
Nigerian Journal of technology, Vol. 24, No. 1, March 2005 Ikekeonwu and Bakpo 87

PETRI NET MODELING OF

COMPUTER VIRUS LIFE CYCLE

Ikekeonwu, G A. M and Bakpo, F.S.

Department of Computer Science

University of Nigeria, Nsukka

ABSTRACT

Virus life cycle, which refers to the stages of development of a computer virus, is presented as a

suitable area for the application of Petri nets. Petri nets a powerful modeling tool in the field of

dynamic system analysis is applied to model the virus life cycle. Simulation of the derived model

is also presented. The intention of this paper essentially is to show that similar procedure can be

used to derive anti-viral programs based on the Petri net framework.

Keywords: Virus lifecycle, Petri nets, modeling. simulation.

1.0 INTRODUCTION

The Oxford Advanced Learner's

Dictionary defines virus as “a hidden code

within a computer program intended to

cause errors and destroy stored information
5"

. In
2
, a computer virus is defined as a code

that attaches itself to other programs in order

to alter their behavior, often in a harmful

way. Computer virus infection happens to be

the most common computer security

problem in the computer community today

because it poses a serious threat to the

computer users. Problems arise from viral

infection have imposed significant amount

of financial losses to individuals as well as

to corporate organizations. The computer

virus problem was first described in 1984,

when the results of several experiments and

substantial theoretical work showed that:

(i) Viruses could spread essentially

unhindered even in the most secured

computer systems;

(ii) They could cause widespread and

essentially unlimited damage with little

effort on the part of the virus writer;

(iii) Detection of viruses was undecided;

(iv) Many of the defenses that could be

devised in relatively short order were

ineffective against a serious attacker;

and

The best defenses were limited because of

inadequate information flow and limited

sharing.

The effect of viruses can range from

mildly annoying (for example, interruption

with a message that appears periodically on

the screen) to devastating (for example, an

inaccessible hard disk, formatting hard

drive, destroying BIOS files). The smallest

virus code is just enough to destroy or

corrupt data on any computer system. Like

its biological counterpart, a virus cannot

operate on it’s own and must enter a host

program in order to be activated. Some

viruses run immediately, while others wait

for a specific date or event. When it runs it

copies itself into another program, document

or boot sector on the computer. A virus

usually executes when a user opens an

infected document, runs an infected file or

boots from a disk with an infected boot

sector. This phenomenon is also true with

computer worms programs that copy

themselves to another computer or drive

usually by means of a computer network. E-

Nigerian Journal of technology, Vol. 24, No. 1, March 2005 Ikekeonwu and Bakpo 88

mail worms spread fast because they mail

themselves to every entry in the address

book on each computer they invade. Worms

are often disguised as images, joke software

or anti-virus software. We have seen that the

development of new technologies such as

the Internet, which have made it easier for

us to communicate with one another as in a

global village, had also provided yet further

ways in which virus writers launched their

attacks on remotely interconnected systems.

Thus we refer to computer virus to mean

both computer viruses and worms, since

both can be propagated either ways.

Examples of viruses include Melissa (1999),

Loveletter (2000), W32/Sircam (2001), etc

2 The virus life cycle

The existence of a computer virus, like

its biological counterpart in a host machine

typically encompasses four stages
6,

 namely:

(i) Dormancy;

(ii) Propagation (self-propagation);

(iii) Triggering and

(iv) Damage

(i) Dormancy: Upon infecting a new

machine or a new program, the computer

virus may remain dormant for a while to

avert suspicion. The duration of the dormant

period may vary depending on the type of

mechanism being used. Some viruses may

await a certain number of executions of the

lost program or the elapsing of a certain

period of time before progressing to the next

stage in the cycle.

(ii) Propagation: In the propagation stage,

he virus attempts to send copies to other

programs on the host machine or machines

m the network. The target here may be the

COM-file, EXE-file, BOOT, partition or

data. A virus may spread by searching the

system (disks or server) for uninfected
programs and attaching itself to them. In

3
, virus

propagation mechanisms, are categorized as one-to-

one, one-to-many, many-to-one, and many-to-many.

Depending on the particular mechanism in use, the

viral code modifies an executable file in such a

manner that it receives control upon program

activation. When an infected program is executed, the

virus code is propagated to the target and sets its

stage to dormancy. Control is then usually returned to

the host program for normal operations. In this way,

the virus can hide its existence all the way through

the triggering stage.

(iii) Triggering stage: This stage facilitates

transition to damage stage. The trigger itself may be

defined as either one of the following:

(i) A count of replications: To cause the damage at the

count down of the number of copies already

generated;

(ii) A timer- based: To cause the damage at some

specific time or date;

(iii) An event-driven: To cause the damage at soon as a

user clicks on a folder or a hyperlink, etc.

(iv) Damage stage: The damage itself can

range from mildly annoying to malicious,

e.g. loss of data, program failure such as in

ability to load, failure to boot, loss of man

hours and anxiety. Nearly all viruses require

some stages of development, watch over

system and user's activities and exhibit

certain behavior. Petri net offers a viable

modeling tool for implementation of virus

life cycle. Areas of successful applications

of Petri nets include distributed database

systems, communication protocols,

performance evaluations of complex

systems, workflow managements, game

systems etc. For an in-dept review of Petri

nets the reader is referred to
3, 7.8, and 11

.

Nigerian Journal of technology, Vol. 24, No. 1, March 2005 Ikekeonwu and Bakpo 89

3. Petri nets theory

The theory of Petri nets has its origin in

Carl Adam Petri's dissertation

Kommunikation mit Automaton", submitted

in 1962 to the Faculty of Mathematics and

Physics at the Technische Universitat

Darmstadt, Germany
9
. It is therefore not

surprising from where this vibrant theory

derives it name: their inventor Prof. Carl

Adam Petri. The Petri nets group defines

Petri nets as a formal, graphical, executable

technique for the specification and analysis

of concurrent, discrete event dynamic

systems- a technique currently undergoing

standardizations. It is also a modeling

language', Formally, a Petri net 12 is a triple

N= (P, T, A) where:
P is a finite, nonempty set of places (graphically

represented as circles);

T is a finite, nonempty set of transitions

(graphically represented as bars /);

A is a set of directed arcs, which connect places

with transitions and transitions with places. (tT)

(Pi, PjP) (Pi, t)A

(t, Pj)A.

This expression is interpreted as follows" for all

transitions in the net there exist input and output

places such that the flow from input place to

transition and from transition to output place is

indicated by set of directed arcs. The sets of all

input and output places of a transition t are

denoted by Inp (t) and Out (t), respectively.

Similarly, the sets of input and output

transitions of a place P are denoted by Inp

(p) and Out (P). A place P is shared iff it is

an input place for more than one transition.

A net is conflict- free iff it does not contain

shared places. Only conflict-free Petri nets

are considered in this paper. To be useful

tokens or dots are usually assigned to some

places in a Petri net setting. Such Petri nets

with tokens are called marked Petri nets. A

marked Petri net is a pair M = (N, m) where:

N is a Petri net N =(P, T,A),

m is an initial marking function which

assigns a nonnegative integer number of

tokens to each place of the net; m:p

(0,1,...).

A transition t is enabled by a marking m iff

every input places of this transition contains

at least one token. The set of all transitions

enabled by a marking m is denoted by E

(m). Every transition enabled by a marking

m can fire. When a transition fires, a token

is removed from each of its input places and

a token is added to each of its output places.

This determines a new marking in a net and

implies a new set of enables transitions, and

so on. Ordinarily, a marked Petri net is still

not enough for the study of systems

performance since no assumption is made on

the duration of systems activities.

Ramchandani
10

 has introduced the timed

Petri nets by assigning firing times to the

transitions of Petri nets. Molloy 7 introduced

stochastic Petri nets in which transition

firing times are exponentially distributed

random variables, and the corresponding

firing rates are assigned to transitions of a

net. This paper dwells on M-timed Petri nets

(or stochastic Petri nets). An M-timed Petri

net T is defined in 7.12 as a pair T = (M, r),

where: M is a marked Petri net; M = (N, m),

N= (P, T, A),

r is a firing rate function which assigns a

positive real number r(t) to each transition t

of the net. r: TR
t
 , where R

t
 denotes the

set of positive real numbers. The firing time

of a transition t is a random variable v (t)

with the distribution function: Prob (v (t) >

x) = e
-r(t)x

, x> O.

4. Petri net Modeling and Simulation of a

virus life-cycle

4.1 Modeling

We choose to model this system the virus

life-cycle using Petri nets because given that

virus stages of development is complex and

its self-propagation method inherently

distributed, we want both to establish that

the system behaves correctly and to ensure

that its performance is acceptable. Ideally,

we would prefer a model that can capture

the logical behavior (i.e. interactions that

Nigerian Journal of technology, Vol. 24, No. 1, March 2005 Ikekeonwu and Bakpo 90

influence the information flow) of the

system, but which could also be extended so

as to analyze system performance. The

traditional performance models such as

queuing network models, finite state

machines, turning machines etc, cannot

capture important characteristics of this

system like concurrency, synchronization or

conflict of actions, which are important for

the study of their correctness. Petri nets are

one such model, which bring all these

distinctly different characteristics into a

single and elegant framework of

representation. The underlying graphical

background facilitates visualization of

complex process. Figure 2 shows the Petri

nets model of a computer virus life cycle.

Net symbols Descriptions

.
Is a dot. In Petri net configuration, a dot refers to a token (marking) and in our

model it shows the presence of a virus.

Po Is an initial place in the net. Po refers to th e dormant stage (condition) in the life cycle.

t1
Is a transition whose firing propensity depends on the availability of a t least a token in place (Po). t1

stands for the propagation event.

P1,1PI.2,&PI.n

Number of places that will receive a token following firing of transition tI These refer to the generated

copies of the same virus, where n is the number of copies (folders) infected in a given drive. As each

token is deposited in places P1.1, P1.2, &P1.n that it sets its phase to dormant, however the presence of a

token soon enables the firing of corresponding output transitions.

t2.1,t2.2,&t2.n
Refers to the triggering event. In this model our triggering event is the

countdown of number of replicated copies of the virus.

P2.I,P2.2,&P2.n
Stands for the full brown damage condition of the system. As said earlier the damage done to a system

varies. Our model implements a mild form of damage- a message pay your bill is displayed.

t0.1 ,t0.2,&t0.n
This refers to the recovery event or metho d applied in order to recover from the damaged condition

created in places P2. I, P2.2, &P2.n An infected system usually remains in the damage state until an up -to-

date anti viral software is applied. If the virus scanner successfully detects and cleans the virus,

normalcv is said to be restored in the system.

Nigerian Journal of technology, Vol. 24, No. 1, March 2005 Ikekeonwu and Bakpo 91

The availability of at least a token (virus) in

place (Po) will enable the firing of the

transition (tl), which propagates copies to the

entire available places link with Po

(addresses or folders). This in turn sets the

pace for a self-contained or in-house

propagation, leading to a full-brown find

folders; damage situation. This process is

analogous to a recursive algorithm or

recurrence dormant equation a technique for

performing task T by performing a similar

task T, The task T, is exactly the same in

nature as the original task T; however, it

represents a solution to a smaller problem

than T.

4.2 Simulation

In this section we considered the simulation

of a virus life cycle by programming (pseudo-

code) in VB. Real life viruses execute arbitrary

code once they have replicated themselves on a

new host. The only way to simulate this

generality is to allow simulated virus the same

ability. To properly capture the logical behavior

of a virus life cycle, figure 3 depicts the system

pseudo-code.

(i) Virus life- cycle pseudocode

 Module virus: {inserts itself in another folder}

Get Drive_label;

Fig 3 Pseudocode of a computer virus life

cycle

The actual implementation in visual BASIC is

presented in figure 4a and 4b, respectively.

Nigerian Journal of technology, Vol. 24, No. 1, March 2005 Ikekeonwu and Bakpo 92

In this design, we simulated a virus called Good

Year. As the user selects a drive by an event

'click' (i.e., a token is present), the virus

propagates by assigning copies to each of the

folders/files in the drive and sets its development

stage to dormant. It then begins verifying if

propagation· was successful by counting down

the files from inherently a stochastic Petri net

distribution with v (t) =e
 r(t)x

. In practice, the

number of infected components
11

, N (t) = e
(g-a)t/

,

where t is the elapsed time; g- is the generation

rate (the average number of infected system); a-

is the absorption rate (the number of worms that

die out in an infection cycle and will not cause

any further infections); and - is the

System T(s) g(ms) a(ms)
 (MHZ)

1 0-4 2 0.1 400

2 0-4 1.5 0.1 500

3 0-4 1 0.1 600

4 0-4 0.5 0.1 700

5 0-4 0.12 0.1 800

The complete source code is available on request.

maximum to zero or destruction. The count

down process is actually the triggering stage and

is the forerunner of the damage stage. At

damage, each infected file is merely increased in

byte sizes. The entire process is cycle time of an

elementary virus spread. We tested this equation

by creating Matlab files for five different

computer systems according to the data shown

in table 2 (below).

4 Conclusion

To increase the body of knowledge on the

subject matter, we offered an in-depth

examination of a virus life cycle. This

application domain is presented in such a way

that Petri nets tool could easily be proffered.

Petri nets concept is then applied to model virus

life cycle, which in turn is simulated

qualitatively. This paper reinforces the validity

and efficiency of Petri nets as a modeling tools

and advances the current understanding of both

virus life cycle and the use of Petri nets theory

for modeling and simulation of intricate, life

critical processes.

Nigerian Journal of technology, Vol. 24, No. 1, March 2005 Ikekeonwu and Bakpo 93

REFERENCES

1. Bakpo, F.S. (2003) "Software Design Modeling

with functional Petri Net" Nigeria Journal

Technology Vol. 22, No. 1, March 2003, 15-22.

2. Bakpo, F.S. (2002) Computer Use and

Applications Godjiksons Publishers, Nsukka,

128 pp.

3. Chen, L. and Carley, K.M. (2002) "A

Computational Model of Computer virus

propagation".

http://www.Virusbtn.Com/old/other papers/Good

vir/

4. Cohen, F. (2004) ''Trends In Computer Virus

Research" http://vx.netlux.org/lib/afco6.html

5. Hornby, A.S. (1995) Oxford Advanced Learner's

Dictionary of Current English (5
th

 ed.), Oxford

University Press, Great Britain.

6. Milenkovic, M. (1982) "Operating Systems:

Concepts and Design". McGraw-Hill Computer

Science Series, Singapore, 755pp.

7. Molloy, M.K. (1982) "Performance Analysis

using stochastic Petri nets", IEEE Trans. On

Computers Vol. 3 1(9), PP. 913-917.

8. Parthasarathy, S. (2004) "A one-day Tutorial on

Petri nets".

http://www.algolog.tripod.com/petritut.htrn

9. Petri, C.A. (1962) "Kommunication mit

Automateri". Ph.D. thesis, Institute for

instramentelle Mathematik, Bonn [in Germany]

10. Ramchandani, C. (1974) "Analysis of

Asynchronous Concurrent Systems by Timed

Petri Nets; Project MAC Technical Report,

MACTR-120, Massachusetts institute of

Technology, Cambridge, MA.

11. Szappanos, G. (2000) "Models of Viral

Propagation"

http’’//www.securityfocus.com/infocus/1265

12. Zuberek, W.M. (1985) "Performance Evaluation

of Concurrent Systems using Timed Petri

Nets.”Proceedings of the 1985 ACM Computer

Science . Conference Agenda for Computing

Research, pp. 326-329.

http://www.virusbtn.com/old/other
http://vx.netlux.org/lib/afco6.html
http://www.algolog.tripod.com/petritut.htrn
http://www.securityfocus.com/infocus!1265

