STOCHASTIC FAULT ANALYSIS OF BALANCED SYSTEMS

by

A. O. EKWUE

School of Engineering & Engineering Technology
Federal University of Technology
Owerri, Nigeria
(Manuscript received May, 1983)

ABSTRACT

A sequence coordinates approach for fault calculations is extended to take into account the uncertainty of the network input data. The probability of a fault current on a bus exceeding its short circuit current is determined. These results would be of importance in determining the protective philosophy of any network. The simple 6-bus Saskatchewan Power Corporation System is used to demonstrate the features of this new development.

NOTATION

AEP	American Electric Power	-
	Corporation	
Diag	diagonal of a matrix	
erf	error function	
I_{fi}	short-circuit fault current	:
,	of bus i	
I_{fi} s/c	short-circuit current capacity	7
	of bus i	
J	Jacobian of the load flow	J
	equations	
P_{G}	real power generation	
P_{L} Q_{L}	real and reactive power	
V	expected variance of the input	:
	quantities	
⊽fi	Prefault voltage at bus i	
√G	generator voltage	
Χ	Variable	
)(expected value of X	
Z_{ii}	Driving point impedance of the	دِ
	faulted bus i	
δ	Voltage angle	
σ	Standard diviation	
σx	standard deviations of the	2
	input quantities	

INTRODUCTION

The analysis of power systems under fault conditions plays an important role in the design and operation of protection schemes. Methods using the sequence components for the three phase and single phase-to-ground faults have been developed and used successfully for many years [1,2]. These faults are commonly considered to be the severest and most frequent respectively. For unbalanced faults another treatment

based on phase coordinates has been proposed by Laughton [3-6]. Generally the methods which use symmetrical components are characterised by the ability to obtain savings in computer time and storage. The phase coordinate approach uses extra computer time and storage demands due to the 3 by 3 matrix representations of the network elements. Moreover, most of the fault data in many utilities are still in terms of the sequence impedances. Reitan [7,8) has extended the capabilities of the symmetric components approach by proposing method for inclusion of coupled line impedances into the bus impedance matrix and the solution simultaneous faults Podmore developed a technique which combines the advantages of the symmetrical components and phase coordinates techniques. The network partitioned into a balanced subnetwork and a number of unbalanced subsystem. The Solution of the balanced subnetwork is initially obtained in terms of the sequence components and transformed to phase coordinates. The phase coordinates solution of all the subsystems are then combined to form the solution of the original unpartioned network. The above deterministic methods assume a precise input data as a result of measurement error, inaccuracy or forecast

variation. The fault evaluation is,

therefore, stochastic with the bus fault currents having associated probabilities of occurrence. In this paper, the problem is solved by obtaining the initial system conditions before the fault by stochastic loadflow analysis [10]. The bus admittance matrix is formed and inverted with the system loads and their variation due to network certainty taken consideration. Assuming zero impedance faults, the fault currents are determined on the buses and the probability that the short circuit current capacity is not exceeded is evaluated. El-Kadi [11] showed the use of Monte-Carlo Simulation for probabilistic short-circuit analysis but the method described here will be a faster approach.

2. SOLUTION PROCEDURE

The following solution steps have been employed for balanced three phase fault analysis using the symmetrical coordinate technique. The simple 6-bus Saskatchewan Power Corporation network [12] whose data is given in tables 3 to 4 in Appendix A is analysed. Input variances have also been assumed and are given in table 5 in Appendix A.

Step 1

With the input variances given in table 5, the AEP Stochastic load-flow analysis is solved to obtain the pre-fault bus voltages with .The network uncertainty considered. (The AEP stochastic loadflow problem and its solution are given in Appendix B). The AEP stochastic loadflow model assumes that the load and generation forecasts are normally distributed

Step 2

The bus admittance matrix is formed and inverted with the loads (and their variation) represented as constant admittances. The usual simplifying assumptions for fault analysis some of which are:

- (i) flat voltage profile prior to fault and
- (ii) effects of loads neglected are no longer tenable. The pre fault bus voltages are obtained in Step 1 whereas the loads (and their variation) are considered in this

step.

It should be noted that the network state is not fixed but varies statistically with time and due to uncertainty.

Step 3

From the diagonal elements of the bus impedance matrix, the fault currents on the buses are computed as

 $I_{fi} = V_{fi}/Z_{ii}$ (1) for a three-phase fault on bus i.

Step 4

Since the estimation of the output variables (say voltages on load buses)

have been obtained in Step 1 and the expected values are assumed to be normally distributed, the fault currents obtained from equation (1) above can be assumed to be normally distributed

The density function of a normal distribution f(x) is given by [13]:

the distribution function F(X) is

$$F(x) = \int_{-\theta}^{x} f(\xi) d\xi = 0.5 + \int_{0}^{x} f(\xi) d\xi \dots \dots (3)$$

$$defining erf \left\{ \frac{\mathsf{x} - \widehat{\mathsf{x}}}{\sigma} \right\}$$

Then equation (3) becomes

The probability of finding X greater than its maximum limit \mathbf{X}^{max} is given by PR where

Hence the probility of the fault current $I_{\rm fi}$ exceeding its rate capacity of a bus $i, I_{fi} \ s/c \ is$

Considerable savings in computing time were effected by making use of the tabulated values of erf(X) from X = 0 to X = 3 in Papoulis [14].

From equation (7) all buses with $p_{\rm i}$ greater than 0.5 have exceeded their short-circuit current capacity and

should be considered very seriously

3. RESULTS AND DISCUSSION

The probabilities of the shortcircuit current capacities being Electromagnetic at Imperial College, exceeded on the buses are shown in London for access to his Table 1; these are buses 1, 3 and 6 facilities and the referees thus requiring adequate protective useful comments mechanism.

Table 1

Bus	Probability of	
	exceeding	the
	short-circuit	
	current capacity	
1	0.9792	
2	0.0	
3	1.0	
4	0.2351	
5	0.1946	
6.	0.9836	

As the paper stands, the balanced faults have been assumed to occur with certainty at those busbars. Practical data on the assumed quantities should be taken from operating records and analysed over a wide range of situations and for various types of faults. Hence the results in Table 1 do not represent the typical behaviour of the 'SPC network because of the assumptions made in Tables 2 and 5.

4. CONCLUSION

A sequence components approach for fault calculations has been extended take into accunt the uncertainty of the netweork input data as a result of measurement error, forecast inacurracy or demand variation. Only three phase balanced faults are considered but this technique can be extended to any type of fault. The probability associated with each faults type would be evaluated given adequate fault statistics of the network; this would be of much use in determining the appropriate protective mechanism required in a given utility. Much work needs to be done in this area.

ACKNOWLEDGEMENTS

This work was done when the author with the Department Electrical/ Electronic Engineering,

Queen Mary College (University of London) London.

The author is grateful to EM. Freeman, Professor of Applied for

REFERENCES

- 1. Brown H.E., Person Kirchmayer L.K. and Stagg G.W., "Digital Calculation of Threephase Short Circuits by Matrix Method", AIEE, Vol. 79 February 1961 pp 1277-1282.
- 2. Elgerd, 0.1., "Electric Engergy Systems Theory: An Introduction", Tata McGraw-Hill, 1971.
- M.A, "Analysis 3. Laughton Unbalanced Polyphase Networks by the Method of Phase Coordinates Part I: System Representation in Phase Frame of Reference" Proc. IEE Vol. 115 No.8 August 1968, pp. 1163-1172 .
- 4. Laughton M.A. J "Analysis Unbalanced Polyphase Networks by the Method pf Phase Coordinates Part II Faulty Analysis", Proc. lEE Vol 116 No.5 May 1969, pp. 857-865.
- M.A. 5. Laughton and A.O.M., "Unified Phase: - Coordinate Load-Flow and Fault Analysis of Polyphase' Networks" International Journal of Electric Power and Energy Systems, Vol. 2 No.4, October 1980, pp. 181-192.
- 6. Saleh, A.O.M. and Laughton M.A., "Phase-coordinate Loadflow and Faulty Analysis Program", International Journal of Electric Power and Energy Systems, Vol. 2 No.4, October 1980, pp. 193-200.
- 7. Reitan D.K. and Kruempel K.C., "Modification of the Bus Impedance Matrix for System Changes involving Mutual Couplings", Proc. IEEE, Vol. 57 August 1969, pp 1432-1433.

- 8. Reitan D.K., "A New Method using the Bus-impedance Matrix Model for Short-circuit Calculations" Proc. 1EE, Vol. 68 August 1980, pp. 1027-1030.
- 9. Podmore, R., "General Method for Unbalanced Faults" 1973 PICA pp. 56-62.
- 10.Dopazo, J.F. Kiiten O.A. and Sasson A.M. "Stochastic Load-flows" IEEE Trans. on Power Apparatus and Systems Vol. PAS-94 (March/April 1975) pp.299-309
- 11.El-Kadi M.A., "Probabilistic Short-circuit Analysis by Monte-Carlo Simulations" ibid Vol. PAS-102 No. 5 May 1983 pp. 1308.
- 12.Medicherla, T.K.P., Billinton R. and Sachdev M.S., "generation Rescheduling and Load Shedding to alleviate Line Overloads: System Studies" IEE Trans. on Power Apparatue and Systems Vol. PAS-100

- No. 1 January 1981 pp. 36-42.
- 13.Cory B.J. and Prada R.B.,
 "Stochastic Security Assessment"
 Symposium
 on Security in Power Systems,
 Wroclaw, Poland June 1981.
- 14.Papoulis A., "Probability Random Variables and Stochastic Processes"
 McGraw-Hill Book Company New York 1965.
- 15.Flam M. and Sasson A.M.,
 "Stochastic Load Flow-Decoupled
 Implementation" Paper No. A77515-0
 presented at the IEEE Power
 Engineering Society Summer
 Meeting, Mexico-city 1977 ppl-8
- 16.Stott B. and Alsac O., "Fast decoupled Loadflow" IEEE Trans. on Power
 Apparatus and Systems Vol. PAS-93
 June 1974 pp. 858-869.

Appendix A

Network Data for the 6-bus Saskatchewan Power Corporation System [1.2] Base MVA: 100 $\,$

Table 2: Nodal Data in per unit

Bus No.	Load				#	
	P	Q	Generation	Voltage	# _{×′a}	# _{If} s/s
1	0.0	0.0	1.5	1.05	0.35	0.92
2	0.5634	0.0390	0.0	1.00	_	1.52
3	0.9845	0.1025	0.0	1.00	_	1.59
4	2.4713	0.5249	3.8	1.05	0.21	0.72
5	0.9167	0.1500	0.5	1.05	0.18	1.87
6*	1.6998	0.0904	0.0	1.05	0.18	1.00

Slack bus *

Table 3: Line Data in per unit

Line	R	X	В/2
1-2	0.0250	0.1682	0.1297
2-3	0.1494	0.3692	0.0206
2-6	0.0238	0.2108	0.1509
3-4	0.2130'	0.8957	0.1203
3-6	0.1191	0.2704	0.0164
4-5	0.1021	0.4980	0.2492
5-6	0.0328	0.1325	0.0163

Table 4: Voltage Correction Devices (Rectors) in per unit

Bus	Susceptance		
2	0.30		
4	0.30		
6	0.95		

[#] assumed data

Table 5: Input Variances (assumed data)

Load	PL	=	0.1*PL/3.0
Buses	QL	=	0.1*QL/3.0
Generator	Gi	=	0.05*P Gi/3.0
Buses	Vi	=	0.01*VGi /3.0

Appendix B

Review of the AEP Stochastic Loadflow Method

The AEP stochastic loadflow problem [10] can be stated as

On solving a deterministic loadflow problem

P

$$= J$$

$$Q V/V \dots (B1)$$

the variances of the input quantities are calculated as $\times^2 = \operatorname{diag}(j^tV^{-1}])^{-1} \dots \dots \dots \dots (B2)$

Under the assumption of a normal distribution there is 99% probability of enclosing the true values within a range of ± 3 times the standard deviations thus:

For the input quanties $X_t = x \cdot 3_x$ (B3)

It has been argued [15] that if the Jacobian J is decoupled into B' and B" matrices of the fast decoupled loadflow method [16], the resulting ranges are good

estimates of the expected variations formulation of the stochastic loadflow is employed: two independent variance though the 99% confidence limits cannot be guaranteed. Because of the consequent reduction in storage requirements and computing time the decoupled equations result for the real power equations and the reactive and voltage subproblems as:

$$X_{1}^{2} = \operatorname{diag}\left(\begin{array}{c} 1 \\ \mathrm{Bv} \\ 1 \end{array}\right) - 1$$

$$\times_{2} 2 = \operatorname{diag}\left(\begin{array}{c} 11 \\ B V \\ -1_{B} 1 \end{array}\right) - 1$$

$$(B4)$$

The B^1 and B^{11} matrices are real and symmetric, $V_{\rm I}$ and $V_{\rm 2}$ are the variance for the input quantities for the (PQ + PV) buses and the PQ buses respectively.