## Ogbe P Ocheke IE Bode-Thomas F

## CC –BY

# Renal sizes in healthy term newborns in Jos, Nigeria

DOI:http://dx.doi.org/10.4314/njp.v45i2.6

Accepted: 23rd March 2018

Ocheke IE ( )
Ogbe P
Bode-Thomas F
Department of Paediatrics,
University of Jos/ Jos University
Teaching Hospital
Email: ieocheke@yahoo.com

**Abstract:** *Introduction* 

Knowledge of the range of normal measurements of body organs including the kidneys in the healthy population is essential. Such reference values provide a quick guide for prompt and accurate evaluation of the abnormal. This study sought to determine renal size by ultrasound measurement in term neonates at the Jos University Teaching Hospital (JUTH).

Materials and Methods: Healthy term neonates aged 12 to 72 hours were consecutively enrolled. Ultrasound measurements of their renal sizes were determined. Mean renal dimensions and their 95% confidence intervals (CI) were computed. The renal sizes were correlated with the infants' anthropometric parameters and gestational ages using Pearson's correlation coefficient. Sizes of left and right kidneys and of male and female subjects were com-

pared using student's t-test.

Results: Two hundred term newborns consisting of 105 (52.50 %) females and 95 (47.50%) males were enrolled. Their mean renal length was 4.09(95% CI, 3.72, 4.46) cm and 4.08 (95% CI, 3.72, 4.44)cm for right and left kidneys; width2.11 (95% CI, 1.89, 2.33) cm and 2.08 (95% CI, 1.85, 2.31) cm for right and left kidneys, and volume9.66(95% CI, 7.49, 9.87) cm<sup>3</sup> and 9.41 (95% CI, 7.23, 11.59) cm<sup>3</sup> for right and left kidneys respectively. Renal dimensions increased consistently with birth weight. No significant difference in renal dimensions between the right and left kidneys was found. Conclusion: The mean renal dimensions for right and left were similar and correlated with birth weight.

**Key Words:** Healthy, Term, Newborn, Ultrasound, Renal Size,

## Introduction

Physical parameters at birth such as weight, length and head circumference vary from one baby to another and from one population to another. They are influenced by factors such as gestational age, genetics, environment and socioeconomic imperatives. These factors may also influence the sizes of body organs.<sup>1,2</sup>

Kidney sizes have been shown to increase throughout foetal life as the neonate grows bigger. Preterm and small for gestational age babies have small sized kidneys concurrent with their age and size. These findings support the notion of proportionate growth of body organs with gestational age and other factors such as body weight, surface area and length.

Reference values on physical and biochemical parameters serve as quick standards for comparison so that deviation from the normal can easily be identified. <sup>8-11</sup> Ultrasound assessment of the kidney is an important step in the evaluation of patients with renal pathology and its use for prognostic purposes in certain conditions. <sup>12</sup> Therefore, knowledge of the normal range of renal dimensions (length, width, thickness and volume) is essential for such evaluation. <sup>8, 13, 14</sup>

Normal mean renal lengths reported for term neonates range from 3.83 to 4.70 cm. <sup>7,11,13,15,16</sup> There are limited reports on kidney size from developing countries, including Nigeria. This study was thus designed to describe the renal size in healthy Nigerian term neonates within the first 72 hours of life and to provide reference values for the evaluation of this age group so that deviation from the normal size can easily be identified.

### Methods

This was a prospective, cross-sectional and descriptive study carried out at the Jos University Teaching Hospital (JUTH) Jos, a tertiary health care facility in central Nigeria. Ethical approval for the study was obtained from the Ethics Committee of the hospital. Informed oral consents were obtained from mothers after they had been given information about the study. Apparently healthy babies whose maternal records showed no evidence of hypertension, diabetes or obesity and who had completed 37but did not exceed 42 completed weeks of gestation were recruited. All the babies were appropriate for gestational age. A complete clinical examination was

done for each baby, including birth anthropometry and their body surface areas calculated using the Du Bois formula. <sup>17</sup>Neonates with obvious congenital malformation (s), detectable by physical examination or organ abnormality detected by ultrasound assessment, sick neonates, and those with birth weight greater than 4kg or less than 2.5kgwere excluded. All babies recruited into the study were subsequently re-evaluated between 12 and 72 hours of age and their weights, lengths and BSAre-measured and recorded.

Each baby then had real time ultrasound scanning of the abdomen with a 7.5MHz linear probe (AlokaProsound SSD 3500 sv). Scanning was done in both the supine and lateral decubitus positions. <sup>18,19</sup> Each kidney was examined in its longitudinal and transverse axis from which the bipolar length and width were determined in centimeters (cm). At the same point with the transducer now transversely oriented, a third measurement was taken to obtain the anterior- posterior diameter or thickness. The dimensions of each kidney were taken twice and the average of the two readings was recorded. The ultrasound machine automatically calculated the volume (cm³) using the formula for an ellipsoid. <sup>20</sup>

All babies were scanned after the first 12 and within 72 hours of birth when the transient hydronephrosis present usually at birth would have resolved. 13,21,22 More so, the kidneys are best visualized in the first few days of life before enteral feeding is well established as gas in the gut makes precise measurements of renal images difficult. 4

The data was analysed using SPSS (Statistical Product and Service Solutions, formerly known as Statistical Package for the Social Sciences) VERSION 16 (SPSS, Chicago, IL). Sizes of left and right kidneys and renal sizes of male and female subjects were compared using student's t-test. Recommended reference ranges of renal size for term newborns were derived from the 95% confidence intervals. Renal dimensions were correlated with the infants' anthropometric parameters and gestational age using Pearson's correlation coefficient. Linear regression analysis to determine the strength of correlation of anthropometric factors with renal dimensions was done. Statistical significance was set at a p-value of <0.05.

## Results

Two hundred (200)neonates were enrolled for the study, comprising 95 (47.5%) males and 105 (52.5%) females. The mean age at ultrasound scanning was 20.84±13.16 hours (range 12 - 72 hours). Seventy (35%) of the 200 babies were born at 38 weeks of gestation, 60 (30%) at 39 weeks and 41(20.5%) at 40 weeks. Twenty three (11.5%) and 6 (3%) babies were born at 41 and 42 weeks respectively. The socio-demographic characteristics of the study population are shown in Table 1. A history of parental consanguinity was found in 9 (4.5%) subjects (Table 1).

**Table 1:** Socio-demographic and physical characteristics of study population

| Variables             | Frequency (n=2 | (00) Percentage |
|-----------------------|----------------|-----------------|
| Gestational age (wee  | eks)           |                 |
| 38                    | 70             | 35.0            |
| 39                    | 60             | 30.0            |
| 40                    | 41             | 20.5            |
| 41                    | 23             | 11.5            |
| 42                    | 6              | 3.0             |
| Birth weight (kg)     |                |                 |
| 2.5-2.9               | 61             | 30.5            |
| 3.0-3.4               | 104            | 52.0            |
| 3.5-4.0               | 35             | 17.5            |
| Socio-economic class  | S              |                 |
| Lower                 | 21             | 10.5            |
| Middle                | 46             | 2.0             |
| Upper                 | 133            | 66.5            |
| Family history of kid | lney disease   |                 |
| Absent                | 194            | 97.0            |
| Present               | 6              | 3.0             |
| Parental consanguir   | nity           |                 |
| Absent                | 191            | 95.5            |
| Present               | 9              | 4.5             |

Anthropometric indices of the study population

The overall mean birth weight was 3.15±0.35 kg, length 49.33±2.48cm and body surface area (BSA) 0.193±0.014 m². Male infants significantly had bigger weights and larger BSA than females (Table 2). The anthropometric measurements at enrollment were as follows: weight, 3.10±0.35kg; length, 49.34±2.48cm; BSA, 0.19±0.01m². There was a statistically significant difference between the birth weight and BSA at enrollment.

| Table 2: Ar           | nthropometric in          | dices at birth and         | at enroll | ment    |
|-----------------------|---------------------------|----------------------------|-----------|---------|
|                       | Birth<br>Mean (95%<br>CI) | Enrollment<br>Mean (95%CI) | t-test    | p-value |
| All subjects          |                           |                            |           |         |
| Weight (kg)           | 3.15 (2.80-<br>3.50)      | 3.10 (2.75-3.45)           | 9.517     | <0.001* |
| Length (cm)           | 49.33 (46.85-<br>51.58)   | 49.34 (46.86-<br>51.82)    | 0.576     | 0.565   |
| BSA (m <sup>2</sup> ) | 0.19<br>(0.179±0.207)     | 0.19 (0.18-0.20)           | 5.010     | <0.001* |
| Males                 |                           |                            |           |         |
| Weight (cm)           | 3.22 (2.87-<br>3.57)      | 3.17 (2-82-3.52)           | 7.093     | <0.001* |
| Length (cm)           | 49.61 (47.02-<br>52.20)   | 49.61 (47.04-<br>52.18)    | 1.000     | 0.320   |
| BSA (m <sup>2</sup> ) | 0.20 (0.181-<br>0.211)    | 0.20 (0.18-0.22)           | 3.680     | <0.001* |
| Females               | ,                         |                            |           |         |
| Weight (kg)           | 3.08 (2.75-<br>3.41)      | 3.04 (2.69-3.39)           | 6.371     | <0.001* |
| Length (cm)           | 49.07 (46.72-<br>51.44)   | 49.07 (46.71-<br>51.43)    | 0.000     | 1.000   |
| BSA (m <sup>2</sup> ) | 0.19 (0.179-<br>0.203)    | 0.19 (0.18-0.20)           | 3.544     | 0.001*  |

<sup>\*</sup>statistically significant, BSA- body surface area, CI- Confidence Interval

#### Renal Dimensions

The mean renal length was 4.09±0.37 cm(95% CI, 3.72, 4.46) and 4.08±0.36 cm (95% CI, 3.72, 4.44) for right

and left respectively. The mean renal width was  $2.11\pm0.22$  cm (95% CI, 1.89, 2.33) and  $2.08\pm0.23$  cm (95% CI, 1.85, 2.31)also for right and left kidneys in that order. Renal thickness was  $2.10\pm0.29$  cm and  $2.22\pm0.22$  cm on the right and on the left, while the mean renal volume was  $9.65\pm2.21$  cm<sup>3</sup> on the right and  $9.4\pm2.18$  cm<sup>3</sup> on the left. There was no significant difference in these parameters between the genders.

There was also no significant difference in the renal dimensions between the right and the left sides. (Table 3).

The renal dimensions did not vary significantly with gestational age between 37 and 42 weeks (Table 4) but did with increasing birth weight and not with birth length (Table 5).

| Table 3: Renal dimensions of study population according to gender |                               |                 |                   |        |         |  |  |  |
|-------------------------------------------------------------------|-------------------------------|-----------------|-------------------|--------|---------|--|--|--|
| Variable                                                          | All subjects<br>Mean (95% CI) | Male<br>Mean±SD | Female<br>Mean±SD | t-test | p-value |  |  |  |
| Right Length (cm)                                                 | 4.09 (3.72-4.46)              | 4.10±0.37       | 4.08±0.37         | 0.372  | 0.710   |  |  |  |
| Left length (cm)                                                  | 4.08 (3.72-4.44)              | $4.08\pm0.31$   | $4.09\pm0.40$     | 0.218  | 0.828   |  |  |  |
| Right Width (cm)                                                  | 2.11 (1.89-2.33)              | $2.13\pm0.21$   | $2.10\pm0.23$     | 0.755  | 0.451   |  |  |  |
| Left Width (cm)                                                   | 2.08 (1.85-2.31               | $2.08\pm0.24$   | $2.08\pm0.23$     | 0.037  | 0.971   |  |  |  |
| Right Thickness (cm)                                              | 2.10 (1.82-2.39)              | $2.09\pm0.31$   | $2.10\pm0.27$     | 0.323  | 0.747   |  |  |  |
| Left Thickness (cm)                                               | 2.11 (1.89-2.33)              | $2.12\pm0.22$   | $2.09\pm0.23$     | 1.105  | 0.271   |  |  |  |
| Right Volume (cm <sup>3</sup> )                                   | 9.66 (7.49-9.87)              | $9.72\pm2.22$   | $9.59\pm2.20$     | 0.397  | 0.692   |  |  |  |
| Left Volume (cm <sup>3</sup> )                                    | 9.41(7.23-11.59)              | $9.40\pm2.13$   | $9.37 \pm 2.24$   | 0.225  | 0.822   |  |  |  |

CI- Confidence Interval

| Table 4: Renal dime             | Table 4: Renal dimensions of study population according to gestational age |                              |                               |                          |                         |        |             |  |  |  |
|---------------------------------|----------------------------------------------------------------------------|------------------------------|-------------------------------|--------------------------|-------------------------|--------|-------------|--|--|--|
| Gestational age<br>(weeks)      | 38(n=70) Mean<br>(95% CI)                                                  | 39(n=60)<br>Mean (95%<br>CI) | 40 (n=41)<br>Mean (95%<br>CI) | 41(n=23) Mean<br>(95%CI) | 42(n=6) Mean<br>(95%CI) | f-test | p-<br>value |  |  |  |
| Right length (cm)               | 4.14<br>(3.75-4.53)                                                        | 4.09<br>(3.75-4.43)          | 4.07<br>(3.72-4.42)           | 4.02<br>(3.63-4.41)      | 3.91<br>(3.58-4.24)     | 0.956  | 0.433       |  |  |  |
| Left length (cm)                | 4.08 (3.67-4.49)                                                           | 4.09<br>(3.71-4.47)          | 4.08<br>(3.81-4.35)           | 4.08<br>(3.74-4.42.0)    | 3.98<br>(3.66-4.30)     | 0.139  | 0.968       |  |  |  |
| Right width (cm)                | 2.11<br>(1.87-2.35)                                                        | 2.12<br>(1.92-2.32)          | 2.08<br>(1.88-2.28)           | 2.20<br>(1.91-2.49)      | 2.03<br>(1.89-2.17)     | 1.310  | 0.268       |  |  |  |
| Left width (cm)                 | 2.08<br>(1.82-2.34)                                                        | 2.09<br>(1.86-2.32)          | 2.08<br>(1.87-2.29)           | 2.08<br>(1.86-2.30)      | 1.99<br>(1.83-2.15)     | 0.233  | 0.920       |  |  |  |
| Right thickness (cm)            | 2.03 <b>c</b> (1.66-2.40)                                                  | 2.12<br>(1.89-2.350          | 2.12<br>(1.90-2.340           | 2.15<br>(1.93-2.37)      | 2.12<br>(1.85-2.39)     | 0.980  | 0.420       |  |  |  |
| Left thickness (cm)             | 2.10<br>(1.87-2.33)                                                        | 2.09<br>(1.86-2.32)          | 2.11<br>(1.92-2.30)           | 2.20<br>(1.98-2.42)      | 2.05<br>(2.02-2.08)     | 1.252  | 0.290       |  |  |  |
| Right volume (cm <sup>3</sup> ) | 9.68<br>(7.28- 12.08)                                                      | 9.66<br>(7.70-11.62)         | 9.45<br>(7.20-11.70)          | 10.07<br>(7.66-12.48)    | 8.90<br>(7.12-10.68)    | 0.465  | 0.761       |  |  |  |
| Left volume (cm <sup>3</sup> )  | 9.37<br>(6.82-11.92)                                                       | 9.38<br>(8.28-10.48)         | 9.37<br>(7.20-10.98)          | 9.83<br>(7.39-12.27)     | 8.65<br>(6.43-10.87)    | 0.404  | 0.806       |  |  |  |

CI- Confidence Interval

| Table 5: Renal dimens           | sions of 200 term newb           | orns according to birth we         | ight                            |        |         |
|---------------------------------|----------------------------------|------------------------------------|---------------------------------|--------|---------|
| Birth weight (kg)               | 2.50-<3.00(n=61)<br>Mean (95%CI) | 3.00-<3.50 (n=104)<br>Mean (95%CI) | 3.50-4.00(n=35)<br>Mean (95%CI) | F-test | p-value |
| Right length (cm)               | 4.05(3.69-4.41)                  | 4.06(3.71-4.41)                    | 4.25(3.88-4.62)                 | 4.280  | 0.015*  |
| Left length (cm)                | 4.01(3.60-4.42)                  | 4.08(3.77-4.39)                    | 4.22(3.85-4.59)                 | 3.667  | 0.027*  |
| Right width (cm)                | 2.08(1.84-2.32)                  | 2.12(1.90-2.34)                    | 2.16(1.96-2.36)                 | 1.664  | 0.102   |
| Left width (cm)                 | 1.99(1.76-2.22)                  | 2.11(1.87-2.35)                    | 2.14(1.96-2.32)                 | 6.412  | 0.002*  |
| Rt.thickness (cm)               | 1.99(1.65-2.33)                  | 2.13(1.91-2.35)                    | 2.21(1.97-2.45)                 | 8.192  | <0.001* |
| Left thickness (cm)             | 2.03(1.81-2.25)                  | 2.13(1.91-2.35)                    | 2.17(1.95-2.39)                 | 5.659  | 0.004*  |
| Right volume (cm <sup>3</sup> ) | 9.08(6.89-11.27)                 | 9.7(7.53-11.87)                    | 10.58(8.50-12.66)               | 5.393  | 0.005*  |
| Left volume (cm <sup>3</sup> )  | 8.51(6.42-10.60)                 | 9.7(8.3-11.1)                      | 10.15(8.15-12.15)               | 8.816  | <0.001* |

<sup>\*</sup>statistically significant; CI= confidence interval; Rt. =right

Correlation of renal dimensions with anthropometric variables

There was a significant positive correlation between all the renal dimensions and the weight and BSA of the subjects at birth and at enrollment. No significant correlation was observed between the renal dimensions and the subjects' length and gestational ages and at enrollment (Tables 6,7). On multiple linear regression analysis however, the strength of association was strongest with birth weight therefore the anthropometric measurements at birth were subsequently used for analysis.

| Table 6: correlation of renal dimensions with anthropometric indices at birth |        |         |        |         |       |         |               |         |  |
|-------------------------------------------------------------------------------|--------|---------|--------|---------|-------|---------|---------------|---------|--|
|                                                                               | Weight |         | Length |         | BSA   |         | Gestational a | ge      |  |
| Renal dimensions                                                              | r      | p-value | R      | p-value | r     | p-value | r             | p-value |  |
| Right length (cm)                                                             | 0.180  | 0.011*  | 0.094  | 0.186   | 0.178 | 0.012*  | -0.133        | 0.060   |  |
| Left length (cm)                                                              | 0.224  | 0.001*  | 0.084  | 0.238   | 0.206 | 0.003*  | -0.018        | 0.795   |  |
| Right width (cm)                                                              | 0.168  | 0.018*  | 0.000  | 0.995   | 0.140 | 0.049*  | 0.014         | 0.841   |  |
| Left width (cm)                                                               | 0.280  | <0.001* | 0.638  | 0.498   | 0.229 | 0.001*  | -0.019        | 0.792   |  |
| Right thickness (cm)                                                          | 0.248  | <0.001* | 0.034  | 0.630   | 0.219 | 0.002*  | 0.116         | 0.102   |  |
| Left thickness (cm)                                                           | 0.237  | 0.001*  | -0.015 | 0.835   | 0.142 | 0.045*  | 0.082         | 0.250   |  |
| Right volume (cm <sup>3</sup> )                                               | 0.252  | <0.001* | 0.058  | 0.412   | 0.242 | 0.001*  | -0.010        | 0.887   |  |
| Left volume (cm <sup>3</sup> )                                                | 0.322  | <0.001* | 0.047  | 0.511   | 0.257 | <0.001* | -0.014        | 0.845   |  |

<sup>\*</sup>statistically significant; r-Pearson's correlation coefficient

| Table 7: correlation of renal dimensions with anthropometric indices at enrollment |        |          |        |         |       |         |  |  |
|------------------------------------------------------------------------------------|--------|----------|--------|---------|-------|---------|--|--|
|                                                                                    | Weight |          | Length |         | BSA   |         |  |  |
| Renal dimensions                                                                   | R      | p-value  | r      | p-value | r     | p-value |  |  |
| Right length (cm)                                                                  | 0.169  | 0.0170 * | 0.96   | 0.178   | 0.170 | 0.016*  |  |  |
| Left length (cm)                                                                   | 0.222  | 0002*    | 0.802  | 0.251   | 0.206 | 0.003*  |  |  |
| Right width (cm)                                                                   | 0.154  | 0.030*   | 0.003  | 0.966   | 0.137 | 0.053*  |  |  |
| Left width (cm)                                                                    | 0.245  | <0.001*  | 0.047  | 0.505   | 0.206 | 0.003*  |  |  |
| Right thickness (cm)                                                               | 0.222  | 0.002*   | 0.037  | 0.604   | 0.205 | 0.004*  |  |  |
| Left thickness (cm)                                                                | 0.209  | 0.003*   | -0.010 | 0.890   | 0.127 | 0.073   |  |  |
| Right volume (cm3)                                                                 | 0.231  | 0.001*   | 0.061  | 0.391   | 0.232 | 0.001*  |  |  |
| Left volume (cm3)                                                                  | 0.297  | <0.001*  | 0.048  | 0.502   | 0.238 | 0.001*  |  |  |

<sup>\*</sup>statistically significant, r-Pearson correlation coefficient, BSA- body surface area

#### Discussion

Our study showed that the mean renal length of term newborn babies in Jos, Nigeria is 4.09cm and 4.08 cm for the right and left kidneys respectively. This finding is similar to the 3.92 cm and 3.83 cm for right and left kidneys reported by Sultana et al<sup>15</sup> among term Bangladeshi newborns. However, our figure differs from that reported by Adeyekun et al<sup>24</sup> in Benin, southern Nigeria, who noted greater mean renal lengths, of 4.49 and 4.44 cm for the right and left kidneys respectively. This difference may be attributable to geographic location. Whereas, Jos the capital city of Plateau state is situated at a higher altitude, Benin is situated in the lower region of Nigeria. It has been shown that babies born at higher altitudes have relatively smaller birth weight, and since renal size correlates with body weight, it may explain why this variation exist. 3,23,25-27 The mean birth weight of our study subjects was 3.15Kg, a value much lower than previously reported mean birth weight from Benin city.<sup>28</sup>

Among Caucasians, mean renal length range from 4.2 to 4.5cm, while mean length of 4.7 cm has been reported among Arabs. <sup>11,13,23,29</sup> These variations most likely suggest that race could be a determinant of neonatal renal dimensions. Renal volumes in the present study were 9.65 and 9.42 cm<sup>3</sup> for right and left kidneys respectively. This finding is also similar to the 9.7 and 9.8 cm<sup>3</sup> for right and left kidneys respectively, reported in Bangladesh. <sup>15</sup> Holloway et al<sup>20</sup> on the other hand found a slightly larger renal volume of 10.0 cm<sup>3</sup> among Caucasians for both right and left kidneys, a value which is different from our study and that from Bangladesh, suggesting invariably the influence of race on overall renal size.

Renal dimensions in our study consistently increased with increasing birth weight, corroborating previous studies among different populations. 3,15,24,27 However, we found no significant increase in renal dimensions with gestational age, within the narrow gestational age range(38-42 weeks) studied. This is not surprising since Fitzsimons 30 noted that renal length does not increase significantly after 36 weeks' gestation. Gupta and colleagues 31 reported a positive correlation between renal length and gestational age, a finding that contrasts with ours, but their study evaluated renal parameters in both term and preterm babies. The inclusion of preterm neonates in their final analysis may have contributed to this finding.

We did not find any significant difference in size between the right and left kidneys, though the right was consistently larger. Several other studies have reported similar findings. <sup>4,5,13,15,24,32</sup> Some studies however, found the left to be longer than the right kidney. <sup>2,7,11,23,33</sup> It has been suggested that this could be due to a localized bulge that is present sometimes on the left kidney called the dromedary hump. It gives an increased convexity on the lateral aspect of the kidney. This hump might also be due to the adjoining spleen and its impression on the superolateral aspect of the left kidney or may be due to fetal lobulations or both. <sup>34</sup>

Our findings also did not show any gender variation as has been demonstrated in other studies. <sup>2,24,25,35</sup> However, in studies of adolescents and adults, kidney length has been found to be significantly bigger in males than females. <sup>1,36-38</sup>This has been attributed to ultimate gender differences in body size, with the male gender having a larger body mass than the female counterpart.

#### Conclusion

In conclusion, the mean renal length was 4.09(95% CI, 3.72, 4.46) cm and 4.08 (95% CI, 3.72, 4.44)cm for right and left kidneys respectively. Our study also demonstrated that renal dimensions correlated significantly with birth weight but not with length and BSA in the early neonatal life. The gender of the child did not influence significantly the renal dimensions.

As much as possible, it is recommended that values should be determined and used for the race and locality in evaluating renal sizes in normal term newborns.

This study is not without limitation as only one observer

measured the renal dimensions reported here. Even though multiple measurements were taken and only the mean was recorded, chances of human error is still possible. Independent measurements by two individuals would have overcome such possible error. On the whole however, the data presented here offers baseline guideline for quick assessment of renal dimensions among healthy term neonates in Nigeria.

Conflict of Interest: None

Funding: None

## References

- 1. Safak AA, Simsek E, Bahcebasi T. Sonographic assessment of the normal limits and percentile curves of liver, spleen and kidney dimensions in healthy school aged children. *J Ultrasound Med 2005*; 24: 1359-1364
- 2. Konus OL, Ozdemir A, Akkaya A, Erbas G, Celik H, Isik S. Normal liver, spleen, and kidney dimensions in neonates, infants and children: evaluation with sonography. *Am J Roentgenol* 1998; 171: 1693-1698
- 3. Daud A, Achakzai A, Habib-ur -Rehman, Jaffar MA, Ahmed M, Ahmed J, Arif MA. A comparative study of renal size in new born babies. *Gomal J Med2006*; 4: 65-69
- 4. De Vries L, Levene MI. Measurement of renal size in preterm and term infants by real time ultrasound. *Arch Dis Child 1983*; 58: 145-147
- 5. Han BK, Babcock DS. Sonographic measurements and appearance of normal kidneys in children. *Am J Roentgenol* 1985; 145: 611-61
- 6. Haugstvedt S, Lundberg J. Kidney size in normal children measured by sonography. Scand J UrolNephrol 1980; 14: 251-255
- 7. Rosenbaum DM, Korngold E, Teele RL. Sonographic assessment of renal length in normal children. *Am J Roentgenol* 1984; 142: 467-469
- 8. Laing FC, Burke VD, Wing VW, Jeffery RB Jr, Hashimoto B. Postpartum evaluation of fetalhydronephrosis: optimal timing for follow up sonography. *Radiology 1984; 153: 423-424*

- Curarino G, Williams B, Dana K. Kidney length correlated with age: normal values in children. *Radiology 1984; 150:* 703-704
- Lotus WK, Gent RJ, Lequesne GW, Metreweli C. Renal length in Chinese children: sonographic measurement and comparison with Western data. J Clin Ultrasound 1998; 26: 349-352
- 12. Scott JES, Hunter EW, Lee REJ, Matthews JNS. Ultrasound measurement of renal size in newborn infants. *Arch Dis Child 1990; 65: 361-365*
- 13. Otiv A, Mehta K, Ali A, Nadkarni M. Sonographic measurement of renal size in normal Indian children. *Indian Pediatrics* 2012; 49: 533-536
- 14. Abdel-Moneim MA, Thabet MA, Ramadan MA, Zeid HH. Renal ultrasonography in neonates. *Alexandria J Pediatrics* 2002; 16: 399-404
- Ewigman BG, Crane JP, Frigoletto FD, LeFeuse ML, Ban RP, McNellis D. Effect of prenatal ultrasound screening on perinatal outcome. RADIUS Study Group. N Engl J Med 1993; 329: 821-827
- Ballard JL, Khoury JC, Wedig K, Wang L, Eilers-Walsman BL, Lipp R. New Ballard Score expanded to include extremely premature infants. J Pediatr 1991:119:417–423
- DuBois D, DuBois EF: A formula to estimate the approximate surface area if height and weight be known. Arch Int Med1916; 17:863-71

- 18. Olusanya O, Okpere E, Eziomakhai M. The importance of social class in Fertility Control in a Developing Country. West Afr J Med 1985; 4: 205-12
- 19. De Sanctis JT, Conolly SA, Bramson RT. Effect of patient position on sonographically measured renal length in neonates, infants and children. *Am J Roentgenol* 1998; 17: 1381-1383
- Larson DB, Meyers ML,
   O'Hara SM. Reliability of
   renal length measurements
   made with ultrasound compared with measurements
   from helical CT multiplaner
   reformat images. Am J Roent genol 2011; 196: 592-597
- 21. Holloway H, Jones TB, Robinson AE, Harper MD, Wiseman HJ. Sonographic determination of renal volume in normal neonates. PediatrRadiol 1983; 13: 212-214
- 22. Rosendahl. Ultrasound screening for fetal urinary tract malformation. Eur J ObstetGynecol Reprod Biol 1990; 36: 27-34
- 23. Grignon A, Filion R, Filiatrault D. Urinary tract dilatation in-utero: classification and clinical applications. *Radiology 1986; 160: 645-*647
- 24. Mesrobian HG, Laud PW, Todd E, Gregg DC. The normal kidney growth rate during year 1 of life is variable and age dependent. *J Urol 1998*; 160: 989-993

- 25. Sultana S, Rahman S, Basak BK, Afza NS, Hossain N, Ferdaus S. Determination of kidney length and volume by ultrasound in 100 term Bangladeshi newborn. Bangladesh J Child Health 2012; 36: 26-29
- 26. Adeyekun AA, Ibadin MO, Omoigberale AI. Ultrasound assessment of renal size in healthy term neonates; a report from Benin City, Nigeria. Saudi J Kidney Dis Transplant 2007; 18: 227-281
- 27. Olowe SA. Standards in intrauterine growth for an African child at sea level. *J Pediatr* 1981; 99: 489-495
- 28. Slobodan V, Marija DB, Rade C, Dragan K. The average volume of foetal kidneys during different periods of gestation. *Acta Medica Medianae 2005;* 44: 47-40
- 29. Cohen HL, Cooper J, Eisenberg P, Mandel FS, Gross BR, Goldman MA, BarzelEm Rawlinson KF. Normal fetal kidney: Sonographic study in 397 obstetric patients. *Am J Roentgenol* 1991; 157: 545-548
- Fitz Simons RB. Kidney length in the newborn measured by ultrasound. *Acta Paediatr-Scand* 1983; 72: 885-887

- 31. Gupta AK, Anand NK, Lamba IMS. Ultrasound evaluation of kidney dimensions in neonates. *Indian Pediatrics 1993; 30:* 319-324
- 32. Dakum NK, Misauno MA, Sule AZ, Ramyil VM, Pam SD, Adewunmi B. Renal ultrasound indices in Jos. *Highland Medical Research Journal* 2005;3:116-120
- 33. Giapros V, Drougia A, Hotoura E, Papadopoulou F, Argyropoulou M, Andronikou S. Kidney growth in small-forgestational-age infants: Evidence of early accelerated renal growth. *Nephrol Dial Transplant 2006*; 21: 3422-3427
- 34. Blane CE, Bookstein FL, Di Pietto MA, Kelsch RC. Sonographic standards for normal infant kidney length. Am J Roentgenol 1985; 145: 1289-1291
- 35. Becker N, Avner ED. Congenital nephropathies and uropathies. *Pediatr Clin North Am* 1995; 42: 1913-1941
- 36. Vielle JC, Hanson RA, Tatum K, Kelly K. Quantitative assessment of human fetal renal blood flow. *Am J Obstet Gynecol* 1993; 169: 1399-1402

- 37. Carrico CW, Zerrin JM. Sonographic measurement of renal length in children: does the position of the patient matter? *Paediatr Radiol 1996; 26:* 553 -555
- 38. Emamian SA, Nielsen MB, Pedersen JF, Ytte L. Kidney dimensions at sonography: correlation with age, sex, and habitus in 665 adult volunteers. *Am J Roentgenol 1993;* 160: 83-86
- 39. Egberongbe AA, Adetiloye VA, Adeyinka AO, Afolabi OT, Akintomide AO, Ayoola OO. Evaluation of renal volume by ultrasonography in patients with essential hypertension in Ile-Ife, south western Nigeria. *Libyan J Med* 2010; 5: 10-16
- 40. Okoye IJ, Agwu KK, Idigo FU. Relationship between adult renal dimension and biometric parameters. *West Afr J Radiol 2007; 14: 39-43*