IntroductIon
Retrograde jejuno-gastric intussusception is a rare complication following gastric surgery. About 200 cases of jejuno-gastric intussusception have been reported so far, in literature with the first case reported in 1914 by Bozzi after gastrojejunostomy.[1,2] We report a case of retrograde efferent loop intussusception occurring 20 years after gastrojejunostomy.

case report
A 42-year-old female presented with acute, severe continuous pain in the upper abdomen for 3 days. It was associated with multiple episodes of coffee colored vomiting and swelling in left hypochondrium. Intussusception was suspected on ultrasound of the abdomen and later confirmed with computed tomography scan. At laparotomy, efferent loop was intussuscepting into stomach. This was reduced and fixed to the abdominal wall and transverse mesocolon. It should be suspected in a patient with the previous history of gastric surgery as it is a rare complication. Early diagnosis and management can prevent further complications like bowel gangrene and its associated morbidity and mortality.

Abdominal X-ray showed dilated stomach with dilated small bowel loops on the left side of the abdomen. Ultrasound revealed hypoechoic intragastric mass having irregular margins [Figure 1]. Contrast-enhanced computed tomography of the patient showed serrated intragastric mass of about 8.4 cm with intra gastric contrast around it giving a “claw sign” suggestive of the retrograde intussusception. The serrated margins were due to thickened mucosal folds of intussuscepted jejunal loops. The coronal view showed efferent jejunal loop with areas of central fat attenuation (−42 HU) suggestive of jejunal mesenteric fat along with vessels intussuscepting into stomach and dilated afferent jejunal loop. The sagittal view showed a “target type” intragastric lesion due to jejuno-gastric intussusception [Figures 2-4].

At laparotomy, there was retro colic, posterior gastrojejunostomy. The efferent jejunal loop was intussuscepting into the stomach, and afferent jejunal loop was dilated. The intussuscepted efferent loop was manipulated back to its normal position. The efferent loop was edematous, thick walled and viable having circumferential hyperemic ring on its serosa. The efferent loop was sutured to the anterior abdominal wall and transverse mesocolon to prevent recurrence. Postoperative course was uneventful. On follow-up after 3 months, patient is asymptomatic and doing well.

Discussion
Jejuno-gastric intussusception is a rare complication following gastric surgery. It is anatomically divided into three types depending on afferent or efferent loop intussusception, type I: Afferent loop intussusception, type II: Efferent loop intussusception type III: Both efferent and afferent loop intussusception. Type II is observed in 80% of cases
Singh, et al.: Jejuno‑gastric intussusception

and our case also fits into type II. It has been suggested to be more common due to greater mobility of efferent loop than afferent loop. Various functional and mechanical factors have been implicated in its etiology, but none has been proved. The causes postulated are antiperistalsis with vomiting, adhesions with kinking of bowel, dilatation of bowel following gastrectomy, hyperacidity, jejunitis causing retrograde peristalsis, shortening of the mesentery of the jejunal loop and jejunal stenosis with obstruction facilitating antiperistalsis.[4,5]

Jejuno‑gastric intussusception have been reported in immediate postoperative period and even 55 years after gastrojejunostomy.[6] It may present acutely or chronically. Acute intussusception presents with high intestinal obstruction left hypochondriac mass and hematemesis. Initially, vomitus is clear then it becomes coffee colored, and later massive hematemesis occurs. Chronically, it presents as repeated episodes of epigastric fullness and vomiting due to intermittent reversible intussusception.[6] In our case, patient probably had one previous episode of intussusception 1‑year back which resolved spontaneously, and now it has presented in the acute form.

High index of suspicion is required for early diagnosis as mortality increases from 10% to 50% with a delay of 48 h of surgery in acute intussusception.[4] Plain X‑ray abdomen may show dilated stomach with homogenous mass. A water‑soluble upper gastrointestinal (GI) contrast reveals a “coiled‑spring” appearance (of the jejunal intussusception) within the stomach. Ultrasonography showed intragastric tubular mass with peristalsis and computed tomography (CT) scan shows intragastric intussusception.[7] Upper GI endoscopy helps in the diagnosis and can be therapeutic in reducing the intussusception.[8] In this case, diagnosis was suspected on ultrasonography and later confirmed by CT scan.
Although spontaneous reduction has been reported, but surgical intervention is the treatment of choice after the diagnosis is made as it is not possible to predict which patient will undergo spontaneous reduction or progress to gangrene. Various surgical options include reduction alone, plicating the mesentery of the jejunum in the area of intussusception, fixing the efferent loop to adjacent tissues such as transverse mesocolon, colon, stomach, and parietal wall, converting to Billroth I anastomosis. If a small intestine is gangrenous then resection of gangrenous segment is the only option.[4-7] Although there are reports of endoscopic reduction of intussusception, but it is contraindicated when signs of peritoneal irritation are present.[9] Due to a limited view on endoscopy, it is difficult to ascertain the viability of the intussuscepted loop.[6] Endoscopic reduction was not done in this case as facilities of endoscopic reduction are not available at our hospital. In our case, after reduction of viable efferent loop, it was fixed to transverse mesocolon and anterior parietal wall to prevent recurrence.

Conclusion

Retrograde jejuno-gastric intussusception is a rare but well known complication after gastrojejunostomy and Billroth II reconstruction. High index of suspicion is required for early diagnosis to prevent morbidity and mortality.

References

How to cite this article: ????

Source of Support: Nil, **Conflicts of Interest:** None declared.