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ABSTRACT  

The non-uniqueness of a multiplexer implementation of a Boolean function results from the partition 

of the function variables into data select and data input variables. This partition affects critically the 

cost and structure of the final multiplexer realisation. Hence the central problem in the synthesis of 

logic circuits with multiplexers is the selection of that partition which results in the desired structure 

or the most economical realisation of the function. In this paper, the Ashenhurst decomposition chart 

is shown to be a mapping technique which solves this selection problem and enables the design of 

logic circuits with desirable attributes using multiplexers. The Ashenhurst decomposition chart also 

serves as a bridging technique between the map based and algorithmic based digital design methods 

in the synthesis of logic circuits with multiplexers.  

 

1.  INTRODUCTION  

A multiplexer is an MSI device that 

has a set of q data select inputs and a set of p 

data inputs such that p = 2
q
. Fig. 1 shows a p 

to 1 (p - 1) multiplexer. The data select inputs 

act as addresses that determine which of the p 

data inputs is to be connected to the output. 

Commercially available multiplexers include 

2-1, 4-1, 8-1 and 16-1 multiplexers.  

Multiplexers are extensively used as 

data selectors in digital design. They are also 

used in the design of digital controllers as well 

as being used as universal gates in the 

synthesis of Boolean functions.  

The central problem in the synthesis of 

combinational logic circuits using 

multiplexers can be stated as follows:  

given an n variable Boolean function, how do 

we partition these variables into q data select 

inputs and p data inputs so as to realise a 

design with one of the following desirable 

attributes:  

i) a maximum number of logic 1 and 

logic 0 connected to the multiplexer 

inputs;  

 ii)  a minimum number of multiplexers to 

implement the design;  

iii)  the direct realisation of the p residue 

functions without the use of additional 

gates.  

A number of algorithms have been 

reported in the literature to obtain the above 

realisations. Whitehead (l) proposed an 

optimum partitioning of the n variables into q 

data select and (n-q) data input variables such 

that the multiplexer input will have a 

maximum number of logic 1 and logic 0 

connected to it. The Whitehead's algorithm 

results in a multiplexer realisation that 

simplifies the input bus structure. The 

objective of Ektare's algorithm (2) was to 

provide a method of synthesising Boolean 

functions using the minimum number of 

multiplexers. If this cannot be achieved, the  
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algorithm reverts to the Whitehead design. 

Domindo and Canto (3) presented an 

algorithm which seeks to realise a logic 

function of n variables partitioned into q data 

select and (n-q) data input variables where n > 

q + 1 with a single multiplexer, such that the p 

residue functions can be synthesised directly 

without using additional gates.  

The beauty of these algorithmic 

techniques is that the design can be carried out 

using computers. But these powerful 

computer aided design techniques are not 

routinely taught in undergraduate courses for 

a variety of reasons:  

 

1. the original paper may be very 

difficult to understand because it was 

written for the benefit of experts (e.g. 

the Domindo and Canto paper).  

2. a computer may not be available; and 

where available may not have been 

integrated in the teaching of the digital 

logic design course because of a lack 

of appropriate courseware.  

Given the increasing importance of 

multiplexers in digital systems design, and the 

importance of understanding algorithmic 

techniques in the design of digital systems, it 

becomes necessary for students and practising 

engineers alike to become familiar with digital 

design techniques that provide a smooth 

transition from the familiar map based design 

techniques to computer based design methods.  

The Ashenhurst decomposition chart, 

a mapping technique which exploits the 

properties of the familiar Karnaugh map to 

partition the function variables into two sets, 

is one such bridging technique. Langdon (4) 

used the technique to determine the data input 

conditions for a multiplexer realisation of a 

Boolean function.  

The main objective of the paper is to 

show that using the Ashenhurst 

decomposition chart, logic functions can be 

implemented with multiplexers to achieve the 

same design aims as the algorithmic methods 

namely:  

(i)  a design that simplifies the input bus 

structure (Whitehead's algorithm).  

 (ii)  a design that uses the minimum 

number of multiplexers (Ektare's algorithm). 

(iii) a design in which the p residue 

functions are realised directly without 

the use of additional gates (Domindo 

and Canto algorithm).  

 

2. FUNCTION FACTORISATION- BASIS 

OF MULTIPLEXER IMPLEMENTATION  

Suppose we wish to implement a 

function which has the minterm list of Lofti 

(5) using an 8-1 multiplexer:  

                                 (1)  
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The first step is to factor the 

cannonical sum of products form of the 

minterm list of equation 1 around the data 

select variables. An expansion of a Boolean 

function of n variables around any of its q 

variables where n > q is referred to as 

Shannon's Expansion Theorem. If in this 

example, the function variables (A,B,C) are 

used  

 

Table 1: Data Input Condition Table.  

Data select input Data input 

 ̅  ̅  ̅ 

 ̅  ̅   

 ̅    ̅ 

 ̅     

   ̅  ̅ 

   ̅   

    ̅ 

      

 

0 

0 

0 

    ̅     

D 

D 

D 

 ̅ 

 

as data select variables, then expanding 

equation 1 around ABC gives:  

     ̅     ̅        ̅  ̅       

              ̅                      (2) 

 

Equation 2 is now in a form where it can be 

implemented directly with a multiplexer since 

the eight data input conditions can be read 

directly as shown in table 1. The multiplexer 

implementation of this function is shown in 

Fig. 2. Note that the eight data input 

conditions, called the residues of the 

expansion of equation 1, take values from the 

set (0,1, ̅ and D). In general, an 8-1 

multiplexer can realise any function of four 

variables by eliminating the three variables 

used as data select inputs and using the 

remaining variable as the data input variable.  

If only a 4-1 multiplexer is available 

and AB is used as the data select input, we 

obtain the expansion of equation 3:  

 

 

     ̅            ̅                               

(3) 

The implementation of this function is 

shown in Fig. 3, where it can also be seen that 

an Exclusive - OR discrete gate is required to 

implement one of the residues.  

If we compare Fig. 2 with Fig. 3, we 

find that for the partition where the total 

number of variables n is given by n = q + 1 

(Fig. 2), no gates are required to realise the 

residue functions. But for the case where n > q 

+ 1, additional gates may be required to realise 

the residue functions. As we shall see in 

section 4.3, for more complex residue 

functions, it may be cheaper to realise the 

residue function using multiplexers rather than 

discrete gates. This realisation will be shown 

in section 4.4 to correspond to a successive 

application of Shannon's expansion theorem.  

 

 

 



Nigerian Journal of Technology, Vol. 18, No. 1, September, 1997                        OSUAGWU 31 
 

 
 

It is clear from the results of this 

section that the structure and hence the cost of 

the multiplexer realisation of a Boolean 

function depends on which of the variables are 

selected as the data select and data input 

variables. There is, therefore, a need to 

examine all the possible partitions of n 

variables into q data select and (n - q) data 

input variables in order to make the optimum 

selection. The Ashenhurst decomposition 

chart is a simple and systematic way of doing 

this.  

 

3. GENERATING THE 

ASHENHURST 

DECOMPOSITION CHART  

Fig. 4 shows the k-map of the minterm 

list of equation 1.  

Notice that the k-map partitions the 

function variables into two sets, A B and CD. 

Suppose we use AB, the variables running 

vertically down on the k-map, as the data 

select variables; and CD, the variables across 

the top of the k-map, as the data input 

variables. If we read the resulting k-map of 

Fig. 4 horizontally, we find that there are no 

minterms in the first row  ̅ ̅. Hence that row 

has a data input of logic 0 denoted as  ̅ ̅ (0). 

Similarly the second row, AB has value of C; 

the third row, AB, has value of     

               and the last row A B has a 

value of D. The value of the k-map read 

horizontally is  

     ̅ ̅       ̅         ̅     

                           (4)  

Hence, the k-map of Fig. 4 read horizontally 

gives the same data input condition as the  
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multiplexer realisation of Fig. 3. It is clear that 

a single k-map can be used to obtain two 

different multiplexer realisations. For if we 

read the k-map of Fig. 4 vertically (this 

corresponds to using C D as the data select 

and AB as the data input variables), the 

resulting multiplexer realisation becomes:  

      ̅ ̅     ̅       ̅         

                 (5)  

The procedure for obtaining the 

Ashenhurst decomposition chart from the 

familiar k-map for a four variable function 

can be summarized as follows:  

 

1. Label the four variable k-map such 

that the data select variables run 

vertically down the side of the map, 

and the data input variables run across 

the top.  

2. Label each cell of the k-map keeping 

the original order of the minterms of 

the function. Then obtain the decimal 

equivalent of the cannonical minterms 

of each cell. The resulting k-map is an 

Ashenhurst decomposition chart for 

the chosen partition. (Using the above 

procedure, the Ashenhurst 

decomposition charts can be generated 

for all possible partitions of function 

variables into data select and data 

input variables) .  

To use the chart to determine the 

multiplexer input conditions proceed as 

follows: 

1. Circle the given minterm numbers of 

the function in the chart.  

2. Read the map horizontally for the 

multiplexer data input conditions (or 

residues of the function).  

Suppose we wish to implement the minterm 

list of equation 1: 

                                  

with a multiplexer using BC as the data select 

variables. The Ashenhurst decomposition 

chart obtained using the procedure outlined 

above is shown in Fig. 5(a) while the data 

input conditions are read out horizontally from 

Fig. 5(b) as  

 

     ̅ ̅      ̅        ̅     

    ̅   ̅               (6) 

 

The multiplexer which realises equation 6 is 

shown in Fig. 6. Note that common residues 

can be implemented from the output of a 

single gate. If we compare Fig. 3 (one residue 

gate) with Fig. 6 (two residue gates), we see 

clearly that the cost of a multiplexer 

realisation of a Boolean function depends on 

which of the variables are used as the data 

select variables 
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4. EQUIVALENCE OF ASHENHURST 

DECOMPOSITION CHART WITH 

ALGORITHMIC TECHNIQUES  

 

We wish to use the Ashenhurst 

Decomposition Chart in a multiplexer 

implementation of the minterm list of Lloyd 

(6), also used by Ektare (2) and listed below:  

              

                                    

                         (7) 

The objective is to use this mapping technique 

as an alternative to the algorithmic techniques 

in obtaining the following:  

i) the Whitehead's structure (i.e a 

multiplexer design that simplifies the 

input bus structure)  

ii)  the Ektare structure (a minimum tree 

structure realisation).  

iii)  the Domindo and Canto structure (a 

multiplexer realisation without 

additional gates for cases were n > q + 

1).  

It is not necessary to generate the 

Ashenhurst decomposition charts since these 

charts are available in some text books (e.g. 

(7)). In the following sections, only partitions 

that result in the stated design objectives are 

discussed.  

4.1  The Whitehead structure: A design 

that simplifies the input bus 

structure  

The Whitehead structure applies in 

multiplexer design where n = q + 1. Table 2  

shows the statistics of the data input 

conditions obtained by examining all the five 

possible Ashenhurst decomposition charts 

obtained by partitioning the five function 

variables into four data select variables and 

one data input variable.  

 

As can be seen from table 2, the data 

input conditions (or residues) can only take 

values from the set 0, 1, data input variable 

and complement of data input variable. The 

multiplexer realisation that simplifies the 

input bus structure is the one that has the 

maximum number of logic 0 and logic 1 

connected to its inputs. From table 2 the 

partition that yields this structure (the 

Whitehead's structure) is ABDE as data select 

variables and C as the data input variable. Fig. 

7(a) shows the Ashenhurst decomposition 

chart for this partition and Fig. 7(b) shows the 

resulting Whitehead's structure. (The data 

input conditions are obtained by reading the 

chart vertically).  

 

4.3  The Domindo and Canto structure  

The Domindo and Canto structure is 

sought in multiplexer implementations where 

n > q + 1. The design objective for partitions 

where n > q + 1 is to select the partition which 

results in the cheapest possible realization of 

the (n - q) variable residue functions. The 

cheapest realisation of the function is obtained 

from that partition which results in the residue 

functions being implemented without 

additional gates (the Domindo structure), or 

where such a partition does not exist, to use 

one which results in the residue functions 

being synthesised with the least number of 

multiplexers (the Ektare structure) or the least 

number of gates. 

 

Table 2: Statistics of all possible data input conditions for n = q + 1.  

Data Select Variables  BCDE  ACDE  ABDE  ABCE  ABCD  

Data Input Variables  A  B  C  D  E  

Number of logic 1  5  5  7  3  3  

Number of logic 0  5  5  7  3  3  

Number of Variable and Variable  6  6  2  10  10  
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Table 3: All Possible Partitions of fie variables F(A,B,C,D,E) into 3 data select and 2 data input 

variables.  

Select 

variables 
CDE BDE BCE BCD ADE ACE ACD ABE ABD ABC 

Data input 

variables 
AB AC AD AE BC BD BE CD CE DE 

 

 

Table 3 shows the ten possible partitions of 

five variables into 3 data select and 2 data 

input variables. If we use ABC as the data 

input variable, we obtain the  

multiplexer structure shown in Fig. 8. Note 

that the residue functions are realised using 

five additional gates.  
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The objective of the design is to see if 

we can realise the function without additional 

gates. An examination of the ten Ashenhurst 

decomposition charts shows that the partition 

ACD as data select variables and BE as data 

input variables achieves the objective. The 

Ashenhurst decomposition chart for this 

partition is shown in Fig. 9(a) and the 

resulting Domindo and Canto structure is 

shown in Fig. 9(b). Compared to Fig. 8, the 

cost advantage of Fig. 9(b) is obvious. 

 

4.4  THE EKTARE STRUCTURE  

The Ektare algorithm seeks to realise a 

Boolean function with a minimum number of 

multiplexers for partitions where n > q + 1. If 

in table 3, we use the data input variables as 

data select and the data select variables as the 

data input variables, we obtain ten new 

partitions. However we do not need to draw 

additional Ashenhurst decomposition charts as 

the ten charts of section 4.3 can be used to 

obtain the desired residue functions by 

reading the chart horizontally rather than 

vertically. Examination of the Ashenhurst 

charts shows that the partition AD as the data 

select variables and BCE as the data input 

variables gives the cheapest multiplexer 

realisation of the function as it requires the 

minimum number of additional gates to 

implement the residue functions. Fig. l0(a) 

shows the Ashenhurst decomposition chart for 

this partition while Fig. l0(b) shows the 

resulting multiplexer implementation.  

  

The residue functions of Fig. l0(b) can 

be implemented alternatively using 

multiplexers. This implementation was said in 

section 2 to be equivalent to a recursive 

application of Shannon's expansion theorem.  

The residue function of Fig. 10(b) is  

      ̅                           (8) 

The cannonical form of this residue function is  

       ̅ ̅      ̅             ̅  (9)  

If equation 9 is expanded about BC we obtain:  

       ̅ ̅       ̅         ̅                         

(10) 

Equation 10 is now in a form where it can be 

realised directly using a multiplexer as shown 

in Fig. 11. Fig. 11 shows the Ektare minimum 

multiplexer tree structure realisation.  

 

4.5  MULTIPLEXER TREE 

STRUCTURE REALI SA TION  

The Domindo and Canto structure 

gives the cheapest multiplexer realisation for 

n > q + 1. Compared to the Whitehead's 

structure (which applies for n = q + 1) it gives 

the maximum loading of the input but 

structure. It is of interest to find a partition for 

n > q + 1 which gives the same input but 

structure as the Whitehead's structure. Fig. 

12(a) shows the Ashenhurst decomposition 

chart for this partition which uses AB as the 

data select variables and CDE as the data 

input variables while Fig. 12(b) shows the 

resulting multiplexer realisation. To obtain the 

tree structure realisation, we need to expand 

the residue functions in turn about DE. The 

result is as follows:  

     ̅       ̅  ̅                             (11) 

     ̅ ̅     ̅   ̅         ̅     (12) 

     ̅ ̅     ̅   ̅       ̅          (13) 

     ̅   ̅         ̅         ̅     

(14) 

Equations (11) to (14) can be implemented 

using multiplexers resulting in the tree 

structure realisation of Fig. 13.  

 

Comparing the tree structure 

realisations of Figs. 11 and 13 we find that the 

realisation of Fig. 11 which uses a minimum 

number of multiplexers has an unsimplified 

input bus structure; whereas Fig. 13 which 

realises the function with a maximum number 

of multiplexers has a simplified input bus 

structure. There is, therefore, a trade off 

between the 
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number of multiplexers needed to realise a 

given Boolean function and the complexity 

(with respect to loading) of the input bus 

structure.  

 

5.  CONCLUSION  

The Ashenhurst decomposition chart is 

an easy to use mapping technique in the 

design of logic circuits with multiplexers. 

Using this technique, suitable partitions can be 

selected which meet different design 

objectives. Also the mapping technique is a 

good alternative to the algorithmic techniques 

thereby making the transition to computer 

based design much easier. The draw back of 

the Ashenhurst decomposition chart is the 

large number of charts to be examined. For 

functions of more than six variables, the 

number of charts to be examined in order to 

select the optimum partition becomes 

excessive.  

 

Each algorithmic technique, on the 

other hand, realises a specific multiplexer 

structure without the need to examine all the 

possible Ashenhurst decomposition charts. 

Because it is based on the familiar Karnaugh 

map technique, the Ashenhurst decomposition 

chart offers a ready vehicle for teaching the 

synthesis of logic circuits with multiplexers.  
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