyzed, 9 cases (45%) had oculoplastic manifestations or complications. Herpes Zoster Ophthalmicus (HZO) induced cicatricial ectropion was found the commonest oculoplastic complication with 4 (44.4%) cases out of the 9 cases.

Discussions and Literature Review: Studies have shown that between 70 and 80% of all HIV positive patients present to the ophthalmologist with various eye complaints depending on the level of the CD4+ cell count.[3] The CD4+ T-cell count of <500/mL is associated with Kaposi Sarcoma, Lymphoma and Tuberculosis while the CD4+ T cell count of <250/mL is associated with Pneumocystosis and Toxoplasmosis. The CD4+ T cell count of <100/mL is associated with retinal microvasculopathy, conjunctival microvasculopathy, cytomegalovirus (CMV) retinitis, varicella zoster virus (VZV) retinitis, mycobacteium avium complex infections, Cryptococcus, microsporidiosis, HIV encephalopathy, progressive multifocal leukoencephalopathy. Though orbital complications in HIV patients are very rare they could include orbital lymphomas and aspergillosis induced orbit and in such cases the CD4+ cell count drops to as low as <100/µl. HZO is also a common complication in the HIV patient affecting the ophthalmic branch of the orbit and the adnexae of the eyeball.

REFERENCES
Abstracts

trigeminal (5th cranial) nerve.[6,7] It is more common in the patients with CD4+ T cell count of between 50 and 200/mL.[3,5] In our study the HZO related cicatrical ectropion appears to be the commonest oculoplastic complication in our HIV patients. The cicatrical ectropion in our study seems to differ from that found in other studies[6] (Figure 2).

Summary and Conclusion: The CD4+ T-Lymphocyte cell count has been very predictive and most cases presenting to the ophthalmologist have CD4+ T cell count of <500/mL, and most oculoplastic cases will begin to show once the CD4+ T cell count drops to <250/mL. In our pilot study HZO appears to be the commonest oculoplastic complication in our HIV positive patients followed by the squamous cell carcinoma of the conjunctiva. The major limitation of our study is the small sample size. We can therefore not make categorical conclusions for now until more studies.

REFERENCES