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Abstract

The form factors of pseudopotential that works for all elements is fully developed. The plane
wave matrix element of pseudopotential is evaluated. In addition, the linear coefficients
parameter A; are calculated by the use of tables of Bachelet et al. (1982) as well as the
prescription of Pattnaik et al.(1979) which eliminated the numerical instability problems. The
liquid metal resistivity is evaluated using Simpson s 'ru[e;
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1. Introduction

For many years it was known that quite good
guantitative treatments of some properties of
metals have been obtained by applying the
free electron theory. This theory presumes
the electrons to roam through the metal at
will. The core region of every metal contains
strong force fields which must greatly perturb
as conduction electron penetrating it, in
apparent contradiction of the free electron
theory. Nevertheless, the old nearly free
electron model of Mott and Jones (1985) had
a strong measure of success in predicting
metallic properties without a great deal of
theoretical justification. In the free electron
approximation the forces ' between the
conduction electrons and :ion cores  are
neglected; all calculations proceed as if the
conduction electrons were free to move
everywhere within the specimen. The total
energy is all kinetic, the potential energy is
neglected. In any case, the theory is useful
for experiments that depend mainly on the
kinetic properties of the conduction electron. .
The pseudopotential theory to some extent
vindicates the nearly free electron theory,
puts it on a firmer physical footing, and gives
a new mathematical procedure for. the
calculation of many properties of metals. It
must be stressed that pseudopotential theory
as been successfully applied to ‘normal

metals at the beginning, that is, those metals
whose. -ion cores do not overlap in the
crystalline  state. In the empirical
pseudopotential method, the band structure
of semi.conductors and simple metals were

given. - In this method, the local effective
potential ‘acting on the electrons, including
coulomb - and exchange -~ correlation

contributions as well as the ionic parts, was
represented. by just a few terms in a fourier
expansion. The coefficients were adjusted to
agree with some experimentally determined
features of the energy bands. But a later
approach was given by Bachelet et al (1982)
in- which a simple function representing the
ion-core potential was adjusted to fit the
experimental ionization potential of the
hydrogenic ion. In any case, the wave
functions of Philips and Kleinmann (1959)
pseudopotentlals have their own problem of
orthogonality hole which puts too much of its
total charge in the core region.

Inthis paper, the Fourier transform of
pseudopotentials that work is fully developed.
In' addition, the linear coefficients parameters
Ai.are calculated using plane wave matrix
element of the pseudopotential. The liquid
metal resistivities of transition metals were
calculated using Simpson’s rule. In the
calculation, we employed Bachelet approach
(1932)} ‘
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2. Fourier Space Evaluation of the Pséudobotentiél

The matrix element between plane'waves of the pseUdopotential given by

<kV{*'(0)kt+q>=1/Q [= f* [Fe Vi (r)e" VT (1)
0 0 0 ‘ '

where K is the wave vector of the scattered scatterihg vector, Q) is the atomic volume and
electron Vi, of ionicpotential, q is the Veore iS:the core potential

o  2n

=1/Q f f fVl“’“(r)e‘qr 2drsm@ do do | (2)

lOn

w 2% m
=1/ [ ff [Vcore(r) +AV1'°“(r)] €9 drsin  (3)
where Vcore(r) = ZV/r{ZClcmeerﬂ(O(fo.m)%r] L
. 3 . S
and AV =3(Ai +rAit3)e"

with Zv as the valence charge of each atom, A similar expression is written for spin-orbit
Ci®"®, «i®® | = 1, 2 are the linear core part of the potential V*°(r), where applicable.
coefficients and decay coristant respectively, The above integral in eqgn. (3) can be
and Aj of Aj + 3 with «cj = 1, 2, 3 are also  reduced;to

linear coefficients and decay constants. R

e}

A (CD = 1/Q4n/q [V/®() rdr singr. : (4)

Substituting eqn. (3) into eqn. (4), we 'g'et:'
f

V%(q) = -41/Qq f ZV { Zcf"reerf[(o c"m)/z }r smqr dr

+ 47t/QqZA [ew?y smqr dr + 47t/Qq ZA,+3fe %23 sinqr dr (5)
Thus, we have three (3) integrals to evaluate as follows: =
- J erfl(o")"r] singr dr = jqeiaioe E
L[ e-*% sir;qr dr = q/n/4e;” exp (?qz)/4o(i§, - } (6)
L. | e siﬁqr dr=+n (6qei-q° )/’166(i7/2 expf(-qu‘/él‘ai) }

Therefore, for each angular momentum, we have =
l(m(q) — '4TCZV/Qq z C coree-q2/4oclcore + 7'53/2/Q z A/O(3/2e -q2/400

+ 41704 3 b3 Al 3 /0(17/2(60(l ) @ i @)
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Thus, the total ionic pseudopotential is given by a sum over the angular momenta:

Vpsion(q) = 5 Viion((]) — -47[ZV/Qq2 z Cicoree~q2{4aicore

2 ) . 2. ) ;
+ 12:1 {TCS/Z/Q [Ai]/ai]3/2 e-q2/4oul + Az]/a2[3/2 e -q2/4x21
- 1=1

+ A31/0(3]3/2 e'q2/4(x3] + 753/2/4Q[A4>]‘ /O(i]7/2(60(]‘|"q2) e-q2/4(xi|

A/ (6001-q") €4+ Ao (601-q") € (@)

We have obtained the ionic pseudopotentlalj
in momentum space and there is need to
obtain the parameter Aj which is the linear
coefficients. '

. 2 . ‘
AV (r) = X (Al +1°Ai + 3) €%
1=1 .

Thus each atom is characterized by:

(1)  a valence charge Zv and two sets of

linear coefficients and decay constant

describing the core, C{“™, ocj*, |

=1,2
where,
Clcore + Czcdre =1
(ii) For each | value two sets of three
linear coefficient each, Ajand Aj +3 -

Al = z Ci Q,l

The Cj parameters as tabulated by Bachelet
et al (1982). (Table 1) are used in the
calculation of Aj.

Nonetheless, too many significant flgures
must be retained in the Aj’s for practical

3. ' Determination of the Parameter A;

Linear dependencies of the fitting functions
can lead to large values for some of the fitting
coefficients Aj in the potential.

(9)

- corresponding to the decay constants
ocj =1, 2, 3 for the average potential,
‘provided the spin orbit splitting of the
eigen values is larger than a chosen
- threshold value of 0.05eV.

In order to obtained the linear coefficients A|
to be used in calculation, the coefficients Cj
have to be transformed by an inverse
orthogonality transformation

tabulations.  To solve this problem, we have

transformed the coefficients Aj, Aj + 3, | = 1,

3 of egn. (10) into a set of coefficients
Ci; i =1, 6 for an orthonormal bases set;
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Table 1: The Ci parameters as tabula?éd by Bachelet ;al.3(1982) B

Ezenwaka

Atom | zv | 1 a | @ | o fier |[licz 3 ca cs cs

Cu | 1 | Core| 7.9500 3;c§2oo f }2.6959:
o 0 17500 | 2iézoo : 3i0900} 72015 0.8717 | 0.3180 | -0.5590 | 0.0289
1 1.2500 728:000 10.9300 58502 | ‘ . 06113 | 01380 | -0.2028 | -0.0691
2 | 27800 | 257000 27;47(::)0‘ 1 }1.7433 ; 07516 | 02538 | -02938 | 0.1973
So; | 0.5400 14400 1.73016:: | %0'0347 0.0035 | 0.0029 | -0.0008 | -0.0003

-+ 0.0012 0.0004 0.0000 0.0001

So, | 195500 | 281600 | 37.6100 |-0.0158 |

| 85444 |1 58444 |

t [
| i I
H i i

Pb 4 | Core | 19200 | 07600 .

o | 14000 | 1.9500 | 3i5700' | 83628 '

0.01084 | 01191 | 03305 | 0.0557 | 00032

1 | o500 | 42100 | 17700 ‘| :6.9590 | 105127 | 00637 | 02131 | 00485 | -0.0143

2 | 07900 | 09100 | 12000 | ‘6.8182 | | 06033 | 0.1888 | 002154 | 0.0916

3 13500 | 116200 | -1,62001 | «4.0362 | - - 0.5641 | 0.1487 | -0.1291 | -0.0624

So, | 04500 | 07100 | 0.8200, | :0.5058 | 0.0

{

0.04877 | -0.0128 | 0.0136 0.0117

“So, | 0240 |- 03000 oi4oo‘6"\i 0.0376 | 0.0130 | -0.0275 0.0245

0.0257 | ' 0.078

Bi | 5 |Core| 20300 | 08100 | B2to4 |
o | 06200 | 21600 | 32400 | :86521 | | o727 | 02679 | 00221 | -0.0041
1 1230 | 14800 | 17500 ‘| -7.2503.|'; 00127 | 01712 | 00869 | -0.0059

 -0.56518 -0.2095 /| 0.0055 0.0813

N3

09200 | 1,0400 | 1.3400,

P

3 | 17000 |. 19200 005327 | 00841 | -0.1722 | -00752

Soq 0.4700 0.7700 0.0509 -0.1140 0.0107 -0.0147

So, | 02800 | 0,3400 © 0.0401 0.0112 | -0.0260 0.0260

L 3 | core| 17700 | 05900
‘ ‘ ’

o | 12400 | 1.8900 |10.0300 | 01161 | 03351 | 00637 | -0.0059

1 0.7100 | 0,9600 3{1_.0109 . -0.0109 0.0245 0.0178 -0.0129

2 | 07000 | 0.8100 ;320181'99_; -0.5486 | -0.1761 | 0.0331 0.1048
3 0.9100 | 110900 | 1.2100 | :4.1125 |- .1,3267 04578 | 0.1868 | 0.0910 | -0.0456

So4 0.3100 0‘?.5200 0.6200: 0.0451 -0.0222 1| 0.0174 -0.0109

- 802 0.2000 0:2400 ’0;320(‘)" 0.0288 |/ 0.0753; ' 0.0435 0.0094 ‘| 0.0219 0.0369

] 26949 | 16048 |-

f

Ni | ~2 |Core| 7.6000 | 2.7400
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0 1.800 2.3800 3.1700 -7.5612 |- -1.1572 0.8213 0.2546 -0.351 0.0220
1 1.1800 2.1000 2.5800 -5.8322 | -2.4306 -1.2453 0.2729 -0.1929 0.1633
2 2.5800 23.5500 26.6000 15867 | 2.9229 -0.6560 0.2811 -0.2986 0.1867
Soq 0.5100 1.2900 1.500 -0.0324 0.0022 0.0034 0.0025 -0.0008 -0.0003

S0 18.010 241700 31.7500 | 0.0155 | -0.0044 0.0016 -0.008 0.0001 0.0002

Table 2. Ai results for copper, lead, bismuth, thallium and nickei atoms

[Cu]
v i — T &‘[As R
0 66.03779 12317795 99.83706 . | . -2.82897 0.35245 0.034565
1 10.20377 70.43324 -41.06683 0.13694 2534715 9.25869
2| 327978 -806.42524 73252223 | -5.32135 121.38282 -124.84925
SO; 12317795 |  99.83706 2.82897 | 035254 -0.34565 |  1.75000 |
| SO, | 70.43324 -41.06683 | = 0.13694 2534715 | 925869 |  1.25000
| [Pb]
| L A A; A; T A As Ag
0 34.15055 -5.67858 261607 | ~ 2.60972 -0.49116 0.04965 |
B i 1415523 | 548528 -1.20937 123535 -0.17929 0.06744 |
2 5165715 | -75.47792 43.03156 037112 | -0.35745 020105
3T 567658 -2.61607 -2.60972 049116 | -0.04965 1.40000 |
7SO, | 48528 | T -1200937 | 123535 | -0.17929 |  0.06744 | = 095000
o[ |t | own | | omios | o
[
L T A A Y A As Ae
§) T 5779250 -4.57524 28774 | -2.322459 -047952 -0.04965 |
""" 1 11.06046 -0.34763 367954 | 130628 | -0.05601 0.06744
2 4466191 -66.21326 37.29997 0.19264 -0.49985 -0.20105
3 | -4.51524 -1.28774 -2.32459 -0.47952 0.21272 1.40000
SO, -0.34763 3.67954 139628 |~ -0.05991 0.02553 0.95000
S0, | -66.21326 -37.29997 0019264 | -0.49985 #”_376854 0.79000
(Bi]
C AT R i iy i et
o 47.21382 -16.76466 2.56042 -2.32355 -0.17881 0.05299
4 43.20601 -29.38373 6.05858 129180 | -0.34902 | 002958
2| 7807395 ~109.36503 5171981 | 057288 028227 | -0.27460
3 7| -i6.74680 | -2.56942 7-2.32385 ~-0.17881 0.02599 | 162000
804 -20.38378 6.05858 | 120180 | -0.34902 0.02958 123000
L_'“é'éz“hﬂL 109.36503 |  51.71981 057288 | o‘.28227‘1L —O.27246wr’7)@5@6 """""
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[Ni
: i T TR, - i
o) 70.16069 -123.18541 95.68410 -2.42012 -1.75485 -0.28523
1 25.36635 -116.45741 128.44245 | = -1.75485 0.70833 -1.55453
) 3.63909 -421.45741 | 354.46514 | . 5.04577 114.10574 -112.52278
N 3 -123.18541 9568410 | -2.42012 | -1.75485 -0.28523 1.80000
SO -116.45741 128.44245 1.75485 ©0.70833 -1.55453 1.18000
o -421.45741 354.46514 5.04577 | 114.10574 -112.52278 1.08234

Application in Solid State Physics (liquid
metal resistivity)
The electrical resistivity of liquid transition

metals is given by the Ziman's formula

(Ziman,1961)
p 3MQ, / €°h VK

\I‘Z

where Q, is the atomic volume, Vf is the
velocity of the electron at Fermi level, S (q) is
the Structure Factor, and V (q) is the form
factor of the single ion potential. The
calculation of liquid metal resisitivity can be
dome once the function [V (q)]? is determined
egn: (8), The model potential parameters
developed by Animalu and Heine (1965)

q’dq

(12)

were used in the calculations.

Table 3: Model potential paramenters used for the calculation of liquid metal resistivity for copper, lead, bismuth,
thailium and nickel.

R o

Element | A Aq Az (WY | dAg | 2dAs | dA, a
o de._ | dE | dE |

Cu 0.6064 | 0.6070 | 0.6640 | 2.2000 | 78.900 | 1.000 | 1.000 | 0.720 | 0.017 | 0.201 | 0.610 | 0.774 | 0.654
Pb 1.9040 | 1.6320 | 1.7250 | 2.1010 | 203.40 | 4.000 | 1.000:| 0.835 | 0.058 | 0.517 | 0.756 | 0.378 | 0.205 |
Bi 2.3900 | 2.6130 | 0.2590 | 2.0920 | 239.40 | 5.000 | 1.000 | 0.852 | 0.058 | 0.547 | 1.156 | 0.846 | 0.174
Tl 15110 | 1.6320 | 1.0880 | 1.9860 | 191.70 | 3.000 | 1,000 | 0.774 | 0.058 | 0.450 | 0.256 | 0.096 | 0.348
Ni 0.6104 | 0.6107 | 6460 | 2.2000 | 73.600 | 1.000 | 1.000 | 0.925 | 0.023 | 0.605 | 1.000 | 1.844 | 0.584

Table 4. Experimental and calculated values for liquid metal resusnv;ty for copper, lead, bismuth, thallium and nickel

(in units of ohm — cm).

The liquid metal resisitivity of copper, lead,
bismuth, thallium and nickel were computed.
The results obtained are shown in Table 4,
where they are compared with experimentally-

Liquid metals !:xpenment value Calculated value
Faber (1977)
Cu 21.00 , 12245
Pb LMQISJAOOV T 93.86
B ) Bi Tq2800 - 127.70
Tl 73.00 7415
B Ni ‘ 85.00 87.20

obtained values. It is observed that the
calculated results are in good agreement with
experimentally obtained results.

Nigerian Journal of Physics, 19(1), (2007 )
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5. Results and Discussion

A good achievement that was made is the‘
evaluation of plane wave matrix element of
pseudopotential that works for the elements.
In addition, we calculated the linear
coefficient parameters Ai by the use of Table
1 of values of Bachelet et al. (1982) as well
as the prescription of Pattnaik et al (1979)
which eliminated the numerical instability
problems. The results of Ai are shown in
Table 2. Values of Ai for the transition
elements were calculated. During the
calculation of the values of Ai for each
element, we encountered a .problem of not
obtaining any result for quantum number =
2. The problem has to do with obtaining a
negative at the square root function which'the

computer system used regards as illegal.

square root function. This bottle-neck was
overcomed by putting a modular in all the
square root function. The ' Ai’s calculated
were used to carry out some checks with
Nickel and Vi(q) behave as is expected in: thex
limit as q > o. AR
Even though, with the advent. . of
pseudopotential theory, it 'is possible  to
device, say, a form of real-space two-bodly:

interatomic potential, but this is only a small

part of the theory. For there are many
problems which could be tackled. using, for
example, this pair potential - which could be
solved in principle in a fourer'space approach
and this is what we have tackled in this work.
Also the phonon frequency and liquid metal
resistivity computations can now be achleved
with the subject matter of this work. Do
For the present calculation, we have used the
model potential derived from spectroscopic
term values by Animalu and Haine (1965).
These values of model ' potential . are
tabulated in Table 3. We can thus see that
this modified form of the model potential has
the advantage that it includes both a
repulsive exchange overlap (core-core) part
an attractive part that takes into account s = d
hybridization, and is purely columbic outS|de
the parametric radius R,,. For screening we
used the simple Thomas-fermi type ' of
dielectric function which is quite adequate for
liquid metal resistivity calculations to ensure
that -2/3E; limit as q tends to zero. We have
developed a comprehensive and consistent
pseudopotentials that work form factors for
the computation of various condensed matter
properties. Our goal has been to discuss the
physics  of the pseudopotentials that work

form factor and then apply the form factor in
‘the  ‘calculation of various solid state
propertles We have applied the form factor
in; calculatlon of the liquid metal resistivity for
five . metals and the results obtained are
tabulated - in Table 4 where they are
compared with the experimentally obtained
results Faber (1977). The calculated results
are in good agreement with the experimental
results. .

The pseudopotentlals that work calculations
are rlgorous extensive and detailed, but that
price: is worth paying for considering the
accuracy  with which theoretically "calculated
results agreed with the experimental results.
It .is therefore an elegant method and it is
anticipated that this form factor developed
will: continue to be useful in many contexts.
_The result of this work provide exciting insight
to many applications as proposed by Slater
(1937). . Today, we have found a key-
computatlonal physics on the computer — that
is prowdmg the answers to:many questions

raised by pseudopotentials that work
critiques.  We are convinced that as
computational  physics and computers

continue to evolve, the expansion of research
on‘even'more complex systems will become
possible using the pseudopotentials that work
method. The rigorous, extensive and lengthy
,a!culahons involved in the pseudopotentials
that' work. method is now an advantage
because the method is detailed, and there
was no local field corrections and the results
of ‘the ‘liquid metal resistivities calculated
were ‘in. good agreement with the
“experimental results. It is our belief that the
application of the pseudopotentials that work
formi factors to other phenomena like phonon
frequenmes optical propertles etc. will not be
dlfferent
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