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ABSTRACT  

In this paper a two-dimensional mathematical model of steady non-uniform water flow in 

open channels and shallow reservoirs is presented. The irrotational flow condition is used for 

simplification of the system of the governing shallow water equations and the final nonlinear 

differential equation is solved for the unknown energy head using the finite element method.  

A one - dimensional problem was solved with diffusion hydraulic model (DHM), energy 

diffusion hydraulic model (EDHM) and with one - dimensional model. The comparison of results 

indicates EDHM to be more accurate than D HM. 

 

LIST OF SYMBOLS  

C - Chezy coefficient  

e -  energy head  

g -  acceleration of gravity  

G -  two dimensional domain  

G
(e) 

- domain represented by finite element  

h - water surface elevation measured from 

reference plane  

H - distance between bed and reference plane  

n - coefficient of roughness, number of nodes 

in the finite element.  

N
(e)

  - number of finite elements in the 

domain G.  

nx, ny  - component of the outward unit 

vector normal to the boundary of the 

domain G 

Ni -  shape functions of the finite element  

qx -  discharge per unit width in the x - 

direction  

qy -  discharge per unit width in the y - 

direction  

r  -  velocity head  

s -  velocity vector direction  

u -  component of velocity vector in the x - 

direction  

v -  component of velocity in the y - 

direction.  

w       -  velocity vector  

x,y,z  - coordinates  

Γ       - boundary of domain G  

Γ
(e)

  - boundary of finite element  

δ       - weighted function 

 

1.  INTRODUCTION  

In engineering practice one often has 

to deal with hydraulic research on flow of 

water in shallow reservoirs from the view 

point of the functional and operational 

reliability of the waterwork complex and of 

the mutual effects of its individual elements. 

An example can be a waterwork made up of a 

movable weir, one or more navigation locks or 

of a hydro electric plant. In a case like this it is 

often necessary to consider how, for instance, 

the handling of the weir gates influences the 

flow upstream of the hydropower plant or, on 

the contrary, what effect the operation of the 

wajerwork would have on the distribution of 

the velocity field in the reservoir with respect 

to navigation or so. For optional design of the 

layout and operation of the waterwork it is 

important to appraise several alternatives most 

often by means of hydraulic or aerodynamic 

models.  

 

One of the facilities for preliminary 

appraisal of the individual alternatives and for 

effecting investigation in a significant manner 

both in terms of time and economy are 

numerical models.  

 

2. BASIC EQUATIONS AND 

SOLUTION FACILITIES  

The behaviour of a liquid assuming 

continuity of the intrinsic parameters is 

described by the Reynold's transport equations 

together with the equation of continuity. 

Integration of Reynold's equations for three - 

dimensional flow in the vertical direction 

leads to a new systems of equations valid for 

the assumption of vertical hydrostatic pressure 

distribution.  
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For steady flow, neglecting the 

effective shear stress due to viscosity, 

turbulent shear stress and the influence of 

nonuniform vertical velocity profile the 

system of continuity equations assumes the 

form,  
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in which, as shown in Fig. I, u and v are the 

components of mean vertical velocity in the x 

and y directions, respectively; h is the 

elevation head above reference level, g is the 

acceleration due to gravity and C is the Chezy 

velocity coefficient. The system of nonlinear 

partial differential equations (1) through (3), 

often termed 'shallow water equations' in 

literatures represents two equations of motion 

in x and y directions and an equation of 

continuity. For a domain of general shape 

there exists no known analytical solution and 

the only possibility lies in the use of 

numerical methods - very often the method of 

meshes or the method of finite elements.  

In proposing a suitable mathematical 

model, the method of finite elements was 

preferred since a true description of the 

complicated regions or reservoirs with 

hydrotechnical objects by means of right 

angled mesh with equidistant or non 

equidistant step can be problematic in solving 

practical problems.  

The solution of the system of 

equations (1) through (3) introduces a 

relatively complex problem which can be 

solved by means of mixed finite elements (l, 

2). The commonest sources of difficulty are 

the convective terms  

 
  

  
  

  

  
  

  

  
  

  

  
 

in the equations of motion, expressing the 

effect of the inertia of flowing water, 

especially in the solution of flow in regions of 

complex shape.  

The method of 'upwinding' belongs to 

the most important methods of numerical 

enhancement of computational stability; this is 

the method of the use of a scheme of artificial 

numerical viscosity (5, 10).  
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An attempt to develop fully applicable models 

prompted some authors (4, 7) to propose a 

simplified model which is based on the system 

of Equations (1) to (3) by neglecting the 

convective terms and expressing the 

governing equations in a single equation for 

unknown water surface elevation head, h. The 

resulting equation corresponds in its form to 

the diffusion equation:  
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in which  
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n is the roughness coefficient and a denotes 

the direction of the resultant velocity.  

 This  simplification leads to the 

development of the so-called  diffusion 

hydrodynamic model (DHM) in which the 

issue of the justification of completely 

ignoring the convective terms is arguable. In 

the works (4) and (7) the possibility of 

introducing inertia effect into DHM using a 

two-level iteration process is presented. 

Simultaneously, however, in (7) there is a 

caution about the difficulty with convergence 

of the method. For this reason a different 

procedure was adopted in the proposal of the 

presented mathematical model, of simplifying 

the system of Eqs (1) to (3); this procedure 

consists in dropping the convective terms and 

introducing the conditions of no swirl. Instead 

of direct solution of the unknown water 

elevation head h and velocity components u 

and v the solution is performed for unknown 

function of energy of flowing water. This 

model is known as energy diffusion 

hydrodynamic model (DHM).  

 

3. ENERGY DIFFUSION 

HYDRODYNAMIC MODEL  

The derivation of EDHM stems from 

the system of equation (1) to (3) in which 

unlike in the DHM the convective terms are 

dropped. Introducing the condition of no swirl 

into this system in the form  
  

  
 

  

  
       (6) 

leads, after rearranging the new system of 

equation to  
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Designating the expression  
  

  
 

  

  
 

  

  
             (10) 

 

as velocity head of the resultant velocity w 

having components u and v and introducing a 

new variable, e (Fig. 2) as energy head,  

                       (11) 

then Eqs (7) and (8) can be rewritten in the 

form 
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√      = 0           (13) 

Eqs. (7), (8), (12) and (13) are specially 

extended two - dimensional expressions of the 

Bernoulli equation in a differential form with 

consideration of friction loss.  

Expressing u in Eq. (12) and v in Eq. (13) as  

   
  

  
                      (14) 
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then, after rearranging,  
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Substituting Eq. (16) in Eqs (14) and (15) and expressing h in Eq (11) the following velocity 

components are obtained:  
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Substituting Eqs (17) and (18) in the continuity equation (9) we obtain the following non-linear 

differential equation of EDHM:  
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in which for the velocity head r the implicit expression resulting from Eq. (16) is valid. 
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and in which C is also a function of the argument (H +e-r) 

 

 

4.  METHOD OF SOLVING EDHM  

The solution of EDHM equation (19) is 

relatively demanding in view of its non-

linearity. For solving problems the method of 

finite elements combined with successive 

approximation was chosen. The problem is 
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solved step by step such that at each 

successive approximation, Eq. (19) is 

linearized using the known results of energy 

head e from the preceding approximation and 

solved by the method of finite elements. The 

problem is moreover complicated by the 

implicit nature of Eq. (20) which does not 

permit direct expression of velocity head r in 

Eq. (19) using known value of energy head 

from the preceding approximation step. As 

long as Eqs. (19) and (20) are not to be solved 

like a nonlinear system of equations for two 

unknown functions e and r using mixed 

elements, the method of successive 

approximation for EDHM will be somewhat 

more complicated. Let notations (m), (m - 1), 

and (m - 2) represent the results of solution in 

(m), (m - 1), and (m - 2) approximation step.  

For linearizing the solved Eq. (19) the 

values e
(m-l), 

r
(m-l)

 are used while the values of 

r
(m-l)

 are determined from Eq. (20) using the 

values e
(m- 1)

, r
(m-2)

. Another possibility would 

be the iterative solution of Eq (20) at each 

approximation step. Eq. (19) can be rewritten 

in the form  
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Where  
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and the expressions 
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obtained from Eqs (17) and (18) signify the 

discharge per unit width in the x and y - 

directions, respectively.  

 

By applying Galerkin's method to Eq. 

(21) we obtain an alternative formulation of 

the problem in the form  

∫ [
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in which   is weighted function and G is the 

domain in which the solution of Eq (21) is 

sought. The method of finite elements was 

used in EDHM for the solution of the problem 

of Eq (25). For approximation of the required 

unknown function e, four angled iso-

parametric elements with eight modes were 

used.  

The function e is approximated at each 

element by the expression  
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in which ei are the values of the required 

function e at the nodes of the element. 

 
If interpolation functions Ni are used as 

weighted functions, Eq (25) can be written as  
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in which G(e) is a portion of the whole 

domain G represented by the finite element 

and n
(e)

 is the number of elements in the 

region G.  

Eq. (29) can be rearranged using 

Green's theorem and expressions (23) and (24) 

in the form:  
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in which Γ
(e)

 is the boundary of finite element, 

nx, ny are the direction cosines of the exterior 

normal to the boundary Γ
(e)

.  

The second integral of this equation is 

valid only for the case where a side of the 

element forms part of the boundary of the 

solved domain G. For these elements a 

negative value of the integral represents 

unstable boundary condition with the obvious 

physical significance of total inflow into the 
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element. As for the elements lying inside the 

domain G. the integrals along the boundary of 

the elements on common sides of the elements 

with respect to the opposite sense of the 

exterior normal to that boundary, vanish.  

Eq. (30) represents a system of 

equations for unknown values of e at the 

nodes of the elements. The so called element 

characteristic matrices are given by the 

expression  

     ∫
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]        (31) 

 

           
where k is a function given by the expression 

(22) which is of course at the m - th 

approximation expressed according to the 

introductory paragraph of this chapter by the 

values of e(m-I), and r(m-2) and depends 

therefore only on the coordinates x and y. In 

order to calculate the characteristic matrix 

(21) it is convenient to use numerical 

integrations (6, 8), so that the function k is 

evaluated only at the integration points from 

known node values of ek
(m-l),

 Hi and from the 

values of  

 

   

   

  
 
   

  
           

r(
m

.
2)

 at these points successively using Eqs 

(26) and (20) and (22).  

It is obvious from the above 

procedure that at each approximation step the 

element characteristic matrix has to be set up 

again and the resulting system of equations 

solved. This cycle is repeated until the 

desired accuracy is achieved, measured by 

the maximal absolute and relative change of 

function e in the solution domain relative to 

the preceding approximation. For a new 

estimate of solution the values of e
(m-I)

 are 

used either direct, or the estimate correction 

is reduced by a relaxation parameter within 

the range (0, 1).  

For solution of practical problems 

using EDHM model a programme in 

FORTRAN 77 was set up enabling simple 

assignment of all the required data. The 

resulting system of equations at the 

approximation steps is solved in the 

programme by a frontal method, which 

permits the solution of a wide range of 

problems with relatively little demand on the 

operational memory.  

For the resulting system of equations 

to be solvable it must be complete with 

boundary conditions.  

The programme permits the 

prescription, at the nodes on the boundary, of 

either the values of non-homogenous 

boundary condition (values of discharge per 

unit width into the element perpendicularly 

across the boundary) or stable boundary 

condition (node values of energy head, e).  

On each side of the boundary of the 

solution domain at least one of the above 

types of boundary conditions must be 

prescribed while the condition of zero 

discharge across the boundary (impermeable 

boundary - bank) is realized by homogeneous 

unstable boundary condition. The results of 

the solution are the values of the energy head 

at the nodes. The solution of the derived 

quantities (elevation head, velocity head, 

velocity components, water depth) is obtained 

at the integration points. This procedure is 

most accurate (6) with regard to the link C
o
 of 

the finite element used.  

A component of the EDHM 

programme is the post processor, enabling 

conversion of input records of the programme 

for the graphic system AUTOCAD. A wide 

range of computed results is thus very quickly 

obtained and can be evaluated graphically.  

  

5.  AN APPLICATION OF THE MODEL  

Solution of one of the problems that 

are used for verifying the functional validity 

and accuracy of the developed two-

dimensional models is here presented:  

The problem: To solve the backwater 

curve for parallel flow in a 300 m long oblong 

domain with constant longitudinal bed slope 

of 0.5%. Given was a discharge of 3 m
3
/s per 

unit width; in the ascending section a depth of 

3m and velocity of 1 m/s were considered, 

For computing Chezy's coefficient, C, the 

Manning's equation was chosen, the 

roughness coefficient being n = 0.03. The 

Solution was by EDHM and the results were 

compared with DHM calculations, and with 

one-dimensional model, based on the known 

method of segments.  

The results of the computation are 

shown in Fig 3, in which the water surface 

elevation head h above reference plane was 

indicated for the individual methods, located 
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at the water surface level at the rising section. 

From the Figure it will be observed that the 

solution by EDHM agrees very well with the 

reference values of the one- dimensional 

model whereas the values obtained using 

DHM indicate considerable discrepancies 

 

This fact is due to the neglect of the 

convective terms of the DHM to which the 

neglect of velocity head in solving backwater 

curve in the one-dimensional model would 

have corresponded. It can be stated that the 

proposed EDHM yields much more accurate 

results than DHM and that the difference 

between the results of both models becomes 

greater the more the problem to be solved 

deviates from the case of uniform flow.

 

 

 
 

 

 

CONCLUSION  

 

The proposed EDHM yields most 

accurate results in comparison with the 

diffusion model, if the effect of inertia of the 

flowing water is neglected. The category of 

problems for which the use of EDHM is 

possible, is constrained by the stated 

assumption used in its derivation - the model 

assumes steady stream flow without 

significant domain of swirl.  

In the EDHM so far used, difficulties 

with stability of the iteration process have thus 

far not been encountered. The number of 

iterations necessary for the solution of a 

problem ranged between 5 - 20 and depended 

above all on the  

initial estimate of the solution. In comparison 

with DHM, the EDHM does not incur a 

significant prolongation of total computing 

time. In selecting the finite element mesh, 

attention should be devoted to the question of 

unknown boundary which can only be avoided 

in the case of the vertical walls of a river or 

reservoir. In the case of wide channels with 

large slope gradient of the bank the 

schematization using vertical walls may not 

have significant effect on the accuracy of 

solution. In the case of mild bank's slope one 

can proceed in such a way that the mesh is 

constructed in a domain given by the 

projection of the assumed surface area on to a 
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horizontal plane (the projection of the 

intersection of the surface area with the bank 

thus forms the boundary). In this manner the 

schematization by vertical plane is described 

by the node values of H just as was the bed 

profile in the solution domain.  
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