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ABSTRACT 

Over the years network transmission speeds have improved greatly without a corresponding 

increase in the processing speed of the host processor. Traditionally, n etwork protocol 

processing is handled in the CPU of the host computer. However, with devices featuring 

advanced connectivity and Internet functionality, protocol processing has created a heavy 

workload on the general processing processors, with additional constraints by the slower I/O 

bus speed limits. Consequently, for a higher throughput and speedy delivery of information 

between hosts on the internet, there is the need to identify those performance -critical TCP/IP 

functions and accelerate them in order to match the transmission speeds with the protocol 

processing speeds. Based on profiling results, a micro -level function, namely checksum is 

observed to be a computational intensive function. In this paper, the checksum function is 

selected and implemented in an FPGA. The checksum calculation is implemented based on 16 -

bit one’s complement adders. In all, by minimizing the functional overhead, such as , 

instruction fetching and decoding,  bus speed constraints,  latency due to buffer/memory 

transfer; and providing flexibility by configuration possibilities, the high speed and cost 

advantage are made possible.  
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INTRODUCTION 

Advanced services such as multimedia 

delivery and voice over IP have invoked an 

explosive increase of the data transmitted on 

the Internet. Adequate network bandwidths 

are required to guarantee the high quality of 

transmissions. This has been solved by the 

wide deployment of optical fibers over the 

Internet, which provides sufficient bandwidth 

for transmission.  

The development speed of network 

transmission rates dramatically outpaces the 

development speed of the general-purpose 

processors and the I/O bus speeds. The 

network transmission speeds are reaching 10 

Gbps (OC-192), 40 Gbps (OC-768) and 

heading towards 80Gbps. Hence, the 

bottleneck of the network speed has shifted to 

the network processing, especially the data 

processing within TCP/IP domain and the 

relatively slower bus speeds. In Zhonghe [2], 

it is revealed that, we will need 100% 

efficiency from Pentium III, 1-GHz processor 

or 30% efficiency from a Pentium 4, 2.4 GHz 

processor to process the 1-Gbps TCP/IP 

protocol. A generally accepted rule of thumb 

is that 1 hertz of CPU processing is required 

to send or receive 1 bit/s of TCP/IP. For 

example 5 Gbit/s of network traffic requires 5 

GHz of CPU Processing. This implies that 2 

entire cores of a 2.5 GHz multi -core processor 

will be required to handle the TCP/IP 

processing associated with 5 Gbit/s of TCP/IP 

traffic. Since Ethernet (10Ge) is bidirectional 

it is possible to send and receive 10 Gbit/s 

(for an aggregate throughput of 20 Gbit/s). 

Using the 1 Hz/ bit rule this equates to 8 of 

2.5 GHz cores. Few if any current day end 

systems and servers have a requirement to 

move 10 Gbit/s in both directions [3].  

The performance of the TCP/IP 

processing functions also depends on memory 

(memory access times) and data volume. It 

would need lots of memory access to read 
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data when computing checksums, which leads 

to an efficiency bottleneck. Therefore, it is 

necessary to accelerate network processing 

capability and reduce the CPU load by adding 

extra hardware. 

 

Two challenges are observed:  

The first challenge, the “Need for Speed,” 

requires to design the time-critical TCP/IP 

processing function in FPGA, and to achieve 

the processing speed-up as much as possible.  

The second challenge, the “Need for 

Flexibility,” leads to the design of flexible 

functions in FPGA that can be updated 

whenever the protocol or standard changes or 

new features are introduced.  

 

NETWORK DATA PROCESSING 

Data must be processed at every layer it goes 

through while it is transmitted over the 

Internet. Different functions running on 

different layers takes charge of different kind 

of processing tasks. Generally, the TCP/IP 

functions can be divided into two parts  [1]: 

 Data plane, which refers to where 

network data passes through. Data plane 

functions, such as classification, table 

lookup, are performed over every packet 

passing through the system. Therefore, 

data plane has a large amount of data 

processing tasks. Since data are 

transmitted at high speeds, these 

processing tasks are also required to 

perform at high speeds. Most 

computational intensive operations are 

also performed on the data plane.  

 Control plane, which takes charge of 

control and management tasks that 

coordinates the functions between the 

data plane and control plane within the 

system, and with the outside systems. It 

updates the tables on the data plane, 

performs signaling, interface 

management, and other complex actions 

that cannot be executed on the data 

plane. 

 

Micro-Level Functions 

Since the performance-critical operations are 

located in the data plane and are required to 

perform at transmission speeds, this paper 

focuses mainly on the functions on the data 

plane and refers to them as micro-level 

functions. The followings are typical micro-

level functions: Encapsulation, Checksum,  

Data Parsing, Data Modification, Bitwise 

Comparison, Queuing/Scheduling, Cyclic 

Redundancy Checks, Fragmentation, Table 

Lookup and Classifications; see [1] for details 

of these micro-level functions. Furthermore, 

there are many network services running on 

the data plane which may consist of several 

micro-level functions. Some typical network 

services are: Address Resolution Protocol 

(ARP), Internet Protocol Security (IPSec), 

Firewall, and Network Address Translation 

(NAT) [1]. 

 

OBJECTIVE OF THE RESEARCH 

The objective of this paper is to design the 

TCP/IP function (in this case, checksum) in a 

way that it can meet the discussed challenges. 

Specifically, the paper will: 

 investigate the TCP/IP functions.  

 design the performance critical micro-

level function using FPGA. 

 perform simulation to gain insight into 

the performance potential of the design.  

 

LITERATURE REVIEW 

From review of relevant literatures, the 

checksum calculation is observed to be one of 

the most computing intensive and time-

critical functions that may impede the 

processing speeds of general purpose 

processors (GPPs). Checksum calculation is 

usually on the IP header, ICMP's entire 

message (including header and data), TCP and 

UDP's entire message. 

Kay et al [8] categorized the processing 

overheads into several operations, including 

checksum, data move, data structure, 

errorcheck, mbuf, opsys, protspec, and others. 

They showed that checksum calculation is the 

main processing overhead, and the overhead 

grows as the size of the message increases.  

In Tsai et al [10], a profile of the IPv4 

forwarding on the Intel IXP1200 network 

processor with the 64-byte packets is 

illustrated. The Header Validation occupies 
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the highest processing time. The header 

validation mainly performs the following 

operations: 

 Check version in the version field  

 Check the header length field 

 Calculate the header checksum 

In these three steps, the checksum calculation 

is the most time consuming operation.  

In the profiling of IPv4 packet 

forwarding by Kohler [17], the result shows 

that the checksum has the largest processing 

overheads. He achieved this using a click 

router and classified the IP forwarding 

functions into several elements such as : the 

CheckIPHeader which calculates the 

checksum, the LookupIPRoute which 

performs table lookup. The costs were 

measured by Pentium III cycle counters. The 

profiling result shows that the CheckIPHeader 

dramatically outranges over the other 

elements.  

In Duke [18] it was observed that at 

(MTU = 1500 bytes) and data rate of 

300Mb/s, copy and checksum functions take 

over 30% of the CPU processing time. Also at 

maximum transfer unit (MTU) of 8kb and 

data rate of 300Mb/s, the   copy and 

checksum functions constitute over 30% of 

the CPU utilization. While over (45%) of 

CPU utilization was observed for copy and 

checksum function at (MTU = 56kb) and data 

rate of 400mb/s. 

 

CHECKSUM CONCEPT AND 

CALCULATIONS 

Checksum are used to ensure the integrity of 

data portions for data transmission or storage. 

Due to transmission errors, the transmitter 

calculates a checksum of the data and 

transmits the data together with the 

checksum. The receiver calculates the 

checksum of the received data with the same 

algorithm as the transmitter. If the received 

and calculated checksum don’t match , a 

transmission error has occurred.  

Traditionally, the Internet has been using 

a 16-bit checksum. The sender calculates the 

checksum by following these steps [4]: 

1. The message is divided into 16-bit 

words. 

2. The value of the checksum word is set to 

zero (0). 

3. All words including the checksum are 

added using one’s complement addition.  

4. The sum is complemented and becomes 

the checksum. 

5. The checksum is sent with the data.  

The receiver uses the following steps for error 

detection: 

1. The message (including checksum) is 

divided into 16-bit words. 

2. All words are added using one’s 

complement addition. 

3. The sum is complemented and becomes 

the new checksum. 

4. If the value of checksum is 0, the 

message is accepted; otherwise it is 

rejected. 

 

Checksum Calculation for IP Packet 

Header 

The calculation of the checksum is a sequence 

of 16-bit one’s complement additions. Let’s 

take the checksum calculation of the IP packet 

header as an example. The IP packet header is 

depicted in Figure 2.1. Each row of the header 

contains 32 bits and is divided into two 16 -bit 

fields. To compute the checksum, the 

checksum field in the header is first set to all 

zeros. The 16-bit one's complement addition 

is performed over every half of the row, and 

the final result which is the complement of 

the final sum is put in the Header Checksum 

field [1, 5]. 

 

ANALYSIS AND DESIGN OF A TCP/IP 

CHECKSUM SYSTEM 

The checksum system is used to maintain a 

running sum of data sent or received over a 

communication line. Normally, the data is 

sent as a packet of data bytes containing the 

computed checksum from the sender. The 

system sums all new data presented to it. 

The architecture for the state machine for 

checksum calculation divides the machine 

into three parts: system, data subsystem, and 

control subsystem. The system connects the 

data and controller subsystems. The data 

subsystem maintains the values of data 

manipulated by the machine using registers to 
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hold the data value and multiplexers when 

more than one input to the register is possible. 

The controller computes the controls to the 

multiplexers and registers within the data 

subsystem. The architecture diagram is shown 

in Figure 2. The System has external inputs 

and outputs that connect to either of the two 

internal subsystems. The main purpose of the 

System is to connect the Data and Control 

subsystems [13]. 

 

 
 

Figure 1:  Checksum Calculation for IP Packet Header 

 

 

 
 

Figure 2:  Architecture of Proposed Checksum System 

 

 

 

... . . 

. 



DESIGNING TCP/IP CHECKSUM FUNCTION FOR ACCELERATION IN FPGA 

 
35 

To synchronize its operation with the outside 

world, the system is set to run, given a data 

byte, and notified that there is  newdata to 

sum. For instance, given that the data packet 

contained:  

03 06 04 02 

 

The system will receive the data input of 03, 

06, 04, 02 in hexadecimal. The sequence of 

external data and control given to the 

checksum system is shown in steps 1-8 of 

Table 1. When   Run = 0 and newdata = 0 the 

system is at its initialization state with the 

initial sum equals to zero. When Run = 1, the 

system is notified of the presence of a packet 

of data (four bytes in this case). On being 

presented with a data byte from the packet, 

newdata changes from 0 to 1, thus the first 

data byte is fetched and added to the 

initialized sum and subsequently other data 

bytes are fetched consecutively and 

accumulated. The computed sum accumulates 

as 0, 3, 9, 13, 15 (00, 03, 09, 0D, 0F in 

hexadecimal). The complement of the final 

computed sum is regarded as the checksum 

(F0). When newdata is low, computation is 

put on hold, and the value of the result 

remains constant within that period. The 

checksum system developed in this research 

must indicate when the checksum has been 

computed (it is done at run = 0 and newdata = 

0). Accordingly, step 9 begins a new data 

packet indicated by run changing from 0 back 

to 1. In actual use, the sender's packet would 

be recomputed to determine whether the data 

packet had been correctly received [13].  

 

Table 1 Typical Simulation Illustration Table  

 

 
Data run 

New 

data 

Additions   

Result 
done 

1. 03 0 0 00 1 

2. 03 1 0 00 0 

3. 03 1 1 03 0 

4. 06 1 1 09 0 

5. 04 1 1 0D 0 

6. 02 1 1 0F 0 

7. 02 1 0 0F 0 

8. 02 0 0 0F 1 

9. 07 1 0 0F 0 

10. 07 1 1 07 0 

METHODOLOGY 

The following steps are used to achieve the 

above stated objectives:  

I. Determining the inputs and outputs.  

II. Defining states and transition conditions 

in a state diagram. 

III. Defining the outputs of each state (the 

outputs include device outputs and state 

control outputs). 

IV. Determining computational device 

required. 

V. Diagram for data /control subsystems and 

connections. 

VI. VHDL codes for the control subsystem, data 

subsystem and the system, for compilation 

and simulation. 

 

Inputs and Outputs 

The diagram below (Figure 3) represents a 

black box with the required inputs and 

outputs. Here Data and computed sum 

(Result) are n-bit inputs and outputs, while 

run, newdata, and done are single-bit control 

signals.  

 
Figure 3: Checksum system with I/O ports 

  

States and Transitions 

Figure 4 illustrates first the high-level 

operations necessary (Figure 4a). These high-

level operations are decomposed to control 

outputs of multiplexers and registers (Figure 

4b).  

Registers: Since a value must be maintained 

through multiple states, it can be made a 

register (the alternative is to set the value in 

each state). That includes any internal values 

and outputs. For the system in this research, 

there is Sum, Result, and done that are 

maintained. Sum and Result are in n-bit 

registers, done in a single-bit register 

(flipflop) or be set in each state (the method 

actually used). In this design, only the n-bit 

values (Sum and Result) are formally treated 

as registers and named as rSum and rResult 

registers respectively. When to assign a value 
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to the rSum register is controlled by the 

rSumLoad signal from the control subsystem. 

If rSumLoad = 1, the register value changes 

on the clock edge. The same is true for 

rResult register, when rResultLoad = 1. The 

purpose of rSum register is to hold the 

accumulation sum, while the rResult register 

is to hold the Result after the sum is 

computed and run = 0 (sum'ing is stopped), 

since Sum = 0 when run = 0. 

Multiplexers: The need for a multiplexer is 

determined by whether a variable has multiple 

assignments. The checksum device has one 

variable Sum with two assignments (Sum=0, 

and Sum=Sum+Data). The multiplexer 

selects the input that the  rSum register will 

receive, when the control signal muxSum is 0 

the input of "00000000" is selected, when 1 

the input Sum+Data is selected. 

 

  

Figure 4(a): Moore State Diagram for 

Checksum Device- High-level 

 

 
 

Figure 4(b): Multiplexer/Register-level 

 

The Computational Device 

The checksum requires the operation of 

Sum+Data which can be implemented using 

the Carry lookahead adder . The 

implementation of the checksum function can 

be reduced to the implementation of a 16-bit 

one's complement adder. Furthermore, one's 

complement addition can be performed by a 

two's complement adder by propagating the 

carry-out signal to the carry-in. Therefore, the 

first target is to design a fast 16-bit two's 

complement adder. 

 

Data Subsystem  

Steps 2-4 of the methodology produces the 

data registers needed to hold state 

information, multiplexers to select between 

data sources, and computational operations on 

the data. A diagram of the devices and 

connections as shown in Figure 5 can help 

visualize data subsystem architecture. The 

Data subsystem receives three Control 

subsystem inputs and the  Data input, 

outputting the Result. The data subsystem 

component in VHDL would have an interface 

similar to [13]:  

 COMPONENT DataSubsystem 

PORT (clk : IN  STD_ LOGIC;         

MuxSum, rSumLoad, rResultLoad: IN STD_ 

LOGIC;  

Data: IN STD_LOGIC_VECTOR (7 

DOWNTO 0); 

Checksum: OUT STD_LOGIC_VECTOR (7 

DOWNTO 0)); 

        END COMPONENT; 

 

Control subsystem 

The control subsystem of Figure 6 consists of 

the implementation of the FSM corresponding 

to the state diagram. The state diagram is 

implemented directly in a high level VHDL 

representation. The VHDL control subsystem 

component has an interface similar to [13]  

COMPONENT ControlSubsystem  

PORT (clk, run, newdata: IN STD_ LOGIC;  

MuxSum, rSumLoad, rResultLoad, done: 

OUT STD_ LOGIC); 

        END COMPONENT; 
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Figure 5: View of Data subsystem details   

 

 
Figure 6: View of Data and Control 

subsystems 

 

The Checksum Computation System 

The design takes 64 bits per clock cycle. This 

is a modification of the control and data 

subsystems of Figures 5 and 6.  To achieve 

this, four adders are used to perform the 64-

bit calculations and accumulation of the 

addition results (see Figure 7). The first two 

adders are placed in parallel. Each has two 

16-bit inputs, thus making 32-bit word. Both 

adder inputs are combined to give a 64-bit 

word input. When data is applied at the inputs 

pins, calculation is effected by the two 

parallel adders (CLA1 and CLA2) and their 

respective addition results are sent to the 

input pins of the third adder (CLA3) for 

further additions. The addition result from the 

third adder is then forwarded to the fourth 

adder (CLA4) to perform accumulation. The 

result from the fourth adder is transferred 

through multiplexer1 to the result register’s 

input and from the register  the result is 

forwarded through multiplexer2 to an inverter 

which receives and complements the input 

value to produce the checksum output.  

The computer processor, on the 

prompting by the done signal from the 

system, fetches the Checksum value from the 

inverter output for placement in the checksum 

space of the TCP or IP header, if the host is 

the sender; or would compare the checksum 

value with the value (0000) to determine its 

validity, if the host is the receiver. However, 

if the checksum value is not the same as 

(0000), then the packet is discarded.  

 

IMPLEMENTATIONS AND RESULTS 

Quartus II software (9.1 web edition) is 

deployed for the compilation and timing 

simulation of the designed system.  

 

TIMING SIMULATION 

The designed checksum function is  used to 

maintain a running sum of data received or 

sent over a communication line. Normally, the 

data is sent or received as a packet of data 

bytes with the computed checksum. The 

checksum calculation in the IP header is used 

as an example. A typical IP packet header 

contains the data as shown in Figure 8.
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Figure 7: Modified Checksum System 

 

 

 
 

Figure 8: IP Packet in 64-bit words 

 

The IP header contains 20 bytes, and structured into five 32-bit word data.  Consequently, there 

are three 64-bit word inputs for the 64-bit circuit as shown in figure 9.0.  

 

 
 

Figure 9: 64-bit words of the IP header 
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The other half of the third 64-bit input data word is padded with zeros to make up for a complete 

word. The waveform for the timing simulation is shown in Figure 10. 

 

 
 

Figure 10: The waveform for the timing simulation 

 

 The waveform depicts the required 

behavior with the use of test vectors, such as 

the IP data, run, newdata, rsum, rResult 

and done. The run signal synchronizes it 

operations with the outside world. When it 

changes from low to high, it notifies the 

system that a new data packet is available, 

and the system initializes Sum to zero ( rSum 

= 0000), and starts a new addition. The 

newdata signal, when at low puts the system 

on a hold state and when high, notifies the 

system of the presence of a new data bytes or 

word from the data packet to add and 

accumulate. The final sum is held in rResult 

register and transferred to an inverter which 

complements it and produce the checksum 

value. The purpose of rResult register is to 

hold the current result of rSum register after 

the accumulation is ended when run = 0. The 

result is then inverted by an inverter and sent 

to the output as the checksum value. The 

system indicates with done when the 

checksum is computed . 

 In the waveform diagram, the Sum and 

Result values are treated as rSum and 

rResult registers respectively. Also, at times 

10ns and 150ns a new data packet begins, 

indicated by run changing from 0 to 1.  

Throughout the period of additions and 

accumulations of data, the checksum value 

remains as FFFF (complement of 0000), until 

after checksum’ing is concluded and stopped, 

before the actual checksum value is presented 

at the output. In order words, the system 

always initializes before the commencement 

of a new checksum’ing process. The 

accumulation uses the expression:  
 

  Sum = Sum + Data   (1) 
 

The (+) symbol here represents the summing 

functionality of the carry-lookahead adder 

CLA4, (Figure 7.0). 

 

Expression (1) is the same as: 
 

  rSum = rSum + Data   (2) 

Where  

Data = (InputA1 + InputA2) + ( InputB1 + 

InputB2)     (3) 

 

The (+) symbol in between the brackets here 

represents the summing functionality of the 

carry-lookahead adder CLA3, (Figure 7), and 

that within the brackets represent CLA1 and 

CLA2 adders respectively.  

 The system is first initialized to zero 

(Run = 0, rSum = 0000). At the rising edge of 

the clock pulse at 25ns (above newdata 

pulse) when (Run = 1), the first set of data is 

loaded into the inputs (inputA, inputA2, 

inputB1, inputB2) of adders (CLA1 and 
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CLA2). Addition of the data is effected and 

their outputs forwarded as inputs to CLA3 

adder to produce the value (6416). This 

becomes an input to adder CLA4. At the same 

time the initialized value in rSum register is  

clocked to the other input port of adder 

CLA4, where the accumulation of the values 

is effected to produce the sum (0000 + 6416 = 

6416), which is subsequently transferred to 

the output of rsum register at 37.522ns to 

replace the former value. The propagation 

delay due to the loadings through the input 

pins and additions of data through the adders, 

and the accumulation that produces the sum 

and eventual transfer to the rSum register 

output is (37.522 – 25.00 = 12.522ns). At 

other instances of the positive edge of the 

clock, (55ns and 85ns) the process of 

additions and accumulations are repeated on 

the next set of data within the data packet. 

When run go from high to low, computation is 

ended, and the system goes back to the 

initialization state, but the rResult register 

retains the final value (EDFF) of the 

concluded computation. The complement of 

this value gives the checksum value (1200). 

Stratix III, EP3SE50F484C2 is the chosen 

target FPGA device. The timing analyzer’s 

report contains the following information:  
 

Fmax -- 204.75 Mhz (performance for the slow 

1100mv 85c Stratix III model) 

Fmax -- 222.17 Mhz (performance for the slow 

1100mv Stratix III model) 

 

For the 1100mv 85c Stratix III model,  since 

64 bits are processed per clock cycle, the 

throughput is calculated as follows:  

Throughput = 64 bits * Fmax mhz = 64 * 

204.75 * 10
6 

  = 13.104 Gbps  

 

For the 1100mv Stratix III model, the 

throughput is: 

Throughput = 64 bits * Fmax mhz = 64 * 

222.17 * 10
6 

  = 14.218 Gbps  

 

The throughput is 13.104 Gbps and 14.218 

Gbps respectively, which satisfies the 

requirement for the design. For the fields that 

change in the course of transmissions, like the 

TTL of the IP hearder, the checksum 

calculation could be replaced by the  

checksum incremental update, which 

recognizes the changed fields in the data to be 

calculated, and perform checksum update 

using the following equation [1, 15]: 
 

HC` = ~ (~ HC + (- m) + m`)  

 = ~ (~ HC + ~m + m`)     (4) 

 

Where HC` is the new checksum, HC is the 

old checksum, m represents the old value of a 

16-bit field and m` represents the updated 

value of a 16-bit field. The (~) symbol 

denotes (complement of).  Consequently, the 

total number of additions is reduced. For 

example, the IP header has 20 bytes, if 

checksum calculation is performed over the 

whole IP header using the 64-bit machine, 5 

additions will be performed. However, since 

there are only two changed fields (TTL and 

Checksum), only 1 addition is needed. 

Consequently, the throughput of checksum 

calculation speed will triple. For instance, to 

compute the new checksum in the next hop, 

the following data and computations are 

required: 

HC (old checksum value) = 1200 (from Figure 

10) 

M (old TTL value)    = 4006 (from Figure 8) 

M` (new TTL value) = 3006 

Complement of HC   = EDFF 

Complement of M     = BFF9 

HC` (new checksum value) = ~ (EDFF + 

BFF9 + 3006 + 0000) 

= ~ (inputA1+inputA2+inputB1+inputB2) – 

using checksum device. 

= ~ (DDFF) = 2200    (5) 

 

Three clock pulses are required to compute 

the entire IP packet header in the former host, 

but only one is needed here, thus the 

computational speed of the checksum is 

tripled. 

 

CONCLUSIONS 

The processing functions in the TCP/IP stack 

are investigated and focus is on the data plane 

which requires processing at transmission 

speeds. Micro-level functions are reviewed, 

and network services built upon these micro-

level functions are identified. Based on 
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profiling results, the checksum function is 

selected as a performance-critical function 

and then implementation in an FPGA. The 

implementation details of the selected TCP/IP 

function is discussed - a 64-bit checksum 

system was designed, compiled and simulated 

successfully with throughputs of 13.104 Gbps 

and 14.218 Gbps.  

 The simulation result shows that the 

research objective is successfully achieved. 

Test results and performance confirms that 

the checksum function in FPGA is a viable 

option for offloading the checksum 

calculation from the GPPs at transmission 

speeds of the order of 10 Gbps and above. 

Consequently, this eliminates the latency of 

the read/write operations between the 

processor and memory, the latency due to the 

buffer/memory copy operations, and that due 

to I/O bus speeds limit. The system can also 

be used with the new IPv6 protocol.  
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