
Nigerian Journal of Technology, Vol. 23, No. 1, March 2003 Bakpo 29

MODELING WORKFLOW MANAGEMENT IN A DISTRIBUTED

COMPUTING SYSTEM USING PETRI NETS

Bakpo, F.S

Department of Computer Science

University of Nigeria, Nsukka

E-mail: fbakpo@yahoo.com

ABSTRACT

Distributed computing is becoming increasingly important in our daily life. This is because it enables

the people who use it to share information more rapidly and increases their productivity. A major

characteristic feature or distributed computing is the explicit representation of process logic within a

communication system, which allows for computerized support. This paper presents a model of

distributed computing system and applies the concepts of Petri nets in modelling workflow in this

domain using e- purchase as a case study. Petri nets are an established tool for modelling and

analyzing processes.

Keywords: Distributed computing system; Petri nets;Workflow management

1. INTRODUCTION

It is a fact of life that various organisations

and individuals are becoming increasingly

dependent on distributed computing systems.

According to V. Glushkov, a well-known

Soviet Scientist, "the development of

computer networks and terminals results in a

situation where the ever greater part of

information, first and foremost, that in the

scientific- and-technological, economic and

socio-political fields, is transferred to

computer memory
1
". Distributed computing

systems (DCS) enable computers and the

people who use them to share information

more rapidly and to increase their

productivity. Even if a Local Area Network

(LAN) is limited to carrying e-mail between

desks in the same office, it can save thousands

of steps (and realms of paper) every year
2
.

Connecting several Personal Computers (PCs)

to a shared printer saves money and space and

makes it possible to provide faster, higher

quality printing to every user. Sharing files

over a LAN enables everyone to literally read

off the same page and drastically reduces

errors and time-wasting duplication of efforts.

Instant access to shared databases and

applications can also provide powerful

productivity tools. The main purpose of a DCS

is the support of the definition, execution and

control of' processes. Because processes are a

dominant factor in any DCS, it is important to

use an established framework for modelling

and analysis of distributed computing

processes. In this paper, Petri net -a well-

founded process modelling technique is used.

Carl Adam Petri invented Petri nets theory in

the sixties
8
. Since then Petri nets and their

extension in colour, time etc, have been

applied successfully to model and analyze all

kinds of processes with applications ranging

from communication protocols to performance

study of complex systems
1.3.7

2. What a Distributed Computing System Is

The term distributed computing system (DCS)

refers to a collection of autonomous computer

systems capable of communication and

cooperation via their hardware and software

interconnections
3
 There are also people who

use the term computer network, in place of

DCS. The general characteristics are:

 (i) The absence of' shared memory;

 (ii) Unpredictable inter-node

communication delays; and

 (iii) Practically no global system state

observable by component machines.

Due to the lack of shared memory, inter-site

communication and synchronization is usually

carried out by means of inter-node messages.

As a consequence of' the communication

delays incurred in assembling status messages

and of dynamic component state changes,

including potential link and site failure, it is

almost impossible for a given node to assess

the global state of' a DCS at a given point in

time. A distributed operating system usually

governs the operation of' a DCS and provides

a virtual-machine system abstraction to its

mailto:fbakpo@yahoo.com

Nigerian Journal of Technology, Vol. 23, No. 1, March 2003 Bakpo 30

users. Virtual machine abstraction (VMA)

means that the actual network component and

resource distribution is hidden from the users

and application programs, unless they

explicitly demand otherwise. The key

objective of a DCS is transparency. The major

potential benefits of DCS include:

(i) Resource sharing and load balancing;

(ii) Communication and information sharing;

(iii) Incremental growth;

(iv) Reliability, availability, fault tolerance;

(v) Performance,

Depending on the physical distance spanned

by the communication sub net works. DCS are

usually classified as:

 (a) Wide-area networks (WANs)

 (b) Local-area networks (LANs)

While no specific delimiting distance is

defined, it is reasonable to think of a LAN

within the confines of a single building or a

small campus. WANs on the other hand, may

connect hosts that are many miles apart,

including even intercontinental distances.

Mostly for technological reasons, WANs tend

to have comparatively low bandwidth and

high communication delays. LANs, on the

other hand, are often characterized by high

bandwidth and low communication delays.

These fundamental differences have a

significant impact on the design choices and

selection of the distributed algorithms whose

characteristics may make them more suitable

for one type of the network than the other.

3. Model of Distribution Computing

Systems

Any communication set-up can be represented

as shown in figure 1.

It consists of three components: the source

system, the medium and the destination

system. Each source and destination system is

capable of receiving and transmitting signals.

The medium is a channel or path for sending a

message between two communicating

systems. Thus, a distributed computing system

comprises a set of processes, which

communicate with each other exclusively by

sending and receiving messages. Each process

can also do some local computation and access

its local state (but not the state of any other

process). Communication between the

processes is used to decrease the uncertainty

each process has about the states of the

distributed computation; that is, the processes

come to know facts about the system

computation as that computation evolves.

A distributed computing system thus

consists of two types of elements
6
: (i)

Processes which execute events (let P

represent the set of n processes in the system);

and

(ii) A communication system, N, which

contains a set of message packets of the form

(p, m, q), representing a message m from

process p to process q.

Each process in a DCS is characterized by a

set of process executions, each of which is a

finite sequence of abstract events. These

events, the elementary building blocks of the

processes which make up distributed

computations, include: local (the executing

process performs an unspecified internal

action with no external communication); send

(m, p), (the executing process sends message

m to process p); and recv (m, p) (the

executing process receives message m from

process p). We define the domain D for

process event sequences in our distributed

model as the set of events a process may

execute, Currently, for each process,

D = {local}(send (m, P) / m  M and p P)

{recv(m, p) / m M and pP}; other events

will be added to the domain as required.

Given a protocol or algorithm for a process set

P, the DCS prescribed by that protocol is

modelled by the set, , of all possible

executions over P. Each member of  captures

a process execution for each process in P and

the behaviour of the communication system.

4. Representing Workflow

managements in DCS using Petrt nets

4. I Petri net concepts

The concept of Petri nets has its origin in Carl

Adam Petri's dissertation Kommunikation

mit Automaton, submitted in 1962 to the

Faculty of Mathematics and Physics at the

Technische University Darrnstadt, German
8
,

Since then the use and study of Petri nets have

increased considerably.

Nigerian Journal of Technology, Vol. 23, No. 1, March 2003 Bakpo 31

A Petri net has been variously defined in
1.6.10

as a quadruple N= (P, T, F, W) where: P is

the set of places (graphically represented as

circles) with /p/ = n and p = n and p 0. T is

the set of transitions (graphically represented

as bars\) with /T/= m and T0, T P =0. F 

(P x T)  (T x P) is the flow relation of N W:

FN \ {0} attaches a weight to each arc of the

net. Figure 1 shows an example of a Petri net.

It consists of places (circle), transitions (bar)

and directed arcs (flow relations) that connect

them. Input arcs connect places with

transitions, while output arcs start at a

transition and end at a place. A place may

contain zero or more markings also called

weights or tokens. The current state of a

modelled system (the marking) is given by the

number (and type) of tokens in each place.

Transitions are active components and are

used in modelling activities

(events), which can occur (the transition fires),

thus changing the state of the system (the

marking of the Petri net). Transitions may fire

only if they are enabled, which means that all

the preconditions for the activity (or events)

must be fulfilled. Usually, this happens if there

are enough tokens available in the input

places. When the transition fires, it removes

tokens from its input places and adds some at

its entire output place. The number of tokens

removed/ added depends on the cardinality of

each arc. In figure I, places PI, P2 initially

hold one marker each, as follows:

Before firing: P1, P2, P3, P4, P5: = 1, 1,0,0,0.

During firing: P1, P3: = P1, -1, P3, + 1 if P1 > 0

P2, P4: = P2- 1, P4+ 1 ifP2> 0

P3 P4, P5: = P3,-1, P4-1, P5 + 1,if P3> 0 & P4> 0

After firing: P1, P2, P3 P4, P5: = 0, 0, 0, 0, 1.

A Petri net is preferred for the following

reasons:

(1) It provides formal semantics despite its

graphical nature

 (2) It models the occurrence of events by

the state, and

(3) PN provides an abundance of analysis

techniques.

4.2 Workflow Management in Distributed

Computing System

Using Petri nets

In the process dimension, it is specified which

tasks need to be executed and in what order.

Modelling a workflow process definition in

terms of Petri nets is rather straightforward:

tasks are modelled by transitions, conditions

are modelled by places, and cases are

modelled by tokens. The overall Send/Receive

flow of communication between source and

destination systems can be represented

graphically in Petri net notation using labelled

place/transition net as shown in figure 2.

First, a request is initiated (i.e., availability of

token at input place cl. Second, the transition

Get Data fires invoking the service

information. Input, which supplies the

necessary input parameters. Third, the

Nigerian Journal of Technology, Vol. 23, No. 1, March 2003 Bakpo 32

transition Handle Request takes over. Finally,

by transition Give Information the requested

information is given and a cost item is created

using the service information. Out.

Now, to illustrate workflow processes

in a specific DCS using the concept of Petri

nets we consider the processing of order for

the purchase of a "book" via the Internet as in

e-purchase (electronic purchase). First the

order is registered (task register), then a

questionnaire is sent to the buyer (task send

The tasks register, send-questionnaire,

evaluate, process-questionnaire, time-out,

process- order, check processing have been

modelled by transitions.

 The transitions processing-Ok and

processing-NOk are added to model the two

possible outcomes of executing task,

conditions have been added. Each condition is

modelled by a place. A Petri net which models

a workflow process definition, that is, the life

cycle of one case in isolation, is called a

questionnaire) and the buyer is evaluated (task

evaluate). If the buyer returns a valid data, the

task process-questionnaire is executed. Where

the questionnaire is returned with invalid data,

the result of the questionnaire is discarded

(task time-out). Based on the result of the

evaluation, the request is processed or not. The

actual processing of the order (task process-

order) is delayed until the questionnaire is

processed or a time-out has occurred. The

processing of the order is checked via task

check- processing. Finally, task archive is

executed. Figure 3 depicts a workflow process

definition for the processing of e-purchase

specified in terms of Petri net, work-flow net

(WF-net). A WF-net satisfies two

requirements. First of all, a WF-net has one

input place (I) and one output place (O). A

token in a place may belong to either of send,

local or receive state of the system and

corresponds to a case which needs to be

handled; a token in O corresponds to a case

which has been handled. Secondly, in a WF-

net there are no dangling tasks and/or

conditions. Every task (transition) and

condition (place) should contribute to the

processing of cases. Therefore, every

transition t (Place p) should be located on a

path from place I to place O. There is also a

causal dependency constraint regarding I, and

O as follows (output  once input). This

means that the invocation of service output

implies that service input has already been

invoked at least once.

Fig. 3: A workflow process definition for e-

purchase

4.3 Analysis of correctness of Workflow

managements

Basically, there are three types of analysis that

one may examine in the assessment of a

workflow management system, namely
10

:

 (i) Validation, i.e. testing whether the

system behaves as expected,

 (ii) Verification, i.e., establishing the

correctness of a system, and

 (iii) Performance analyses, i.e,

evaluating, the ability to meet requirements

with respect to throughput times, service

levels, and resource utilization.

Because of space, we will only concentrate

on verification, that is, establishing the

correctness of our system. For this purpose, let

us examine a notion of correctness known as

soundness. For a workflow system to be

correct, i.e., be sound, it must satisfy the

following requirements:

a) A WF-net must have a source place i (start

condition) and a sink place O (end

Nigerian Journal of Technology, Vol. 23, No. 1, March 2003 Bakpo 33

 condition).

b) Each task/condition is on a path from i

to O (this apply for Petri nets only).

c) The moment the procedure terminates,

place 0 holds a token and all other

places are empty.

d) There should be no dead tasks; i.e., it

should be possible to execute an arbitrary task

by following the appropriate route through the

WF-net. The soundness property actually

explains the dynamics of a WF-net and

characterizes workflow design for our case

study. A procedure modelled by a

WF-net PN = (P, T. F) is sound if and only if:

(i) For every state M reachable from state i,

there exists a firing sequence leading from

state M to state 0: M (i 
*
 M) 

 (M
*
 O).

(ii) State 0 is the only state reachable from

state I with at least one token in place O:

M (iM  M O)  (M=O)

(iii) There are no dead transitions in (PN, i):

tT M, M' i 
*
 M 

t
M

t
.

Since the case study used (see figure 3)

satisfies the above requirements (i.e., (a)- (d)),

then our work now system modelled after Petri

nets must equally operate correctly according

to specifications.

5. CONCLUSION

The framework of a distributed computing

system is discussed, and its model introduced.

This application domain is presented in such a

way that Petri net could be easily proffered.

Petri net concept is then used to model

workflow management in e- purchase, which

is an example of distributed computing. This

work advances the current understanding of

both distributed computation and the use of

Petri nets theory for modelling and analyzing

processes.

REFERENCES

1. Bakpo, F.S. (2003) "Software Design

Modelling with Functional Petri Nets"

Nigeria Journal of Technology

[NIJOTECH] University of Nigeria,

Nsukka (Accepted for Publication)

2. Bakpo, F. S. (2002) "Computer Use and

Applications" Godjiksons Publishers,

Nsukka, 128pp.

3. Eeonomopouls, P (1987) "Petri Nets: A

model for the analysis of the behaviour

and performance of concurrent systems"

Office and Database systems Research

87. Pp.99-32, Toronto.

4. Ikekeonwu, G.A.M (2002 "Commuter

Science: a first course" Ephrata press:

Lagos: Nigeria. 387pp.

5. Milenkovic, M (1982) "Operating

Systems, Concepts and Design, McGraw-

Hill Computer Science Series, Singapore,

755pp.

6. Murray, S. M (1987) “On the Use of

Negotiation in Distributed Computer

systems" Office and Database systems

Research87, pp79-98,Tororuo.

7. Padberg. J; Weber, H and Sunbul, A

(2002) "Petri Net based components for

Evolvable Architectures” the transactions

of the SDPS journal of design &process

science, Vol. 6, No1, pp1-10. USA

8. Petri, C.A. (1962) "Kommunication mit

Automaten". Ph.D thesis, Institute for

instrumentally Mathematik, Bonn [in

German]

9. Savelyev, A and Venda, V (1989')"

Higher Education and Computerization”.

Progress Publishers Moscow. 255 pp,

10. Van der Aalst, W.M. P. (2002) "The

Application of Petri nets to Workflow

Management" On Internet:

http://psim.tm.tue.nl/staff/wvdaalst/public

ations/p53.pdf

