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ABSTRACT  

The dynamic response (natural frequency) of tall building frame models which permit joint ration 

and the inclusion of the columns axial load were investigated. 

The stiffness co-efficient of axial members were modified by the use of relevant stability functions 

through which the contributions of the axial forces were reflected. Comparisons of the responses of 

models with flexible horizontal members with the exclusion and /or inclusion of the columns axial 

loads to those of identical frames modeled as shear frame s and considering the buildings as multi 

degree of freedom systems, based on numerical results were made. The results showed that (a) 

model with no restriction on joint rotations gave improved results, (b) the inclusion of the axial 

loads further improved the result and hence, the models, (c) The axial load effect became more 

significant as the building got taller and (d) at beam to column rigidity (EI) rations below 12 the 

sear frame gave result s that different by more than 5% from those obtained using the improved 

models. It is, therefore, recommended that for tall buildings with low horizontal to vertical member 

rigidity ratios models which permit flexibility of members and joint rotation should be used. For 

very tall frames, the axial loads should not be ignored. 

 

1.0 INTRODUCTION. 

Tall frame constitute the main load bearing 

component of tall building [1]. 

Apart from static loads, structural frames are 

also subjected to dynamic forces which have 

their possible sources from earthquakes, 

explosion, impact loads, moving loads, wind 

and other disturbances. The common feature 

of all dynamic disturbances is that they 

generate vibrations in the structure upon 

which they act. Consequently, prerequisite to 

the design of such a structures is a good 

insight into its vibration motions and, in 

particular, the natural frequency, w. 

 The knowledge of the natural 

frequencies and the associated modes of 

vibration enable the engineer not only to 

evaluate some dynamic parameters necessary 

for the design of the structure but to also 

predict the likelihood of resonance. As far as 

possible, natural frequencies should, 

therefore, be determined with some fairly 

good accuracy. 

 Tall frames are essentially systems 

with infinite degrees of freedom. However, 

some simplifications are made in their 

dynamic analyses by considering them as 

multi degree of freedom system using the 

shear frame model in which the horizontal 

members are assumed to be infinitely rigid in 

comparison to the vertical members. 

Consequent upon excitation the shear frame 

only sways in its plane. The hear frame 

known to give results which may differ 

greatly from the actual. Also, it does not 

include the effect of axial loads over the years 

the form and properties of tall buildings have 

changed substantially.   Lighter floor systems 

and curtain wall constructions have are now 

very common. Modern designs have also led 

to buildings that are more susceptible to 

dynamic excitation [2]. In view of these, it 

becomes increasingly difficult to justify the 

continued use of the shear frame model for 

tall frames.  



Nigerian Journal of Technology, Vol. 24, No. 2, September 2005.  Anya and Osadebe               35 
 

In this work an attempt is made to (1) 

investigate the effect of axial loads on the 

natural frequencies of tall rigid building 

frame with flexible horizontal members as 

multi degrees of freedom systems and (2) 

establish a critical value of beam-column EI 

ratio, if any below which the shear frame 

gives natural frequencies that differ by more 

than 5% from those obtained when (i) no 

restrictions are placed on joint rotations and 

(ii) axial loads and joint rotations are 

considered. A related work has been done on 

(1) above for a shear frame [3]. 

 

2.0 EQUATION OF FREE MOTION  

Using the principle of superposition, the 

equation of free vibration can be written as: 

[K] [Y] + [M] [ÿ] = [0] where [K] is the 

lateral stiffness matrix of the building, [M] is 

the diagonal matrix of the lumped masses at 

the floors. [] is a column matrix of the lateral 

displacements at the floor levels. [y] is a 

matrix that contains the second derivatives of 

the displacements at the floors. 

 Assuming a periodic solution to 

equation 1 results to the generalized eigen 

problem:  

[K] []=
2 

[M] []                     (2) 

Where, [] is the amplitude array. The n (n 

being the degree of freedom of the structure) 

solutions to equation 1 can be written as:  [K] 

[] = [M] [] []         (3)  

where, [] is an n x n matrix of eigenvectors, 

[] is a diagonal matrix listing the 

eigenvalues (square of the free vibration 

frequencies). 

 Many methods of  solving the 

eigenvalue problem are available such as the 

sturm sequence, subspace iteration and the 

Jacobi method [4-7].in this work, the Jacobi 

method will be adopted.  

 

3.0 DYNAMIC ANALYSIS 

3.1 Description of models. 

The basic assumptions for each of the models 

to be considered are as given below.  

Model 1: the shear frame or vertical pole  

The shear frame model assumes that (i) the 

total mass of the structure is concentrated at 

the floor levels; (ii) the floor slab action 

integrally with the beams makes the beams 

infinitely rigid when compared to the 

columns, (iii) the deformation of the structure 

is independent of the axial forces in the 

column. Thus a building frame can then be 

modeled as a vertical pole with the masses 

concentrated at the floor levels and the 

rigidities of the vertical members of the 

original frame, say at the i
th

 floor level 

summed up to give the rigidity o the pole at 

the i
th 

 floor [8]. 

 

Model 2: model with no restriction on joint 

radiation 

 This, like the shear frame model, 

assumes that the masses are lumped at the 

floor levels but the girders are not assumed to 

be of infinite rigidity when compared to the 

columns. The effect of vertical inertia is 

negligible and the axial deformation of the 

structure is independent of the axial force in 

the columns. 

 

Model 3; model with joint rotations and 

column axial loads included 

This is similar to model 2 except that the 

columns axial loads are include. The effects 

of the axial load are taken into account by 

treating the columns as beam-column 

elements. 

 

2.3 Evaluations of the lateral stiffness 

matrix elements. 

Tall buildings are generally three-dimensional 

structure. Although a three dimensional 

analysis is possible, the computations are 

often quite involving. A two- dimensional 

analysis is used except in some special cases. 

The major difference in the models lies in 

their lateral stiffness matrices, [K] of equation 

3. The element Ku of the lateral stiffness 

matrix is the restoring force at floor level i 



Nigerian Journal of Technology, Vol. 24, No. 2, September 2005.  Anya and Osadebe               36 
 

when floor level j is given a unit sway. 

Stiffness matrix elements for model 1 if floor 

i (i=1 to u, the degree of freedom) is given a  

unit sway then the relevant stiffness matrix 

elements are given as:  
 

 
       (

     

  
  

   

   
) 

    
    

  
     

    

  
                 (4) 

 

                       

  

Stiffness matrix of models 2 and 3 

 In addition to the assumptions already 

stated the following are also made in the 

analysis of tall buildings: contribution from 

the out of plane stiffness of floor slabs are 

neglected, tensional stiffness of beams, 

columns and planar walls are neglected and 

the effect of axial load on beams and girders 

is usually negligible. 

 The stiffness matrix elements can only 

be obtained after a complete static analysis of 

the structure, using, say, the classical 

displacement method as described below: 

i. The joints of the frame are assumed 

fixed and unit rotations applied at each, one at 

a time and the resulting end moment 

diagrams, Mi (i=1 to v the total number of 

joints) are then drawn using the appropriate 

element bending stiffness. 

ii. The structure is then assumed to be 

given a lateral displacement of at floor level 

k, other lateral displacements of other floor 

being assumed to be zero. The resulting fixed 

end moment diagram Mk is drawn. 

iii. The compatibility equations are then 

set up and are given as 

       
  
         

  
        

       
  
         

  
        

..       ..          .    ..      .    .  .       .         .          . 

       
  
         

  
                                         

(5) 

 

Where r,, (i-1to v,j=1 to v) is the moment 

generated at join t i  due to a unit rotation at 

joint j, R, Xk is the moment generated at joint 

i due to a unit sway at floor level k, = (i=1 to 

v) is the unknown rotation at joint 1. 

 

iv. Eq. 4 is solved and the unknown 

values of the joint rotation determined. The 

final bending moment diagram is then 

determined using the relationship. 

a.      ∑    
                           (6) 

Mk is the final bending moment diagram 

when the structure is given a unit lateral sway 

at floor level k. 

V The shear force and hence the 

stiffness matrix elements, Kik (i=1=n) at each 

floor level can now be calculated using the 

local equilibrium principle. 

Vi steps (ii) to (v) are repeated for the 

other floors. It should be noted that only the 

right hand side of equation changes each time 

the process is repeated. 

The formulation of the stiffness matrix of tall 

frames as described above is not only 

complex but also time consuming and prone 

to errors as equation 2 has to be formulated 

and solved v times. 

 

3.2 Computer program 

A computer program stiffeig, was developed by 

anya [9] using the stiffness method described 

above for (a) calculating the stiffness matrix 

elements of regular frames for various beam/ 

column EI ration for models 1,2,and 3, previously 

described 

and (b) solving the resulting eigenvalue problem 

to determine the natural frequencies and modes of 

vibration using the Jacobi method. The input data 

are the number of storey’s and bays, the floor and 

roof loads, the member elements' El values and 

lengths. Others are the columns axial loads, the 

lumped masses at the floor levels, the Jacobi 

tolerance value the model type to be  analysed for 

and the Jacobi iteration limit stiffeig  first 

calculates the left hand side coefficients of the 

compatibility equation (equation 5) using the 

relevant element stiffness for the model type and 

stores the in a banded form. For each degree of 
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freedom it generates the right hand side of 

equation 5 and solves the resulting simultaneous 

equation to determine the joint rotations using the 

Gaussian elimination method. The final bending 

moments are then obtained using equation 6 from 

which the lateral stiffness elements for that degree 

of freedom are calculated. When all the lateral 

stiffness elements have been evaluated and 

stored in a banded form, the program starts the 

solving of the eigen problem (equation 3) 

using the Jacobi iteration method. The mass 

matrix is decomposed and the generalized 

eigen problem is transformed to the standard 

form. A unit eigenvector array is then set up 

and the iteration value is set to zero, its initial 

value. The program then searches for the 

largest off diagonal stiffness matrix element 

and calculates the effective zero value, The 

updating of the stiffness and eigen vector 

matrices is done until the largest off diagonal 

stiffness matrix element is less than the 

effective zero value or the iteration limit is 

reached. The eigenvector array is then 

normalized and the natural frequencies are 

calculated. A check is then carried out to test 

the accuracy of the results obtained.  

 

3.3 Test problems.  

Stiffeig was used to determine the natural 

frequencies of some tall building frames.  

The first building is the 15 storey-2 bay office 

building, the plan and section of which are as 

shown in Fig 3a and 3b respectively. The 

other building is a 10 storey whose plan is the 

same as that of the 15 storey building but 

whose elevation was obtained from that of the 

15 storey building by removing the 

appropriate number of floors from the top. All 

the beams are 585 x 250mm. The material of 

construction is concrete of unit weight of 

24kN/m
2
 and modulus of elasticity, E of 20 x 

10
6
 kN/m

2
.  

The structural properties of the buildings are 

assumed uniform along the length of the 

building and an analysis of an interior frame 

is assumed to yield the response of the entire 

building.  

 

3.3.1 Calculation of design loads  

The design loads were calculated using BS 

811O design code [9] and are as shown in 

Table 3.1 

 

Column axial loads.  

The column axial loads were calculated using 

the design loads in Table 3.1 and assuming 

that the columns carry half of the loads on the 

beams spanning into them as shown in Fig 3c. 

Thus at each floor level a column, say, 

column C1 carries the portion of the floor 

load demarcated by adcd while that for 

column C2 is cdef and that by column C3 is 

efgh, The loads on the various panels are then 

as in Table 3.2. 

 

Lumped masses  

The lumped masses at the floors are: At roof 

= 300 x 10 x 3.6 = 10800kg Other floors = 

360 x 10 x 3.6 13000kg  

 

4.0 DISCUSSION OF RESULTS  

The plots of natural frequencies of the 5 and 10 

storey buildings against beam to column E.I ratios 

for the models are as given in Figs. 4.1and Fig 

4.2.  

From fig. 4.1 and 4.2 the following are 

discernable; (i) the natural frequency curves for 

model 1 (ii) the inclusion of the axial loads did 

improve the results. The frequencies obtained for 

model 3(when the axial loads were included) were 

constantly less than those for models 1and 2. 

However the values did not differ very much from 

those of obtained for model 2 where only joint 

rotations are allowed. In fact the two curves could 

be plotted as one. It is expected that as the number 

of storeys increases the differences between the 

two models will increases (iv) The beam to 

column EI ration below which model 1(the 

shear frame) gave results that differ from 

those of models 2 and 3 by 5% are 

respectively 12.5 for the 10 storey building 

approximately. The ratio increases with 

increase in the numbers of storeys. 
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4.0 RECOMMENDATIONS/CONCLU

SION 

The following recommendations are made from 

the study; 

(i)The effect of axial forces should not be ignored 

in the dynamic analysis of very tall building 

especially when light flooring systems are used. 

however for moderately tall building where the 

axial loads are not considerable much, the effect 

of the axial loads may be ignored and the 

structure depending on the beam-column EI ratio, 

be analysed as one with flexible horizontal 

members or as a shear frame (ii) Tall building 

whose floor slabs are constructed with lightweight 

material or those whose beam to column EI ratios 

are less than 20 should not be analysed as shear 

frames. Such buildings should be modeled as one 

with flexible members with/without the inclusion 

of the column’s axial loads 

 

NOTATIONS 

[K] Building lateral stiffness matrix. 

[M] Mass matrix. 

E Modulus of elasticity  

I Second moment of area. 

W Natural frequency 

n dynamic degrees of freedom  

v number of joints. 
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