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Abstract: Microcomputers are becoming increasingly popular in systems simulation because of their low cost
and improved performance. One of the challenges of modelling nuclear reactor dynamics on microcomputers is
that of finding robust techniques which guarantee the required level of accuracy and at the same time produce
results in reasonable time. In this pdper, an-analytical method for the solution of nuclear reactor dynamic
equations is presented. The method is applied to a linearised high-order deterministic model of a pressurised
water reactor plant driven by step-reactivity insertion. A comparison of this method with two other techniques
(the matrix exponential and finite difference approximation methods) shows that the analytical method yields the
most accurate results on a microcomputer and it is also found to be numerically stable over all integration step-

sizes investigated.
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1. INTRODUCTION

Modelling dynamical systems on
microcomputers involves developing compact
algorithms that guarantee some degree of accuracy.
In real-time applications, such algorithms must also
be fast enough to generate real-time solutions. The
demand for low run-time and a reasonable degree
of accuracy makes the usual numerical methods
impracticable on microcomputers and hence new
techniques must be sought. In this paper we
present an efficient method for the solution of the

dynamic equations of nuclear reactor systems.
The method is compared with the matrix
exponential method and finite difference
approximation by means of a numerical example.

The governing equations of the dynamics of
nuclear reactor systems can most often be cast in
the general form:

ZO _ 1. x0 M

where F is the vector of driving functions and X the
state variable vector. The feedback mechanisms of
nuclear reactor systems are non-linear in practice,
but for some sufficiently small input disturbances it
is possible to reduce the dynamic equatlons to a
system of linear equations.
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There are various reasons for preferring a
lineariséd model:

(a) The perturbation may be genuinely small
enough that the wuse of a non-linear
representation makes little or no difference to
model predictions

(b) The computational costs of solvirg linear
model equations are lower, and the low cost
makes them suitable for use on small
computers, and development of real-time
algorithms.

{(¢) The manipulations and numerical
methods of linear system equations are well
known and easy to track down for dynamic
studies of the plant.

Whatever the reasons for linearisation may
be, however, we still recognise the fact that the
linearised model is an approximation to the
corresponding non-linear version.

Linearisation proceeds by writing each state
variable as a sum of its steady state value and the
deviation from steady state conditions due to an
input disturbance.  For relatively small input
disturbances products of such deviation of state
variables from steady state conditions are small and
can be neglected. Thus for small input disturbances
the linearised form of eqn. (1) can be written as

dsX(t)

- ASX(t)+F(1) 2)
where A 1s the control matrix of constant
coefficients and 8X the vector of deviations of state
variables from their steady state values due to a
small input disturbance F.  Three numerical
methods are described below for the solution of
eqn. (2).
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2.THE MATRIX EXPONENTIAL
METHOD

The general solution of eqn. (2) is
SX() = e*5X(t,) + [ e*F(x)dr,
At = t-4, @

The matrix exponential method [1] stems from the -

fact that the exponential term in eqn. (3) can be
expanded in Taylor series as:

AAN?  (AAY)°

(Ar)* @aay
2! 3

If the time interval At is appreciably small we can

assume that the driving function F in eqn. (3) is
piecewise constant, so that we can write

SX() = eM5X(t,) +(e* ~1A"F() )
From equation 4 we obtain
Ad (A4)

AL (A%)

2! 3
(A4)’

41
thus removing the need to compute A"'. Eqn. (5)
can therefore be evaluated by wusing values
computed from the series in eqns. (4) and (6). The
series expansions are fairly straightforward, since
the two can be generated in the same program loop.
The choice of integration time-step and the number
of terms in the series expansion are very critical in

the accuracy of the scheme, however. In this work,
the series is terminated after n terms when

2 T
k=1

element in the ™ term of the matric series and ¢ the
unit round-off of the machine, defined as the
smallest positive number such that (1+ g)#1. This
scheme was found to work satisfactorily. We note,
however, that the solution of equation 2 has been

reduced to a simple problem of addition and
multiplication of matrices.

e =1+ AAL+

1
[ -1JA" =
+

A (6)

.F....

< ¢» Where & o is the maximum

3. FINITE DIFFERENCE
APPROXIMATION

This approach was introduced by Zhiwei et.
al. [2], and makes use of the posterior difference
form of Euler’s formulas. For if we write eq. 2 as

O0X = AoX +F(r)
=fi8X, 1),
FX(0)=6X,
then the equivalent difference equations using the
posterior derivatives are:
(SX/@.,/ -0X, = Atf(é'XkH, Leet)
85Xy =35X(0)

If after one recursion the incremental vector is &.,,
such that
X1 =Xyt G (7)
then
’ Geer = At fLOXpet; B11)-

Expanding the right-hand side of the later equation
we' obtain :
Eiv1 = At fioss (0K, i) + AL A,
so that

4 (I - AADE 1 = AL frrs (X4, #re7) - 3
Therefore, using the initial conditions one
obtains ﬁm(SXk, tk+1)’ which can then be used to
calculate the incremental vector from eqn (8). We
then proceed to solve for the new state vector 86X+,
frdm eqn. (7), and the process is repeated until the
required transient time is covered.

4. ANALYTICAL METHOD

() One possible way of evaluating eqn. (3) is by
similarity transformation of the coefficient matrix A
such that:

A=SAT, ST=TS=1 9)

where A is a diagonal matrix of the eigenvalues of
A, S the matrix of eigenvectors of A, also called the
transformation matrix, and T the inverse of S. I is

an identity matrix. Thus, e*%’ =Se™'T, and
eqn. (3) becomes

SX(£) = Se T X(t) + | ' SeMOTFR(r)dr

(10)

or in components form,

&, (=23 5,7, {ea‘x (1) + [ #OF, (2)ds
i=l k=1 °
(11

Quite often, however, especially for
dynamical systems, some of the eigenvalues of A
are complex, and when this occurs, they appear as
complex conjugate pairs. Therefore if we write

S,=X;+iY,,
T, =Wy +iZ,,

L=a,+if,

and e® = cos@ + i sin@ where i’ = -1



we obtain
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&,0=2)Y, (x,w, -1,2,) e cos B, (t,) + j‘ ™ cos B,(t - 7)F, (r)dr]

i=1 k=1

- (X Ly YWy {e"""” sin B,Atéx, (t,) + ‘[: e sin B,(t - 7)F, (r)d T]}

where m is the number of complex conjugate pairs.
At this point we shall assume that the disturbance

function is a general ramp function of the form

solution becomes

8,0 =23 (X W, -, 2, Je ™ cos BASx, (t,)+ F (V& ()b, £1(0)]

i=l k=l

F(t) = a+bt, which can be used to simulate control
rod movements in the reactor core, or for step
reactivity insertion when b=0. Using this the

~(X iz + Y, Joo sin 008, (1) + F (O () - b,£1 )]

&= 6—2_ {ai cos fB,At + B, sin B, At — ;e ™ }

where
a; At
ai2 + ﬂi
) ea,-At
& =———71Ala, cos BAt + f; sin B,Ar) -
a; +f; :

Ry

(a} = B})cos B,At + 2, 3, sin B,At . al - p? e

ai2‘~+ ﬂiz a’i2 + /Biz

i =& Sin At — . COS A+ ‘e—-a,-At
53 az +ﬂ2{ I ﬁx ﬂ, ﬂ, ﬂ' }

i i

a; At

£ =-—e—7{At<a,- sin 5,41 - §, 605 A1) -

al +8

i

For real roots,

(aiz - lBiz )sin B, At —2a, 3, cos B, At _ zaiﬂi Y

ai2+ﬂi2 ai2+18i2

&,0=3 X, e e + ™ 1) a, bl@a-ne™ +1)a?} a3

i=t k=1

5. COMPARISON OF NUMERICAL
TECHNIQUES

We shall apply the three solution techniques
discussed above to a linearised deterministic model
of a 2200 MW(th) pressurised water reactor (PWR)
plant. The main components represented in the
model are the reactor core, pressuriser, steam
generator, pipings and plenums. Detailed formalism

of the model equations has been reported by Kerlin
et. al [3], and consists of a system of 21 linear
ordinary differential equations made up of seven
neutronics equations (point Kinetics with six groups
of delayed neutron), three core heat transfer
equations (average values for each of fuel
temperature and two coolant nodes), two equations
for pressuriser (pressure and a control variable),
three equations describing the steam generator
(steam  pressure, temperature and  metal
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temperature), four equations for the inlet and outlet
plenums of the steam generator and reactor core,
and two other equations for the cup-mixed hot- and
cold-leg coolant temperatures. The neutronics and
thermalhydraulic equations are coupled by a
reactivity feedback equation. The assumption is
that the reactivity feedback can be expressed as a
linear combination of the effects of temperature
feedbacks from fuel and coolant, primary system
pressure feedback, and changes in control rod
posxtlon

In order to establish some reference or
baseline with which the three methods discussed
above can be compared, model equations were first
solved using a linear solver for ordinary differential
equations, LSODE [4]. LSODE is an initial-value
ordinary differential equation solver based on
Gear’s algorithm, which is essentially a variable-
step, variable-order method with automatic error
control algorithm [5]. This algorithm is know to be
well suited to ill-conditioned problems such as
those encountered in nuclear reactor dynamics,
where stiffness ratios of the order of 10° are not
unusual. However, for real-time calculations or
problems in which model equations in the form of
equation 2 are to be solved repeatedly several times
(such as in optimisation problems or simulation
packages), the overhead computational cost of
using LSODE becomes overbearing on a
microcomputer system, and hence the search for
more elegant methods, the basis of this paper.

Transient response of the model for the first

100 seconds following the insertion of a $0.071
step reactivity is shown in Figures 1-3. In Figure 1,
the initial response of the system to the input
disturbance is a sharp rise in reactor power,
occasioned by the release of prompt neutrons. As
expected, the effects of the step reactivity insertion
on fuel temperature in Figure 2 and on hot-leg
temperature in Figure 3 are nmuch slower in time
response than for reactor power. The initial
tendency is for the state variables to change in

response to the input disturbance, but after some

time the system stabilises to a new equilibrium state
because of the effect of the feedback mechanisms.
It becomes imperative therefore that the prediction
of the fastest transient in the system (1.e. the power
response) will be of utmost importance in any
attempt to solve the model equations.

The profile of the reacto power predicted
over a transient period of 100 scconds by the three
techniques discussed above arc - ompared with that
obtamed usmg I SODE.. lae  measure  of

comparison is the residual error, defined as the sum
of squares of the deviation of experimental values
from the LSODE solution, that is,

2

R= i( LSODE _ E\’PT) , (14)

i=1
where N is the number of sample points.

6. RESULTS AND DISCUSSION

The residual errors generated by the three
methods are plotted as functions of the integration
time step in Figure 4. In this figure we observe that
the matrix exponential method becomes
numerically unstable beyond a step-size greater
than 0.05 seconds. Although the method of finite
difference approximation remains stable over the
step-sizes considered, the residual errors due to this
method are of the order of 10'°- 10* times those of
the analytical method. Also in Figure 4 we notice
that out of the three techniques considered, the
analytical method has the least residual errors.
Furthermore, we do not observe any significant
influence of the choice of integration time-step on
the residual errors generated by the analytical
method.

Figure 5 shows the dependence of program
run-time on the choice of step-sizes. Within the
range of time-steps where numerical stability is
achievable, we notice that the program run-time for
the matrix exponential method increases with
increasing step-size; this is because of the need to
expand the exponential series to higher order terms.
On the other hand, for both the analytical technique
and finite difference approximation method, the
run-times fall gradually with increasing integration
time-step.  Although the analytical technique
generates the least residual errors, it is about 40-50
times slower than the finite difference
approximation method, and between 3-20 times
slower than the matrix exponential method, when
solution is feasible in the latter. At this level, the
analytical method has only two advantages over the
other methods considered - it is numerically stable,
and generates reliable results. It is however
possible to optimise the algounthm if we are
primarily interested in step reactivity insertions. In

this case the input function is a constant and some

iterations  and other calculations can be avoided.
By using the imiial condition 8X(1y) - § equativas
12 and 13 respectively simplify to
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Figure 2: Fuel Temperature Response due to 0.071$

Figure 1: Transient Response of Reactor Power due step Reactivity Insertion
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Fraure 2 Hot-leg Temperature Response due to 0.071% Step Reactivity Insertion
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Figure 4: Comparison of Residual Errors Generated by Various Solution Techniques
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Figure 5: Dependence of Program Run-time on Step-size

These equations generate the same results as equation
12 and 13 for step reactivity insertions, with no loss
of accuracy. Program run-times due to the reduced
equations are shown in Figure 5, indicating that
program run-time can be drastically reduced for step
input disturbances, by a factor of 5-25, depending on
step-size. Thus, the analytical method enjoys the
benefit of a low program run-time, numerical
stability, and accurate solution of the dynamic
equations.

7. CONCLUSIONS

A mumerically stable algorithm for the solution of
nuclear reactor dynamic equations has been
developed. It has been demonstrated through the
example of a high-order model of a PWR' power
plant that the method produces very accurate results
on a microcomputer. The stability of the method

' Computer source code for the analysis reported in
this paper is freely obtainable from the author.

stems from the fact that for a dynamically stable
system the real parts of all the eigenvalues will be
negative, and this removes the problem of numerical
overflows when computing the exponential terms in
eqns. (12) and (13). Although the formulation of the
analytical method in this paper is for ramp input
disturbances, the method is easily adaptable for inputs
in the form of square waves, pulses and periodic
functions. In addition, the methodology in this paper
is equally applicable to other configurations of
nuclear reactors, as long as the model equations can
be cast in form of eqn. (2).
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