Elechi HA Rabasa AI Muhammad FB Garba MA Abubakar GF Umoru MA DOI:http://dx.doi.org/10.4314/njp.v42i4.7 Accepted: 7th August 2015 Elechi HA () Rabasa AI Muhammad FB Garba MA Abubakar GF Umoru MA Department of Paediatrics, University of Maiduguri Teaching Hospital, Maiduguri, Nigeria. Email: h2elechi@gmail.com # Prevalence and pattern of malaria parasitaemia among under-five febrile children attending paediatric out-patient clinic at University of Maiduguri Teaching Hospital, Maiduguri Abstract: Background: Malaria has remained a major public health problem in Nigeria with the under-five aged children and pregnant women being the most affected. The local epidemiological profile of the disease is dynamic owing to the continuous variation in the various determinants and hence the need for periodic re-evaluation. We aim to determine the prevalence of malariaparasitaemia among the under-five aged children and the effect of various determinants. Material and Method: In this cross-sectional study, 433 outpatients aged below 5 years with fever or history of fever in the previous 72hours were enrolled. Relevant information was obtained and recorded using a questionnaire. Thick and thin films were prepared from a finger or heel prick for each of the patients and subjected to microscopy. Result: The prevalence of malaria parasitaemia was 27.7%. Age, sex, nutritional status, socioeconomic class, temperature at presentation as well as ownership of insecticide treated nets had no significant effect on the prevalence of malaria (p>0.05). Only P. falciparum was seen in all the positive slides. The parasite density was generally low with 48.3% having parasite densities below 100/μl and only 7.5% had parasite density of 1000/μl. Parasite density increased significantly with increasing age (p=0041). Nutritional status as well as other studied factors had no significant effect on parasite density (p>0.05). Conclusion and Recommendation: Prevalence of malaria infection was high in the population studied. It is characterized by low density parasitaemia and hence the need to interpret negative results with caution. Age, gender, socio-economic and nutritional status, temperature at presentation as well as ownership of ITN had no significant effect on prevalence of malaria parasitaemia. There is need to strengthen and scale up various malaria control programs while ensuring proper implementations of programs and activities through effective monitoring and evaluation. **Key words:** Prevalence, pattern, Malaria, Parasitaemia, under-five febrile children, outpatient clinic. ## Introduction Malaria imposes great socio-economic burden on humanity, and with diarrhoea, HIV/AIDS, tuberculosis, measles, hepatitis B and pneumonia account for 85 per cent of global infectious diseases burden. According to the World Malaria Report released by the World Health Organization (WHO) in 2012, there were 219 (154-289) million estimated cases of malaria in 2010 worldwide accounting for 660(610 – 971) thousand deaths. While 40% of the estimated cases occurred in India, Nigeria and DR Congo; Nigeria and DR Congo accounted for 40% of estimated death globally². More than 80% of these deaths are known to occur in children younger than five years of age in Sub-Saharan Africa³. Several studies have been reported from the various regions of Nigeria⁴⁻⁸ and beyond^{9,10} (Ghana and Eretria) with varying epidemiologic profile for malaria in the under-five febrile children. However, there is dearth of information from the northeastern region. According to the Nigeria Demographic and Health survey of 2008, the Northeastern region had the second highest prevalence of malaria among the under-five aged group 11. This assertion however, was based on history of fever (proxy for malaria) two weeks preceding the study with no form of parasitological confirmation. It is a common knowledge that the symptom complex of malaria overlaps with those of many other tropical diseases 12 and thus may not represent the accurate epidemiologic profile of malaria. In addition, with various control measures being implemented by several agencies, the prevalence of the disease is likely to be dynamic and hence the actual epidemiologic profile may not be known after an interval of few years. The burden of malaria in communities and countries reflect intrinsic and extrinsic determinants. Host immunity, an intrinsic factor, is age dependent in a malaria stable country like Nigeria. In such areas, the under-five age group is the most vulnerable to malaria infection¹³. Clinical malaria in them has been shown to be associated with very low parasite densities¹⁴. The burden of malaria is greatest among the world's poorest countries with only 0.2% of global malaria deaths found in the world's richest population quintile.¹⁵ Nutrition plays a major role in maintaining health, and malnutrition appears to generate vulnerability to a wide variety of diseases and general ill health including malaria 16,17. However, there are conflicting report regarding how undernutrition affects susceptibility to malarial morbidity and mortality. Several studies in malaria endemic regions of the world have documented average reduction of 20% in all causes of mortality in children under five years old within two years of increasing insecticide treated nets (ITN) use from 0 to $50-70\%^{18,19}$ This study thus aims to determine the prevalence of malaria parasitaemia among under-five febrile children seeking treatment at the paediatric out-patient unit of the University of Maiduguri Teaching Hospital (UMTH). It also determines the associated factors and pattern of malaria parasitaemia among this age group. # Subjects and method Study Area The study was carried out at the paediatric general outpatient (PGOP) unit of UMTH, Maiduguri, Borno State of Nigeria. Maiduguri, the capital of Borno State is located in the northeastern part of Nigeria. It is a semi-arid zone lying between lat. 11.5°N and long. 13.5°E with a sunny weather and a temperature that may be as high as 45°C especially in the hot dry season and an annual rainfall of 1.14 mm to 771.90 mm²⁰. University of Maiduguri Teaching Hospital is a centre of excellence for infectious diseases and immunology. It serves as a referral centre not only for the six states in the region (Adamawa, Bauchi, Borno, Gombe, Taraba, and Yobe) but also for the neighboring countries of Cameroun, Chad and Niger. The Paediatric General Outpatient unit is a busy clinic with an average population of 100-150 patients per day. Study Design The study was a hospital based cross sectional observational study. Study Population and sampling method Under-five febrile children attending the Paediatric general outpatient (PGOP) unit of UMTH were eligible to participate after meeting the inclusion criteria. The physicians at the GPOP unit were educated on the inclusion and exclusion criteria and eligible patients were referred to the author after consultation for enrollment. Convenient sampling method was employed and patients were recruited consecutively after fulfilling the inclusion criteria. Calculated minimum sample size was 377 using Taylor's formula²¹ and value of 'p' was taken from the study of Ikeh *et al*⁷ from Jos, Nigeria who reported prevalence of 56.9%. Inclusion Criteria - 1. Age of 0-59 months - 2. Fever (axillary temperature > 37.5°C), and/or history of fever in the 72 hours prior to presentation. 12 - Informed consent. Exclusion Criteria 1. Children on antimalarial treatment or prophylaxis prior to presentation. Ethical Considerations Approval was sought from and granted by the Research and Ethical committee of UMTH. Signed or thumb-printed informed consent was obtained from each parent/guardian with unlimited liberty to deny consent or opt out of the study at any stage without any negative consequence. Information and results obtained were kept confidential. Results of the tests were disclosed to the guardians and those with positive malaria parasitaemia were given antimalarial (Artemether/lumefantrine tablets 20mg/120mg) free of charge at the expense of the researchers. ### Study Procedure The study was carried out from 5th August to 20th October 2011. On the day of inclusion, demographic and clinical information were recorded using a questionnaire. Weight was measured using a digital bathroom weighing machine (Salter Glass Electronic Bathroom Scale) in kilogram to two decimal places and for children who could not stand, the caregiver was weighed alone and then with the child and the difference of the two was taken as the child's weight. Length was measured using a tape meter on a hard cardboard surface to the nearest centimetres. Axillary temperature was measured using a digital thermometer (JOYCARE®)in centigrade to one decimal place. Socioeconomic status was determined from parental education and occupations using the model by Ogunlesi et al²². A score of 1-5 was awarded for each of education and occupation of both parents separately and the mean of these four scores to the nearest whole number was the socioeconomic status (I, II, IV and V) assigned to the child. Classes I and II belong to upper class, while Class III and classes IV and V belonged to the middle and lower socioeconomic classes, respectively. Nutritional status was assessed using the Z-score system in accordance with the National Center for Health Statistics (NCHS)/WHO reference population.²³A weight-for-agez-score (WAZ), height-for-age z-score (HAZ) and weight-for-height zscore (WHZ) of -2 was classified as normal and Z -2 as under-nutrition. Under nutrition was further sub classified into moderate under nutrition when WAZ, WHZ or HAZ is between -2 and -3 and as severe when < -3. Ownership of ITN was used as a proxy for usage due to the inherent difficulty in assessing actual usage in a community with no prior standardized instructions on usage and care of ITN. Thick and thin blood smears were prepared from a capillary blood sample. Number was allotted to every participant at the point of entry and was used for identification of slides and questionnaire from the same patient. The thin blood smears were fixed with methanol and the thick smears were left unfixed. Each slide was subsequently stained with 10% Giemsa solution and left for ten minutes.²⁴All blood smears were examined microscopically under x100 oil immersion. The thick smears were used for diagnosis of Plasmodium specie and for parasite-density counting. Smears were considered negative if no parasites were seen in 100 oil-immersion fields. For positive smears, the number of parasites was counted against 200 white blood cells (WBC). Parasite density was calculated assuming 8,000 WBC per microlitre using the formula: Parasite density = Number of parasites counted $\times 8000$ # Number of leukocytes counted The thin smears were examined to confirm the parasite species for positive samples. All slides were double-read, blinded, by the 6th author, a qualified and experienced microscopistfrom the Department of Parasitology UMTH and the lead author, who was retrained and certified by a parasitologist prior to commencement of the study, with an agreement of >95% between the lead author and the microscopist in slide reading. The slides with discordant findings were resolved through discussion and re-examination of such slide by the both authors at the same time with consensus reached on each case. Data obtained were entered into a computer to generate a data base. Analysis was done using SPSS version 16.0 (SPSS, Chicago, ILL, USA). Baseline characteristics (demographic, clinical, and parasitological) were analyzed using descriptive statistics; mean, mode, medians, standard deviation, as appropriate. Results were presented in tables. Frequencies and proportions were compared using Chi-square(x^2), strength of association were tested using Contingency Coefficient. A 95% confidence interval (95% CI) and a p-value of < 0.05 was considered significant. ### Results Socio-demographic and Clinical Features A total of 433 children were studied. There were 238 (55%) males and 195 (45%) females M:Fratio 1.2:1. The mean age of the studied population was 19.2 ± 14.3 months. Approximately half of the children studied, 203 (46.9%), were aged 12 months and below. The least frequency was observed among the 49 months and above age category, 18 (4.2%) (Table 1). | Table 1: Age and Sex distribution of the study population | | | | |---|---------------|-----------------|------------| | Age Group | | Sex | Total | | (Months) | Male
n (%) | Female
n (%) | n (%) | | 0 - 12 | 118 (27.3) | 85 (19.6) | 203 (46.9) | | 13 - 24 | 66 (15.2) | 55 (12.7) | 121 (27.9) | | 25 - 36 | 25 (5.8) | 31 (7.2) | 56 (12.9) | | 37 - 48 | 21 (4.9) | 14 (3.2) | 35 (8.1) | | 49 - 59 | 8 (1.9) | 10 (2.3) | 18 (4.2) | | Total (%) | 238 (55) | 195 (45) | 433(100) | One hundred and sixty eight (38.8%) of the studied population had fever at presentation with axillary temperature ranging between 37.6 and 40.1°C, while 265 (61.2%) had history of fever within the preceding 72 hours. The mean, median and mode of the axillary temperature of the studied population were 37.2°C, 37°C and 38°C respectively. Majority, 377 (77.8%), of the studied population were of low socioeconomic status. The remaining 77 (17.8%) and 19 (4.4%) of them belonged to the middle and upper socioeconomic classes respectively. This is due to the fact that majority of the parents did not go beyond secondary education (62.2% of the fathers and 81.1% of the mothers) and therefore are low income earners. Greater than a third, 164 (37.9%), were underweight while 123 (28.4%) of them were stunted. Among the under-nourished children, moderate under-nutrition (-2 >WAZ,WHZ or HAZ -3) was more frequent than severe under-nutrition (WAZ, WHZ or HAZ < -3) accounting for 60%, 64% and 55% of under-nutrition for WAZ, WHZ and HAZ respectively. Three hundred and seven (70.9%) of the children studied owned insecticide treated net while 126 (29.1%) did not. Sixty five (51.6%) of those who did not own ITN practiced other forms of vector control. # Prevalence and Pattern of Malaria Parasitaemia The prevalence of malaria parasitaemia in this study was 27.7%. The effect of different variables on the prevalence of malaria parasitaemia in the study population is given in table 3. The age-group specific prevalence for malaria parasitaemia were 26.6, 27.0, 27.3, 27.8 and 44.4% for 0-12, 13-24, 25-36, 37-48, and 49-59 months, respectively. Although, slight differences were observed in the age group specific prevalence of malaria parasitaemia in this study, this difference was not statistically significant ($x^2 = 2.680$, p=0.611). There was slightly higher preponderance of malaria parasitaemia among males (29.8%) compared to female (25.1%), this difference was, however, not statistically significant (x^2 = 1.184, p = 0.277). The Lower SEC class recorded the highest prevalence of 41% malaria parasitaemia. The middle SEC had the least prevalence of 19.5% while the upper SEC recorded 36.8%. However, this difference was not statistically significant $(X^2=1.417, p=$ 0.234). The prevalence of malaria parasitaemia was higher among the under-nourished children across the three measured anthropometric indices (table 2). However, these differences were not statistically significant $(x^2 = 1.014, 2.597 \text{ and } 0.868, \text{ for WAZ, WHZ and HAZ})$ respectively, p>0.05). Ownership of ITN was associated with higher prevalence of 29.5% when compared to prevalence of 23.4% among those without ITN. But this difference was not statistically significant ($x^2 = 1.659$, p = 0.198). Febrile children at presentation had slightly higher prevalence (40.0%) of malaria parasitaemia when compared to those without fever (37.3%). However this difference was not statistically significant ($x^2=0.101$, and p = 0.751). Table 2: Prevalence of malaria parasitaemia by various variables in the study population Microscopy x^2 Variables Positive Nega Total Preva-P-value tive lence n n Age groups(Months) 54 149 203 26.6% 2.680 0.611 13 - 2488 121 33 27.0% 25 - 3615 41 56 27.3% 37 - 4810 25 35 27.8% 49 - 59 8 10 18 44.4% Sex Male 71 167 238 29.8% 1.184 0.277 Female 146 195 25.1% Socio-economic status 7 12 19 0.234 Upper 36.8% 1.417 Middle 15 62 77 19.5% 239 Lower 98 337 41.0% Nutritional status Weight for age: 50 164 30.5% 1.014 0.314 Underweight Normal 70 269 26.0% Weight for height: 49 151 32.5% 2.597 0.107 Wasted 71 71 282 24.7% Normal Height for age: 38 38 123 30.1% 0.868 0.352 Stunted Normal 82 82 310 26.5% Ownership of ITN Yes 90 215 305 29.5% 0.198 1.659 30 98 128 23.4% Temperature at presentation 120 168 40.0% 0.101 0.751 48 Pattern of Parasite Density No Fever Plasmodium falciparum was the only specie detected in all the 120 malaria positive cases. The parasite density was generally low in this study. Fifty eight (48.3%) of the positive patients had parasite densities of $<100/\mu 1$ of blood, while only 9 (7.5%) patients had density of 1000/ $\mu 1$ and above. Age was the only variable significantly associated with parasite density ($x^2 = 15.26$, p = 0.004). Using contingency coefficient (c) a significant but weak 37.3% positive correlation was found between age and parasite density (C=0.344, p=0.041). Sex, socio-economic and nutritional status, ownership of ITN and temperature at presentation had no statistically significant effect on parasite densities in this study (Table 3). Table 3: Parasite density by various variables among the study population Variables Parasite density $<100/\mu 1$ 100-1000/ x2p-value 999/µ1 n μl n n Age groups(months) 0-12 22 0.004* 31 1 15.26 13-36 20 25 3 37-59 7 6 5 Sex Male 31 33 7 2.286 0.319 Female 27 20 2 Socio-economic status 13 Upper & Middle 8 1 2.471 0.291 50 40 8 Lower Nutritional status Weight for age 3 22 25 0.535 Underweight 1.251 Normal 36 28 6 Weight for height Wasted 18 28 3 5.672 0.059 40 25 Normal 6 Height for age 18 16 3 0.024 0.988 Stunted Normal 40 36 6 23 30 3 6 0.525 0.769 22 36 Temperature at presentation ### Discussion Fever No Fever The prevalence of malaria parasitaemia of 27.7% in this study suggests that malaria remains a major cause of morbidity among the under-five aged group in Maiduguri and environs despite several control measures. The observed prevalence is similar to 26% reported by Ben-Edet et al⁶ from Lagos and 27-29.5% by Ikeh et al⁸ from Jos, Nigeria. However, other studies have found higher prevalences. While this study and the two others^{6,8} with similar estimates were tertiary hospital based, the other studies with relatively higher figures were conducted in PHC facilities, secondary facilities or community⁵ based studies. This is not surprising as the lower cadre health facilities are the first point of contact, while the tertiary facilities being referral centers may be seeing patients who might have had previous treatment including antimalarials Although age is an important determinant of malaria parasitaemia in malaria stable area, the prevalence of malaria infection in this study did not differ significantly between the age groups. This finding may not be surprising as comparison was within the under-five age group who are known to share the same immunological features regarding immunity to malaria. This is similar to the findings of Akinbo *et al* in 2009 from Benin City, Nigeria. Other studies comparing under-five children with older children and adults have consistently shown ^{*,} statistically significant P < 0.05 higher prevalence of malaria parasitaemia among the under-five group^{4,5}. However, Ikeh and Teclaire⁷ in 2008 reporting from Jos, Nigeria found significant difference in prevalence of malaria parasitaemia within the underfive age group. The reason for the difference in finding is not clear. On the other hand, parasite density increased significantly with increasing age. In malaria stable area like Nigeria, most children experience their first malaria infections during the first year or two of life²⁵. It is known that the pyrogenic threshold of parasite density in a malaria naïve individual increases with increasing numbers of clinical episodes of malaria until premunition is attained²⁶. Hence the observed relationship between age and parasite density in this study. Similarly, this study and several other studies^{5,7,8,} have observed no significant effect of gender on prevalence and density of malaria parasitaemiain the under-five children. Malaria is frequently referred to as a disease of the poor or a disease of Poverty. In this study however, socioeconomic status did not have significant effect on the prevalence and density of malaria parasitaemia. It may be that there is insufficient variation in socio-economic status among the study population, since they all live within the same community (Maiduguri) to allow for significant differences to be detected. This may suggest that the overall socioeconomic status of a community may be a more important determinant than individual status similar to findings in other studies¹⁰. However, other studies have found low socioeconomic status to be associated with higher malaria prevalences²⁷. variation of the effect of socioeconomic status on malaria prevalence could be due to variable method of socioeconomic status classification; while Yusuf et al²⁷ used wealth index to measure socioeconomic status, this study used parental educational status in combination with parental occupation and expected income to determine the socioeconomic status of each child²². However, the evidence with regard to vulnerability to the consequences of malaria by groups of lower socioeconomic status is more consistent²⁸. This may reflect lower access to effective means of treatment once infected. Nutrition plays a major role in maintaining health, and malnutrition appears to generate vulnerability to a wide variety of diseases and general ill health including malaria. ^{16,17}. In this study however, nutritional status did not have any effect on the prevalence and density of malaria parasitaemia. This finding could be due to the higher frequency of moderate under-nutrition as compared to severe form. The relationship between undernutrition and malaria has remained controversial for many years, though most review articles suggest that under-nutrition is an important underlying risk factor for infectious diseases in general ¹⁶ and for malaria in particular. ¹⁷More precisely, it has been shown that severe stunting induces down-regulation of the overall anti *P. falciparum* IgG antibody response. ²⁹ Contrary to well established positive impact of ITN on prevalence of malaria ^{18,19} ownership of ITN had no significant effect on the prevalence of malaria parasitaemia in this study. Similar finding has been reported by other workers³⁰. This finding may be attributed to several factors; in the first place, ownership of ITN is not synonymous with usage, and even when used, lack of care for the nets may have contributed to this observation³⁰. In addition, the present study did not evaluate usage of and care for ITNs. Furthermore, those who did not own ITNs were not good controls because many (51.6%) of them practiced other forms of vector control measures such as usage of insect repellent (mosquito coils) and insecticide which are known effective control measures³¹. Temperature at presentation neither had significant effect on the prevalence of malaria parasitaemia nor parasite density in this study. This finding may be due to the paroxysmal nature of malarial fever and thus history of fever may be as important as fever at presentation in the clinical diagnosis of malaria. However, while this finding is similar to the finding in other studies^{32,33} with regards to prevalence of malaria parasitaemia, others³⁴ have found temperature at presentation to be associated with higher malaria prevalence. This study went further to demonstrate direct relationship between temperature at presentation and parasite density³⁴. Hence, the observed difference could be attributed to the low parasite density recorded in this study. # **Conclusion and Recommendation** Prevalence of malaria parasitaemia was high in the population studied inspite of various control measures. Malaria infection among this age group is characterized by low density parasitaemia which increases with the age and hence the need to interpret negative result with caution. Age, gender, socio-economic status, temperature at presentation and nutritional status as well as ownership of ITN had no significant effect on the prevalence of Malaria. Hence, there is need to strengthen and scale up various malaria control programs while ensuring proper implementations of programs and activities through effective monitoring and evaluation. # Limitation The study was carried out in a tertiary health facility which is a referral centre and thus could have underestimated the burden of malaria (which is usually treated at the lower cadres of health care) in the general population. Conflict of Interest: None Funding: None ### References - Murray CJL, Lopez AD. Evidence based health policy- lessons from the global burden of disease study. Science 1996;274:740-3. - WHO. World malaria report: 2012. Geneva; World Health Organization, 2013:53-62. - 3. WHO. World malaria report 2009. Geneva: WHO 2009:27-44. - Olasehinde GI, Ajayi AA, Taiwo SO, Adekeye BT, Adeyeba OA. Prevalence and management of falcipariummalaria among infants and children in Ota, Ogun state, southwestern Nigeria. Afr J Clin-Exper Microbiol 2010; 11(3): 159-163. - Nwaorgu OC, Orajaka BN. Prevalence of Malaria among Children 1 10 Years Old in Communities in Awka-North Local Government Area, Anambra State South East Nigeria. Afr Res Rev 2011;5 (5):264-81. - Ben-Edet AE, Lesi FEA, Mafe AG, Grange AO. Diagnosis of falciparum malaria in children using the immunochromatographic technique. Niger J Paediatr 2004;31(3):71-8. - Ikeh EI, Teclaire NN. Prevalence of malaria parasitaemia and associated factors in febrile under-5 children seen in primary health care centres in Jos, North Central Nigeria. Niger Postgrad Med J 2008;15(2):65-9. - Ikeh EI, Peletiri IC, Angyo IA. The prevalence and intensity of malaria parasite in children at Jos university teaching hospital, Nigeria. Highland Med Res J 2002;1 (1):9-10. - Sintasath DM, Ghebremeskel T, Lynch M, Kleinau E, Bretas G, Shililu J, et al. Malaria prevalence and associated risk factors in Eritrea. Am J Trop Med Hyg 2005;72 (6):682-7. - Biritwum R B, Welbeck J, Barnish G. Incidence and management of malaria in two communities of different socio-economic level, in Accra, Ghana. Ann Trop Med Parasitol 2000;94: 771-8. - National Population Commission [Nigeria] and ICF Macro. Nigeria demographic and health survey 2008. Abuja: National Population Commission and ICF Macro;2009: 187-96. - Chandramohan D, Jaffar S, Greenwood B. Use of clinical algorithms for diagnosing malaria. Trop Med Int Health 2002;7:45–52. - McGregor IA, Wilson RJM. Specific immunity acquired in man. In: Wernsdorfer WH, McGregor IA, editors. Malaria: the principles and practice of malariology. Edinburgh: Churchill Livingstone, 1988; Vol 1:735-51. - Bruce-Chwatt LJ. Malaria in African infants and children in southern Nigeria. Ann Trop Med Parasitol1952;46:173–200. - 15. Gwatkin DR, Guillot M. The burden of disease among the global poor: current situation, future trends, and implications for strategy. World Bank 2000. [online]. [cited 2012 Dec 04]; [52 screen]. Available from URL:http://siteresources.worldbank.org. INT-PAH/Resources/publications/seminars/burden.pdf - Caulfield LE, de Onis M, Blossner M, Black RE. Undernutrition as an underlying cause of child deaths associated with diarrhea, pneumonia, malaria, and measles. Am J Clin Nutr 2004;80:193–9. - Caulfield LE, Richard SA, Black RE. Undernutrition as an underlying cause of malaria morbidity and mortality in children less than five years old. Am J Trop Med Hyg 2004;71:55–63. - D'Alessandro U, Olaleye BO, McGuire W, Langerock P, Bennett S, Aikins MK, et al. Mortality and morbidity from malaria in Gambian children after introduction of an impregnated bednet programme. Lancet 1995; 345 (8948):479-83. - Binka FN, Kubaje A, Adjuik M, Williams LA, Lengeler C, Maude GH, et al: Impact of permethrin impregnated bednets on child mortality in Kassena-Nankana district, Ghana: a randomized controlled trial. Trop Med Int Health 1996;1 (2):147-54. - Office of the Zonal Meteorological Inspector, Meteorological Agency, Federal Ministry of Transport and Aviation, Maiduguri, Borno State. - 21. Thomas H. Understanding Biostatistics. Saint Louis, MO: Mosby year book 1991: 167-181. - Ogunlesi TA, Dedeke IOF, Kuponiyi OT. Socio-economic classification of children attending specialist paediatric clinic in Ogun state, Nigeria. Niger Med Pract 2008;54(1):21-5. - De Onis M, Blossner M. WHO database on child growth and malnutrition. WHO 1997:45. - Marianne L. Giemsa Staining of thick or thin blood film.In: Kristen M, Inger L, Heduig P, Artur S, Mats W, editors. Methods in malaria research. 5th(ed). Paris: Bio-MalPar, 2008;p.17. - WHO/UNICEF. Africa Malaria Report 2003. Geneva: WHO; 2003. P. 17. - 26. Michelle LG, Qin C. Evaluation of the pyrogenic threshold for *plasmodium falciparum* malaria in naïve individuals. *Am J Trop Med Hyg 2002;66(5):467-73*. - Yusuf OB, Adeoye BW, Oladepo OO, Peters DH, Bishai D. Poverty and fever vulnerability in Nigeria: a multilevel analysis. *Malar J* 2010; 9:235. - 28. Worrall E, Basu S, Hanson K. Is malaria a disease of poverty? A review of the literature. *Trop Med Int Health* 2005;10:1047-59. - Fillol F, Sarr JB, Boulanger D, Cisse B, Sokhna C, Riveau G, et al. Impact of child malnutrition on the specific anti-Plasmodium falciparum antibody response. Malar J 2009;8:116. - Atieli HE, Zhou G, Afrane Y, Lee MC, Mwanzo I, Githeko AK, et al. Insecticide-treated net (ITN) ownership, usage and malaria transmission in the highlands of western Kenya. Parasites and Vectors 2011;4:113. - Amodu OK, Olumese PE, Gbadegesin RA, Ayoola OO, Adeyemo AA. The influence of individual preventive measures on the clinical severity of malaria among Nigerian children. *Acta Trop* 2006;97:370-2 - 32. Gbadegesin RA, Sodeinde O, Adeyemo AA, Ademowo OG. Body temperature is a poor predictor of malaria parasitaemia in children with acute diarrhoea. *Ann Trop Paediatr* 1997;17(1):89-94. - 33. Sowunmi A. Body temperature and malarial parasitaemia in rural African children. *East Afr Med J* 1995;72(7):427-30. - 34. Ejezie GC, Ezedinachi EN. Malaria parasite density and body temperature in children under 10 years of age in Calabar, Nigeria. *Trop Georgr Med 1992;44(1-2):97-101*.