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Summary: Nephrotoxicity, with the attendant risk of progression to kidney failure, is a growing problem in many parts of 

the world. Current orthodox treatment options for nephrotoxicity and kidney failure are limited and there is need for 

alternative or complementary approaches. This study aimed at evaluating the effect of three structurally related flavonoids, 

catechin, quercetin and taxifolin on renal redox and metabolite biochemical disturbances in rotenone intoxicated animals. 

Male Wistar rats were administered 1.5 mg/kg rotenone (s.c.) for ten days followed by post-treatment with catechin (5, 10 

or 20 mg/kg), quercetin (5, 10, or 20 mg/kg) and taxifolin (0.25, 0.5 or 1.0 mg/kg) (s.c.), for 3 days. Renal redox indices and 

levels of renal-related metabolites (creatinine, urea and uric acid) were assessed after sacrifice of animals. Catechin, quercetin 

and taxifolin significantly attenuated rotenone-induced effects on oxidative stress markers and metabolites linked to renal 

health. Quercetin was clearly more effective than catechin. The activity demonstrated by taxifolin, despite being administered 

at the lowest doses, was compelling. The results highlight the potential of these phytochemicals in the management of renal 

dysfunction. The findings additionally suggest a correlation between the structure of the flavonoids and their activity but also 

indicate that additional structural considerations beyond conventionally acknowledged ones may be involved. 
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INTRODUCTION 
 

The kidney performs several important functions 

including maintenance of homeostasis and regulation 

of the extracellular environment which involve 

detoxification and excretion of toxic metabolites and 

drugs (Kim and Moon, 2012). It is therefore a major 

target organ for exogenous toxicants. In 

nephrotoxicity, excretion is impaired owing to toxic 

effects of chemicals or drugs and this causes damage 

to the kidney (Kataria et al., 2015). The homeostatic 

function of the organ is impaired and serum levels of 

important metabolites and electrolytes are disturbed as 

the kidney becomes unable to rid the body of excess 

urine and wastes efficiently (Weber et al., 2017; Cao 

et al., 2018).  

Rotenone is used as a broad-spectrum insecticide 

and pesticide. It occurs naturally in the seeds and stems 

of several plants (Gupta, 2012; Pamies et al., 2018). 

Studies on the effect of rotenone toxicity in the 

pathogenesis of Parkinson’s disease abound but 

information on its renotoxicity is scanty. Rotenone 

causes toxicity through inhibition of complex I of the 

respiratory chain and oxidative stress (Dorman, 2015; 

Neely et al., 2017) 

The neurotoxic and nephrotoxic effects of exposure 

to chemicals in the environment, remains a topic of 

substantial current concern and interest. The National 

Institute for Occupational Safety and Health (NIOSH) 

reports that exposure to neurotoxic chemicals is one of 

the ten leading causes of work-related disease and 

injury and that over 25% of the chemicals for which 

the American Conference of Governmental Industrial 

Hygienists (ACGIH) has established threshold limit 

values (TLV) have demonstrated neurotoxicity and 

nephrotoxicity (Anetor et al., 2008; Arnold et al., 

2016). To compound the problem, available therapies 

for the treatment and/or management of neurotoxicity 

and nephrotoxicity are merely symptomatic without 

addressing the root cause. In addition, they always 

cause further severe complications. There is therefore 

a need for viable alternatives. Medicinal plants and 

phytochemicals appear to be the most promising 

candidate over the years (Adil et al., 2016; Feriani et 

al., 2017). 

Flavonoids are water-soluble, polyphenolic 

compounds found ubiquitously in plants, and are best 
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known for their multiple biological effects including 

antioxidant, anti-inflammatory, cardioprotective, 

anticancer, renoprotective, hepatoprotective as well as 

neuroprotective properties (Akinmoladun et al., 2015; 

Kay et al., 2015). The biological efficacy of flavonoids 

has been linked to their structural properties and is 

related to the number of hydroxyl groups and 

additional groups on their flavane nucleus (Chen et al., 

2018; Noshita et al., 2018). The structure-activity 

relationship analysis of phytochemicals can assist in 

optimizing their therapeutic potential and design of 

novel molecules with highly improved bioactivity. The 

aim of this study was therefore to evaluate the effect 

of the structurally-related flavonoids, catechin, 

quercetin and taxifolin (Figure 1) on renal redox and 

metabolite imbalances in rotenone-toxified rats with a 

view to delineating order of activity and any structure-

activity relationships. 

 
Figure 1: Chemical structures of (a) catechin, (b) 

quercetin and (c) taxifolin. (Akinmoladun et al., 2018). 
 

MATERIALS AND METHODS 
 

Chemicals and Reagents 

Rotenone, (±)-catechin hydrate (trans-3,3′,4′,5,7-

pentahydroxyflavane hydrate) (C15H14O6· xH2O), 

quercetin hydrate (3,3′,4′,5,6-pentahydroxyflavone 

hydrate) (C15H10O7·xH2O), (±)-taxifolin hydrate 

(3,3′,4′,5,7-pentahydroxyflavanone hydrate or 

dihydroquercetin hydrate) (C15H12O7·xH2O), 2,4-

dinitrophenyl hydrazine (DNPH), xanthine, NAD+, 

epinephrine, 2,4,5-tripyridyl-s- triazine (TPTZ), 2,4-

dinitrophenyl hydrazine (DNPH), reduced 

nicotinamide-dinucleotide (NADH), 1-chloro-2, 4-

dinitrobenzene (CDNB) and tetramethylbenzidine 

(TMB), were obtained from Sigma-Aldrich (St-Louis, 

MO, USA). Other chemicals and reagents used for this 

research were of analytical grade and obtained from 

standard sources.  
 

Animal treatment and experimental groups 

Male Wistar rats weighing 200±30 g housed at the 

Animal House of the Department of Biochemistry, 

The Federal University of Technology, Akure, 

Nigeria, were used for the study. They were fed 

standard rat chow and water ad libitum. The animals 

were divided into eleven groups with twelve animals 

per group. Animals were handled and used in 

accordance with the NIH Guide for the Care and Use 

of Laboratory Animals (National Research Council 

(US) Committee for the Update of the Guide for the 

Care and Use of Laboratory Animals, 2011).   

Rotenone, catechin, quercetin and taxifolin were 

dissolved in corn oil (vehicle) and administered 

subcutaneously to animals. Animals in group I 

(negative control) were administered vehicle (corn oil) 

only for 13 days. Group II (ROT) animals were 

administered 1.5 mg/kg rotenone (Thiffault et al., 

2000) for 10 days followed by 3 days of administration 

of vehicle, and served as the positive control group. 

Animals in groups III (ROT+CAT5), IV 

(ROT+CAT10) and V (ROT+CAT20) were 

administered 1.5 mg/kg rotenone for 10 days followed 

by 5, 10 and 20 mg/kg catechin (Vazquez Prieto et al., 

2015; Tu et al., 2018), respectively, for 3 days. 

Animals in groups VI (ROT+QUE5), VII 

(ROT+QUE10) and VIII (ROT+QUE20) were 

administered 1.5 mg/kg rotenone for 10 days followed 

by 5, 10 and 20 mg/kg quercetin (Nabavi et al., 2012; 

Vazquez Prieto et al., 2015), respectively, for 3 days 

while animals in groups IX (ROT+TAX0.25), X 

(ROT+TAX0.5) and XI (ROT+TAX1.0) were 

administered 1.5 mg/kg rotenone for 10 days followed 

by 0.25, 0.5 and 1.0 mg/kg taxifolin (Arutyunyan et 

al., 2013; Wang et al., 2006), respectively, for 3 days. 

After the last treatment, animals were euthanized, the 

kidneys removed and processed for biochemical 

estimations. Smaller doses were used for taxifolin 

based on previous works and this appeared justifiable 

because of subsequent unpublished observations 

during investigations in our laboratory. 
 

Biochemical Estimations 

The kidneys of the sacrificed rats were excised, 

washed in ice cold 1.15% (v/v) potassium chloride 

solution, blotted with filter paper and weighed. They 

were then homogenized in phosphate buffered saline 

PBS (pH 7.4) (1:10 w/v) using a Teflon homogenizer. 

The resulting homogenate was centrifuged at 10,000 x 

g at 4ºC for 30 min to obtain the supernatant which was 

used for biochemical analyses. The amount of protein 

in samples was estimated according to Lowry et al. 

(1951). Extent of lipid peroxidation was evaluated by 

measuring the formation of thiobarbituric acid reactive 

substances (TBARS) (Varshney and Kale, 1990). 

Protein carbonyl (PC) content in the kidney was 

determined according to the method of Levine et al. 

(1990).  The method of Beutler et al. (1963) was 

followed in estimating the level of reduced glutathione 
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(GSH). Glutathione transferase (GST) activity was 

evaluated as previously described (Habig et al., 1974). 

The ferric reducing antioxidant power (FRAP) assay 

was performed according to Benzie and Strain (1996). 

The activity of superoxide dismutase (SOD) was 

determined as previously described (Kakkar et al., 

1984). Xanthine oxidase activity was measured using 

a previously described spectrophotometric method 

(Prajda and Weber, 1975). Myeloperoxidase (MPO) 

activity was evaluated as previously reported (Eiserich 

et al., 1998). Lactate dehydrogenase (LDH) activity 

was assayed as previously described (McKee et al., 

1972). Creatinine level was estimated using an assay 

kit obtained from Agappe Diagnostics (Switzerland) 

based on Bowers and Wong (1980). Urea and uric acid 

levels were estimated using assay kits obtained from 

Randox Diagnostics (Switzerland) based on Jung et al. 

(1975) and Krieg et al. (1986), respectively.  
 

Statistical Analysis 

Results were analyzed using appropriate analysis of 

variance (ANOVA) followed by Tukey’s multiple 

comparison tests. In all the tests, p<0.05 was taken as 

criterion for statistical significance. The statistical 

software used to analyze the data was GraphPad Prism 

6.01 (GraphPad Software Inc., CA, USA).  
 

RESULTS 
 

While it appears difficult to directly compare the 

effects of all three flavonoids because of the different 

doses of taxifolin employed for the study, results 

obtained still present valuable insights into their 

relative efficacy. A direct comparison of catechin and 

quercetin is straightforward and should be seen as the 

main focus while taxifolin could be considered a 

reference compound.  

Redox homeostasis was altered by rotenone 

intoxication as reflected in changes to enzymic and 

non-enzymic antioxidants and other oxidative stress 

indicators. There was significant increase in lipid 

peroxidation (Figure 2I) and protein carbonyl level 

(Figure 2II) coupled with reduction in GSH level 

(Figure 2III) and ferric reducing antioxidant power 

(Figure 2IV), in rotenone-administered, positive  

 
Figure 2: Effect of catechin, quercetin and taxifolin post treatment on (I) lipid peroxidation, (II) protein carbonyl content, 

(III) Reduced glutathione level and (IV) ferric reducing antioxidant power in kidneys of rotenone-intoxicated rats. Results 

are expressed as mean ± SD (n=12). #p<0.0001 vs control; *p<0.0001 vs rotenone. . A= Control, B= ROT, C= ROT+CAT5, 

D= ROT+CAT10 E= ROT+CAT20 F=ROT+QUE5, G= ROT+QUE10, H= ROT+QUE20, I= ROT+TAX0.25, J= ROT+TAX0.5, 

K= ROT+TAX1.0 . ROT: Rotenone; CAT: Catechin; QUE: Quercetin; TAX: Taxifolin 

3 



 Niger. J. Physiol. Sci. 34 (2019): Crown et al 

Flavonoids in rotenone renotoxicity 

 

 

 
Figure 3: Effect of catechin, quercetin and taxifolin post treatment on renal glutathione transferase (I), superoxide dismutase 

(II), xanthine oxidase (III) and Myeloperoxidase (IV) activities in rotenone-intoxicated rats. Results are expressed as mean 

± SD (n=12). #p<0.0001 vs control; *p<0.0001 vs rotenone.  A= Control, B= ROT, C= ROT+CAT5, D= ROT+CAT10 E= 

ROT+CAT20 F=ROT+QUE5, G= ROT+QUE10, H= ROT+QUE20, I= ROT+TAX0.25, J= ROT+TAX0.5, K= ROT+TAX1.0 

ROT: Rotenone; CAT: Catechin; QUE: Quercetin; TAX: Taxifolin.  

 

control group compared with the vehicle treated group 

(negative control). Rotenone-induced alterations to 

these parameters were significantly attenuated in the 

flavonoid treated groups in a dose dependent manner. 

Quercetin showed superior activity to catechin in tests 

evaluating extent of lipid peroxidation, protein 

carbonyl level, GSH level, and FRAP. At 20 mg/kg, 

quercetin showed the best protection in tests 

evaluating extent lipid peroxidation, GSH level, and 

FRAP. Quercetin at 10 mg/kg showed best activity in 

the test to determine protein carbonyl level with a 

tendency towards prooxidative effect at 20 mg/kg. 

Quercetin at 5 mg/kg showed better activity than 20 

mg/kg catechin except in the test for GSH level where 

they appeared equipotent.Activities of the enzymic 

antioxidants, GST and SOD, were decreased by 

rotenone administration but restored by post-treatment 

with catechin, quercetin and taxifolin, dose-

dependently (Figures 3I and 3II). In both assays, 

quercetin (20 mg/kg) displayed best activity and 

catechin (5 mg/kg), the least. The activity shown by 

quercetin (10 mg/kg) appear comparable with that 

shown by catechin (20 mg/kg). On the other hand, the 

activities of the prooxidant and pro-inflammatory 

enzymes, XO and MPO, were increased in rotenone-

intoxicated control animals. This increase was 

corrected in animals post-treated with catechin, 

quercetin and taxifolin in a dose-dependent manner 

with quercetin demonstrating a clear superior activity 

to catechin (Figures 3III and 3IV). It could be observed 

that catechin, quercetin and taxifolin selectively 

regulated renal antioxidant and prooxidant factors to 

confer protection against rotenone induced redox 

imbalance. Antioxidant factors (GSH, GST and SOD) 

were augmented while prooxidant factors (lipid 

peroxides, XO and MPO) were suppressed by the 

flavonoids. 

LDH activity (Figure 4I) was significantly increased 

due to rotenone administration but this was 

ameliorated by post-treatment with catechin, quercetin
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Figure 4: Effect of catechin, quercetin and taxifolin post treatment on lactate dehydrogenase activity in kidney (I), serum 

level of creatinine (II), serum Urea level (III) and Serum level of uric acid (IV) of rats subjected to rotenone intoxication. 

Results are expressed as mean ± SD (n=12). #p<0.0001 vs control; *p<0.0001 vs rotenone.  A= Control, B= ROT, C= 

ROT+CAT5, D= ROT+CAT10 E= ROT+CAT20 F=ROT+QUE5, G= ROT+QUE10, H= ROT+QUE20, I= ROT+TAX0.25, J= 

ROT+TAX0.5, K= ROT+TAX1.0 ROT: Rotenone; CAT: Catechin; QUE: Quercetin; TAX: Taxifolin.  

 

 

and taxifolin. The performance of catechin and 

quercetin revealed the same trend of superior activity 

of quercetin with 5 mg/kg quercetin showing 

comparable activity to 20 mg/kg catechin. Renal 

functional imbalance was obvious in the positive 

control group administered rotenone without flavonoid 

post-treatment. Serum concentrations of creatinine, 

urea and uric acid which are principal metabolites that 

give insight on renal health, were significantly 

increased in rotenone-administered positive control 

group when compared with that of the negative control 

group. However, the rotenone-induced increase in the 

level of these metabolites was significantly corrected 

by post-treatment with catechin, quercetin and 

taxifolin in a dose-dependent fashion (Figures 4II, 4III 

and 4IV). Again, in all three tests, quercetin, especially 

at 20 mg/kg demonstrated the best activity compared 

to catechin. 

Taxifolin, at the doses employed showed remarkable 

activity in this investigation. For example, in the lipid 

peroxidation test, the activity of 1 mg/kg taxifolin 

surpassed that of catechin even at the highest dose and 

was comparable to that of 5 and 10 mg/kg quercetin. 

In the test for protein carbonyl level, 1 mg/kg taxifolin 

showed superior activity to catechin at 20 mg/kg and 

in the FRAP test, 0.25 mg/kg taxifolin showed better 

activity than 20 mg/kg catechin. Also, taxifolin at 0.5 

mg/kg proved superior to 10 mg/kg quercetin in the 

glutathione transferase assay while in the assay for 

myeloperoxidase activity, and determination of 

creatinine and urea levels, 1 mg/kg taxifolin appear 

equipotent with 10 mg/kg quercetin and superior in the 

uric acid test. 
 

DISCUSSION 
 

Rotenone, a potent mitochondrial toxin blocks 

mitochondrial complex I (NADH: ubiquinone 

oxidoreductase) activity causing accumulation of a 

large number of free radicals and ROS which leads to 

oxidative damage (Bonet-Ponce et al., 2016). Renal 
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tissues are vulnerable to injury by rotenone, probably 

because of their high metabolic state, active enzymes, 

and massive oxygen demand (Meng et al., 2016; Jiang 

et al., 2017). Flavonoids are best known for their 

antioxidant property and can prevent oxidant-induced 

injury in various ways (Taşlı et al., 2018).  

The effects of rotenone on MDA level, protein 

carbonyl content, GSH level, FRAP score, and 

activities of GST, SOD, XO, MPO and LDH observed 

in this study, are consistent with the pathological 

features of nephrotoxicity (Feriani et al., 2017; Jiang 

et al., 2017; Taşlı et al., 2018). In rotenone 

renotoxicity, free radical overload resulting from 

mitochondrial dysfunction causes oxidative stress seen 

in a drastic reduction in the level of the non-enzymic 

antioxidant, GSH as well as decreased activities of the 

enzymic antioxidants, SOD and GST (Magaji et al., 

2012). This is also accompanied by an increase in 

protein carbonyl content, a consequence of protein 

denaturation by the free radicals. Attenuating effect of 

catechin, quercetin and taxifolin on rotenone-induced 

redox disturbances indicates their potential to mitigate 

mitochondrial dysfunction and ensuing redox 

disturbances.  

FRAP is an index of the antioxidant capacity of 

various biological samples (Wootton-Beard et al., 

2011) while XO and MPO are prooxidant enzymes. 

Xanthine oxidase generates reactive oxygen species 

such as superoxide radical and hydrogen peroxide 

when it catalyzes the oxidation of hypoxanthine to 

xanthine. Therefore, increase in the activity of 

xanthine oxidase indicates further accumulation of 

free radicals (Romagnoli et al., 2010). MPO generates 

reactive oxygen species and produces hypochlorous 

acid from hydrogen peroxide and chloride anion 

during neutrophil respiratory burst (Degrossoli et al., 

2018). MPO also oxidizes tyrosine to tyrosyl radical 

using hydrogen peroxide as an oxidizing agent (Dai et 

al., 2018; Degrossoli et al., 2018). Both hypochlorous 

acid and tyrosyl radical are cytotoxic and 

pathogenicidal but hypochlorous acid may also cause 

oxidative damage in host tissue if over-produced (Tian 

et al., 2017; Dai et al., 2018). The modulation of FRAP 

and the activities of XO and MPO by the flavonoids 

under consideration, further confirmed their redox-

stabilizing property. In addition to being pro-oxidant 

enzymes, XO and MPO have been implicated in 

inflammatory processes (Zhao et al., 2017; Aldemir et 

al., 2018). Therefore, the effect of catechin, quercetin 

and taxifolin on the activities of XO and MPO may 

also reflect their anti-inflammatory potential (Magaji 

et al., 2012; Topal et al., 2016; Kalai-Selvi and 

Nagarajan, 2018). 

Rotenone-induced increase in LDH activity was an 

indication of nephrotoxicity and renal injury (Hsiao et 

al., 2009; Piel et al., 2015). Impairment of the electron 

transport chain as a result of complex I inhibition 

(Birsoy et al., 2015) drastically reduces ATP synthesis. 

This leads to increased anaerobic respiration and 

accumulation of lactic acid because the physiological 

system switches to energy production through 

conversion of pyruvate to lactic acid, a reaction 

catalyzed by LDH (Piel et al., 2015). The studied 

flavonoids remarkably attenuated rotenone-induced 

alteration to LDH activity suggesting the protection of 

renal tissue from rotenone toxicity.  

Rotenone toxicity elevated serum levels of 

creatinine, urea, and uric acid which are important 

metabolites associated with renal health (Sindhu et al., 

2015; Amin et al., 2017). Creatinine, an anhydride of 

creatine, is formed by spontaneous and irreversible 

reaction during skeletal muscle metabolism. Serum 

creatinine is a kidney related variable that indicate 

renal toxicity or damage (Sindhu et al., 2015; Amin et 

al., 2017). Urea is formed by the liver and considered 

the main end product of protein catabolism in 

carnivorous and omnivorous species. Serum urea 

levels can be a reliable indication of renal function as 

a decrease in the rate of excretion of urea produces an 

increase in the concentration of serum urea, a key 

event in nephrotoxicity (Hassan et al., 2017). Uric acid 

is produced by the breakdown of purines and by 

synthesis from 5-phosphoribosyl pyrophosphate (5- 

PRPP) and glutamine. Uric acid is passed in the urine 

in humans but in other mammals, it is further oxidized 

to allantoin before excretion. Accumulation of uric 

acid as a result of poor excretion and elimination is an 

indication of nephrotoxicity (Sindhu et al., 2015; 

Amin et al., 2017). The increased serum levels of these 

kidney function markers may be related to oxidative 

stress and inflammation from rotenone toxicity 

(Pedraza-Chaverrí et al., 2003; Silan et al., 2007; 

Soliman et al., 2007; Sindhu et al., 2015) and the 

ameliorative action of the flavonoids indicates their 

free-radical scavenging, antioxidant and anti-

inflammatory properties (Abdel-Raheem et al., 2009). 

Many studies have examined rotenone toxicity on 

the central nervous system, especially in the 

pathogenesis of Parkinson’s disease, but few have 

investigated the effects of rotenone on the kidney. The 

ability of rotenone to cause kidney injury was reported 

by Jiang et al. (2017) who carried out 

histopathological assessment along with other 

evaluations. Results from their study showed that 

rotenone caused dilation of the renal corpuscles and 

tubules, denuded epithelial lining and cytoplasmic 

blebs as well as congestion in the epithelial cells. The 

impairment in the renal cells could account for the 

significant increase in the serum concentrations of 

creatinine, urea and uric acid observed in our study 

following rotenone induction.  

Quercetin apparently showed the best ameliorative 

activity in all tests when compared to catechin. 

Quercetin possesses the classical advantageous 

structural features adduced for strong bioactivity of 

flavonoids. These include C2-C3 double bond, 3-OH 
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group and 4-keto group on the C-ring, all of which are 

absent in catechin (Rice-Evans et al., 1996; Csepregi 

et al., 2016). Results of the present study agree with 

previous reports on the superior bioactivities of 

quercetin compared to catechin (Hayek et al., 1997; 

Jaiswal and Rizvi, 2014; Murakami et al., 2015). 

Quercetin has also been rated to be a more bioactive 

flavonoid than taxifolin although the main structural 

difference between the two is the absence of the C2-

C3 double bond in the latter. Purported reasons for this 

have been advanced in previous reports (Makena et al., 

2009; Weidmann, 2012; Osorio et al., 2013).  

As earlier stated, although a direct comparison of the 

activity of quercetin and catechin seem implausible in 

the context of the present study, the overall activity 

demonstrated by taxifolin is compelling. This appear a 

bit intriguing since the C2-C3 double bond which is 

present in quercetin but lacking in taxifolin is a key 

advantageous structural feature for strong bioactivity 

in flavonoids (Trouillas et al., 2006). The remarkable 

activity shown by taxifolin at the low doses employed 

could point to the involvement of yet unclarified 

factors in the structure-activity relationships of 

flavonoids and warrants further investigation. 

In conclusion, the results of this study demonstrated 

the positive modulation of redox environment and 

metabolites associated with renal health by catechin, 

quercetin and taxifolin in rotenone-toxified rats and 

pointed to the renoprotective effects of post-treatment 

with the flavonoids.  
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