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ABSTRACT

Instability is an important branch of structural mechanics which examines alternate
equilibrium states associated with large deformations. I n this study, Varbanov's generalized
strain fields and Vlasov's displacement equations were used to obtain a set of equations for
neutral equilibrium of axially compressed single-cell box column with deformable
cross-sections. The study involved a theoretical formulation based on Vlasov's theory as
modified by Varbanov and implemented the associated displacement model in generating
series of ordinary differential equationsin distortional displacement V(x). Theinitial result
of theformulation wasin form of total potential energyfunctional, which wasthen minimized
using Euler-Lagrangeequation. Minimization of thetotal potential energyfunctional resulted
to a set of governing equations of equilibrium in matrix form. The longitudinal warping
displacement functions U ,, were eliminated from the governing equations of equilibrium in
different formsto obtain the following equations: two fully uncoupled ordinary differential
equationsin V, and V, representing flexural buckling about the two axis of symmetry; afully
separated ordinary differential equation in V, representing distortional buckling about the
longitudinal ox-axis; apair of coupled simultaneousordinary differential equationsin V;and
V, representing torsional — distortional buckling mode. This study has resulted in better
understanding and separation of distortional modefromtheother stability modes. Theresults
show that the effect of deformation can be substantial and should not be disregarded by
assuming rigid cross-sections. This present work has also simplified instability analysis and
design of thin-walled box columnswith deformable single-cell cross-sections on the basis of
Vlasov's theory by deriving precise equations for all the possible buckling modes.

Key words: Instability, Flexural buckling, Distortional buckling, Torsional-Distortional
buckling, Thin-walled Column, Vlasov's theory.

NOTATIONS: ¢,(s): Generalized longitudinal strain fields

U,(X): Longitudinal displacements function due to flexure about oy- and oz-axes,
due to flexure about oy- and oz-axes and warping torsion about ox-axis.
and warping due to torsion about ¢,'(s): First derivative of the longitudinal
OX-axis. strainfieldswith respect to the profile

V. (X): Transverse displacements function coordinate, S
due to flexure about oy- and oz-axes, P, (s): Generalized transverse strain fields
torsion about ox-axis, and distortion due to flexure about oy- and oz-axes,
of the cross-section. torsion about ox-axis and distortion

of the cross-section
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P,:  Critical buckling load
S Profiles coordinate
E: Modulus of elasticity
G: Modulus of rigidity

(X, S): Shear stress
o(x, s): Normal stress

INTRODUCTION

According to Saade et al. [1], the carrying
capacity of thin-walled beamsand columnsis
often governed by instability or loss of
stability. Heins[2] and Osadebe|[3] areof the
view that thin-walled closed structures are
very economical asstructural membersdueto
their light weight and their high flexural and
torsional rigidity but these structures appear
to have low resistance against buckling;
consequently, their instability problems need
some careful and in-depth study. Compared
with conventional structural columns, the
pronounced roleof instability complicatesthe
behaviour and design of thin-walled columns.
In most structural analysisproblems, bending
effects dominate, however, for thin-walled
structures, stability (resistanceto buckling) is
often crucial and all designs must be assessed
for possible buckling failure. According to
Ezeh [4], thin-walled steel box columnswith
deformable cross-sections have at |east three
competing instability modes; flexural,
distortional and torsional-distortional
buckling modes respectively.

Vlasov [5] wasthefirst to substantiate
the existence of distortional and warping
stresses in thin-walled closed structures and
he subsequently formulated atheory for their
anaysis. Research has shown that strict
application of Vlasov's displacement model
for the analysis of thin-walled closed
structures leads to a large number of
kinematic unknownsin form of displacement
functions. Varbanov [6] has shown that by
using generalized strainfieldsontheVlasov's

- Longitudinal strain

Vs  Shear strain

l,: Moment of inertiaabout the oy - axis
Moment of inertia about the 0z - axis
l,..  Warping constant

w: Warping function

equation, the number of the kinematic
unknowns can be drastically reduced. The
generalized strain fields have been used by
Varbanov [6], Varbanov and Ganer [7], and
Osadebe [3] in the stability and stress
analyses of multi-cell and single-cell box
columns respectively. The second author of
this paper has also used generalized strain
fields and Vlasov's equations to obtain a set
of equationsfor neutral equilibriumof axially
compressed single-cell box column (Osadebe
and Kwaga[8]).

This present study, which is
formulated based on Vlasov'stheory with the
modification thereof, differsfrom the former
one[8], inthat heretheeffect of cross-section
deformations which can be substantia is
considered. The main motivation for the
present study is the need to provide
comprehensive closeddform equations for
the buckling modes of a deformable
single-cell box column obtained on the basis
of Vlasov's formulation. The readily
availability of such equations will not only
simplify the work of designers but will also
ensure safe design through checking of all
possible stability modes.
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Figure 1: Axialy

compressed single-

cell thin-walled box column with deformabl e cross-sections

Figure 1 shows an axially compressed
thin-walled hollow column with deformable
cross-sections, the section dimensional
parameters and the stress resultants. On the
basis of Lagrange's principle, Vlasov [5]
expressed the displacements in the
longitudinal and transverse directions, u,,
andv,, 4 of athin-walled closed structurein
series form asfollows:

u(x, s) = E;nzl U;(x) @;(s)

v(x, s) = EZ=1 Vi) wg ()

Where, U, (x)and V, (X)areunknown functions
which express the law governing the
variation of the displacements aong the
length of the column. ¢, () and Y, (s) are
elementary displacements of the column
(longitudinal and transverse strain modes)
respectively out of the plane
(m-displacements) and in the plane
(n-displacements).

Vlasov's formulation yields (m + n)
second order differential equations, but later
work by Varbanov [6] has shown that m and

n can be limited to four by using generalized
strain fields. The potential energy of an
axially loaded thin-walled closed structureis
given by:

m,=S-W 3
For the structure under consideration, the
strain energy and work done by the external
load are given by:

1
S = 3 [ e @e s

Mz | @
+ —=—2\dxds
EI

W= %foSPV/(zx,S)dxds

Using equations (1) and (2) and basic
stress-strain  relations of the theory of
elasticity, the expressions for normal and
shear stresses become [3 - §]:

o(x,s) = Eey ¢ = EE;nzl Ul./(x) @;(s)

™%, 5) = Gy g = G[E’?zl U;(x) (Pl{(s)
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Y V@)

Thebending moment induced by distortionis

given by: where, a;; =

M(x,5) = Y0 1 Mi(s) = V(@)

Substituting equation (4) and (5) into
equation (3), we obtained:

mp =5 [ [ {10 s)86es) * e, 110 +

2
M) _py/? }dxds

EI (x,5)
Using constitutiverelationinequation (9), we
obtained: kr =
2
) Spp = =
2foS ' “s) ke = Frk EfS

2
Moo p22 b geas
EJI (x,5)

Substituting equations (6), (7), (8) and (2)
into equation (10) and simplifying, we

= F(U;,U

a

Ji

Vk,

83

-PY Y hkeré(x) Vr/(x)}dx
- [ @19 s)ds
bi = [ (@10 sS)ds
Cir = ¢ri = [ O OWOS)ds
i = ek = [ OVEO)ds
Mie = g = [ VAD VO ds

ek = [ i)V (s)ds

My(s)M, (S)

EI

Equation (11) shows that the total potential
energy T, isafunctional of the form:

CORV

U} Uj Vk,V)

The total potentlal energy functlonal T, has
stationary (extreme) values if the following

Euler-Lagrange differential equations are

obtained:
i EfL{EEﬁl Ejzl aile-(x)Uj(x) + Ssatisfied:
oF
+GE;-"=1 EJ"n=1bz'J'Uz'(x)Uj(x)+ oU;
/ , / oF
+ GE,-=1 Erzl cirUi(x)Vr(x) + a_V
-

m n /
*GY i Yoy U@V 0 +

4
dx

d

dx

oF

| =0
ol;
% -0
.

Using equations (13) and (14) on equation

(11) and noting that for thethin-walled closed

$OXf o X iV obtained

vEYp 1 Yo Sk VO V(@) -
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column under consideration, m=3,n=4, we
the governing equations of
equilibrium as:

3 3 /1 3 3
YEH Ej=1 aile' () _Eizl Ej=1 bijUi(x)



84 N.N. OSADEBE and J.C. EZEH

3 4 /
X1 Y= V@ = 0

they are chosen as follows:

@,(9) = Yi9r P,(9) = Zy, (Ps(éﬁa: wu(s)  (17)
The transverse strain fields U, (s)consist of
bending about the oy-axis, bending about the

E?zl Ele cz'rUi/(x) +22:1 24:1 (m},6z-axis, pure rotation about ox-axis and

7

/! 4 4

ghkr)Vk Y Y s @ =0
(16)

GENERALIZED STRAIN FIELDS AND

ELEMENTS OF COEFFICIENT

MATRICES:

Considering the nature of loading, the

longitudina strain fields ¢, (s) consist of

bending about oy-axis, bending about oz-axis

and warping in thelongitudinal direction and

distortion of the cross section, and they are
chosen asfollows:

/ / / /
yi(s) = (pl(s) = y(S)Q Yo (s) = ‘P2(S) = Z(s);

/ /

V3(s) = As)s V4l = @3¢5 = O
The elements of the coefficients of the
governing differential equations of
equilibrium were determined for the
respective cross, sections by first generating
and plotting the strain fields as shown in
figure 2.
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?1(s) Pi(s) and Py (sy Generated by flexure about o — z axis;

e
@asy Pas) and Py (s) Generated by flexure about o — y axis; of
P35y Pags) and Pags Generated by torsion about o0 — x axis; di
|

Yasy = h(s) Generated by pure rotation about the longitudinal o - x axis.
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agram multiplication on the strain field
diagrams, the elements of the coefficient
matrices were determined as follows:

a; =8, = [¢:(9) ¢;(9) (s)ds
a11 = [s0:(9) @, (9) t(s)ds = 7.333a’t

2= [s9,2(8) @, (9) t(s)ds = 13. 5a’t
g, = 3 = [s91(9) 92(9) t(s)ds=0
a3= a5 = [0,(5) ¢;(9) t(s)ds=0
B3 = A = [s92(9) @3 (9) t(s)ds =0

= [s@3(9) @5(9) t(s)ds = 0.3a’t

bij = b = [s9{(s) ¢ () t(s)ds
by = [@1(s) @ (S) t(s)ds = 4at
b, = by = [@1(S) @(S)t(s)ds=0
by =by =[S ¢! 39 t(s)ds=0
by, = [s93(5) 95(9) t(s)ds = Bat
b, = ba, = [05(S) @5(9) t(8)ds=0
by = [505(9) @'5(9) t(s)ds = 0.6a’
Cur =C; = [59{(9 U, () t(9)ds

1= Js91(9) U, (9) t(s)ds = 4at
Co = Cyy = [s@1(9) Y, (9) t(s)ds=0
Cis = Cqy = [@1(9) Ys(9) t(s)ds=0
Cu = [s91(5) W4 (9) t(s)ds =0
Coo = [ 05(S) Y, (9) t(s)ds = Bat
Cos = Cop = [ 95 (S) W3(9) t(s)ds =0
Cos = [ 05(S) Ys(9) t(s)ds=0

= [:95(5) W5 (9) t(s)ds = 0.6a
Cys = [5(S) W4 (9) t(5)ds = 0.6a°t
me =m, = [P, (S) Y, (s) t(s)ds
My, = [Py () W, (9) t(s)ds = 4at
my, = mﬂ = [0, () Y, (9) t(s)ds =0
Mg = [s0.(9) Ys(s) t(s)ds =0
ml m41 JsW1(8) W,(s) t(s)ds=0
f W2 () Y, (9) t(s)ds = Gat
mz = [ (3) W5(s) t(s)ds =0
mz m42 JsW2(3) W, (9) t(s)ds =0

= [sWs(9) W5 (9) t(s)ds = 15at

%4 = [sW3(9) W, (9) t(s)ds = 0.6a’t

My, = [sW,(9) U, (9) t(s)ds = 0.6at
he =h, = [P (9) ¥, (9)ds

hy = [y () Yy (s)ds= ™4 = 4a
h12 = h21 = jswl (S) qu (S)dS =0
his=hg = [, (5) Y3(s)ds=0

hy = hy = [0, (9 W, (9ds = 0.194a
hy, = [ W, () U, (s)ds = 6a

has = hay = [, (9) W5 (5)ds =0

hys =hy, = [, (5) W, (5)ds=0

has = [ W5 (9) Y, (9)ds = 15a°

s, = [Ws(8) Y, (s)ds = 0.6a°

hy, = [ W, (9) U, (s)ds = 0.68°

Mk(S)M (S)
Skr = Srk = f
My (S)M4 ®) . . 0768l
s44 = — f ~
But, I =13/12 for all the plates
L, 0768¢ 13 _ 00641
44 - a 12 a

DERIVATION OF BUCKLING
EQUATIONS IN TRANSVERSE
DISPLACEMENT QUANTITIESYV, (X):
Substituting thezerio coefficientsasobtained
above into the matrix form of the governing
equations of equilibrium (15&16) and
assuming the cross-section to be deformabl e,
we obtained:

/]
U1

a;i1 0 0 bll 0 0 ||U;

YO"220U2//—0b220 U2

0 0 a3 4| |0

Us
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"
11 0 0 0 /
"

-1 0 ¢ 0 0 =(

0 0 c33 c34|3

c17 0 o"Ul/_ k;; O 0 0]
0 6'22 0 / 0 k22 0 0
U~ |+
0 0 033 2 0 0 k33 k34
_ 0 0 034_ U3/ _ 0 0 k43 k44

000 o]"
000 0|l
Yooo oy 0
000«
i 44 _V4_

where, kll = (mll —%hll);

P
khrn =|my1-—=h ;
22 ( 1175 22)
Expanding equation (19), we obtained:

7 /
va Uy b1l —enn?y =0

|
o

7 /
vax Uy ~byplUz-cnV, =

/1 / /
Ya33 U3 -b33U3-c33 V3 -C34 V4 =0
Expanding equation (20), we obtai ned:

011U1/+k11V1// =0

/"
22 U2 +hpVy ( 19?

033 U3 + k33 V3 + k34 V4/_/ =0

/ /1 /1
34 U3 +k43 V3 + k44 V4 ~ Y544 V4 =0

V/é iminating U,(x) and its derivatives from

uations (21(a)) and (22(a)), we obtained:

V// j 2/
2 v
p *ap vy =0
/i
! -b11k11
/]
V4 here a%l = 11—
Yay1 k1

Eliminating U,(X) and its derivatives from
equations (21(b)) and (22(b)), we obtained:

v, 2 (20)
Vy +apVy =0

5 by ko
where, o2, - |22 0252
Yaxr kpp

Eliminating _(x) and its derivatives from
eguations (21(c)) and (22(c)), we obtained:

1/ /1

iv iv
(21(3))
where, 8, = YagKss; 0, = YagKa,; 01 = (DK —
Caa); @, = (D5Kay — C35Csy)

Eliminating U,(x) and (Bl vatives from
equations (21(c)) and (22(d)), we obtained:

I _ 0(21(0))

iv iv
93V3 +94V4 —(p3V4
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where, 8; = (Cykys — Caikay); 85 = (Caakyy —
CaKsz); @3 = YCy3Sus)

Hence as a result of interaction (coupling)
between rotation and distortion we have
obtained a pair of simultaneous ordinary
differential equations (ODE) in the form:

iv iv 1 /1

//:0

iv iv
93V3 +94V4 —(p3V4
Eliminating U,(X) and V,(X) and their
derivatives from equations (22(c)), (22(d))
and (21(c)), we obtained:

v v a?v) By =0

Where,

az = [C33 (C33 k44 - C34 k34) + C34 (C34 k33 - C33 k34)
- y2 a33 S44 k33 - b33 (k33 k44 - k234)] / ya33 (k33 k44
—K3)

2
(b33k33 ~ ¢33)544

a33(k33kg4 - k324)

When the thicknesses of the thin-walls are
very thin, it becomes possible for buckling to
occur without rotation. Thistypeof condition
isreferred to asbuckling by distortion. Under
pure distortional buckling, equation (22(c))
was eliminated and the V,(x) components in
eguations (21(c)) and (22(d)) became zero.
Hence,

/1 /
ya33U3 —b33U3 —034V4 =0

/ /1
C34U3 +k44V4 ~YS44V4 = 0

Eliminating U,(x) and its derivatives from
equations (27(a) & (b)), we obtained:

v 2/
V4 +9 V4 +)\4V4:0

Where,

2 2
62 _ |34 354 ~b33ky4
k
va3skaa oo

_ 33844
a33kg4

A
(25b)

RESULTSAND DISCUSSION:

This study has identified and completely
separated three instability behaviours
associated with axially compressed
single-cdll thi n-waﬁi?(-@ box columnswhenthe
cross-sections are deformable. The necessary
differential equations for stability anaysis
under the different buckling behaviours were
also derived and presented thus:

1. Flexural Behaviour:

v 2 _/
v 2 _/

2. Torsional-Distortional Behaviour:

iv iv 1 /1

93V3lv + 94V4w - (p3V4/_/ =0
(27(a))
3. Distortional Behaviour:

. 27(b))
iv /1 (
v, + o2V, + By = 0

v 2/
Vo +0°V, +AV4 =0
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The results show that each of the two
eguationsrepresenting theflexural behaviour
can easily be solved in closed-form for the
flexural critical buckling loads and for each
set of boundary conditions. The set of
simultaneous ordinary differential equations
representing interaction/coupling between
torsion and distortion can easily be solved
using Varbanov's trigonometrical serieswith
accelerated convergence (Ezeh [4]). Thetwo
equationsrepresenting distortional behaviour
can also be solved in closed-form for the
distortional buckling strength both at normal
thicknesses and under very thin wall
conditions.

NUMERICAL EXAMPLE
Using the distortional buckling mode as a
numerical example we have:

v 62, vy = 0

4
LetV,=¢€&>
= ‘{/ = n2enx V4w = n4enxand

Substituting into equation (28), we obtained:
n*e* + P e’e™ + \e*=0

= (n*+6?n*+N)e™=0 (29)

The characteristic or auxiliary equation is

therefore given by:
n*+6?n*+A=0

From equation (30), we obtained:

(30)

2[4
n _iJ —0% + /0" - 4n

2

2

2, oA
nz_ii\l9+\/9 M

Hence, the general solution of equation (28)
isgiven by:
V,=C, coshn,x+C,sinhn,x+
C,;sinn,x+ C, cosn,Xx (31)
C, C, C;, and C, are the constants of
integration which were evaluated from the
boundary conditions as shown in the
hinged-hinged example below.

Hinged - Hinged Column:
The boundary conditions for the hinged-
hinged columns are given by:

2

d°v,
V,=0;, — 2 -0

2
Applying the boundary conditions (32) to
eguation (31), we obtained the following
simultaneous homogeneous algebraic
eguations:

x=0,1)

... (33)
For anontrivial solution or nonzero values of
the constants, the determinant of the
coefficientsof C,, C,, C; and C, must vanish.
That is,

1 0 0 1
n2 0 0 2
1 )
and
coshnll sinhnll sinnzl cosnzl
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2
C3

C4

1 0 1
8
2
nl 0 0 _n2
coshnll sinhnll sinnzl cosnzl
nlzcoshnll nlzsinhnll —nzzsinnzl —nzzcosnzl L

2 2 2 2
nlcoshnll nlsinhnll —n2sinn21 —nzcosnzl
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.. (34)
Equation (34) is the stability matrix for
equation (28) for the hinged-hinged boundary
conditions.
Expanding equation (34), we obtained:

(n? + 3y sinhmyl sinmy = 0

Solving equation (35), we obtai ned:

2.2 4
a19 —X—al

Substituting the expressions for 8% and A into

=0

70

60 b2

Pcr(MN)

50

40 /
30 /
0 /

10 /

0 H—”/

0 0.005 0.01 0.015 0.02

Fig.1 Graph of Critical Load(Pcr) against t(m)
thickness of wall(t)

equation (36), we obtained;

(11='

2| 34~V a3344 b3zhkas _b33sgq 4
"1 va33kaq a33kg4
2
L L €34
¢ a?h44 (“%Ya33+b33)h44
(37)
But a,, = 0.3a°; by, = 0.6a%; c,, = 0.6a°; h,,
_ 0.064t%

=0.6a% = ;
44 ;

_ % o _ E
m,, = 0.6a°t; y G
Substituting these coefficients into equation
(37), and using, a = 0.08m; t = 0.0005m to
0.015m; L = 4.5m; E =210 x 10°MN/m? and
G =81 x 10°MN/m?, we obtained the critical
buckling loads for t 5)hi nged-hinged
boundary conditions and very thin-walls as
shown in figure 1.

CONCL USIGN:

This work has resulted in better
understanding and separation of distortional
mode from the other buckling modes. The
distortional equation for very thin walls will
help in determining limiting thicknesses to
avoid distortional failure. This study hasalso
revealed that assumption of
non-deformability for thin-walled box
columns can obscure areas of structura
weaknessfor such structuresespecially under
buckling conditions. It can be said that this
study hasgreatly smplified bucklinganalysis
and design of thin-walled closed columns on
the basisof Vlasov'stheory by deriving series
of equationsthat will afford necessary checks
of buckling strength for such structures.
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