

31

DESIGNING TCP/IP CHECKSUM FUNCTION

FOR ACCELERATION IN FPGA

Etim B. Eyo and Thomas A. Nwodoh

EMAIL: etimeyo10@yahoo.com, nwodoh@digitechcorp.com

PH: +234-703-591-1154, +234-803-553-4359

Department of Electronic Engineering

University of Nigeria, Nsukka

ABSTRACT

Over the years network transmission speeds have improved greatly without a corresponding

increase in the processing speed of the host processor. Traditionally, n etwork protocol

processing is handled in the CPU of the host computer. However, with devices featuring

advanced connectivity and Internet functionality, protocol processing has created a heavy

workload on the general processing processors, with additional constraints by the slower I/O

bus speed limits. Consequently, for a higher throughput and speedy delivery of information

between hosts on the internet, there is the need to identify those performance -critical TCP/IP

functions and accelerate them in order to match the transmission speeds with the protocol

processing speeds. Based on profiling results, a micro -level function, namely checksum is

observed to be a computational intensive function. In this paper, the checksum function is

selected and implemented in an FPGA. The checksum calculation is implemented based on 16 -

bit one’s complement adders. In all, by minimizing the functional overhead, such as ,

instruction fetching and decoding, bus speed constraints, latency due to buffer/memory

transfer; and providing flexibility by configuration possibilities, the high speed and cost

advantage are made possible.

KEYWORDS: FPGA, TCP/IP, CPU, Checksum, VHDL, Timing simulation, Throughput.

INTRODUCTION

Advanced services such as multimedia

delivery and voice over IP have invoked an

explosive increase of the data transmitted on

the Internet. Adequate network bandwidths

are required to guarantee the high quality of

transmissions. This has been solved by the

wide deployment of optical fibers over the

Internet, which provides sufficient bandwidth

for transmission.

The development speed of network

transmission rates dramatically outpaces the

development speed of the general-purpose

processors and the I/O bus speeds. The

network transmission speeds are reaching 10

Gbps (OC-192), 40 Gbps (OC-768) and

heading towards 80Gbps. Hence, the

bottleneck of the network speed has shifted to

the network processing, especially the data

processing within TCP/IP domain and the

relatively slower bus speeds. In Zhonghe [2],

it is revealed that, we will need 100%

efficiency from Pentium III, 1-GHz processor

or 30% efficiency from a Pentium 4, 2.4 GHz

processor to process the 1-Gbps TCP/IP

protocol. A generally accepted rule of thumb

is that 1 hertz of CPU processing is required

to send or receive 1 bit/s of TCP/IP. For

example 5 Gbit/s of network traffic requires 5

GHz of CPU Processing. This implies that 2

entire cores of a 2.5 GHz multi -core processor

will be required to handle the TCP/IP

processing associated with 5 Gbit/s of TCP/IP

traffic. Since Ethernet (10Ge) is bidirectional

it is possible to send and receive 10 Gbit/s

(for an aggregate throughput of 20 Gbit/s).

Using the 1 Hz/ bit rule this equates to 8 of

2.5 GHz cores. Few if any current day end

systems and servers have a requirement to

move 10 Gbit/s in both directions [3].

The performance of the TCP/IP

processing functions also depends on memory

(memory access times) and data volume. It

would need lots of memory access to read

mailto:etimeyo10@yahoo.com
mailto:nwodoh@digitechcorp.com
http://en.wikipedia.org/wiki/Bit/s

 E.B. EYO & T.A. NWODOH

32

data when computing checksums, which leads

to an efficiency bottleneck. Therefore, it is

necessary to accelerate network processing

capability and reduce the CPU load by adding

extra hardware.

Two challenges are observed:

The first challenge, the “Need for Speed,”

requires to design the time-critical TCP/IP

processing function in FPGA, and to achieve

the processing speed-up as much as possible.

The second challenge, the “Need for

Flexibility,” leads to the design of flexible

functions in FPGA that can be updated

whenever the protocol or standard changes or

new features are introduced.

NETWORK DATA PROCESSING

Data must be processed at every layer it goes

through while it is transmitted over the

Internet. Different functions running on

different layers takes charge of different kind

of processing tasks. Generally, the TCP/IP

functions can be divided into two parts [1]:

 Data plane, which refers to where

network data passes through. Data plane

functions, such as classification, table

lookup, are performed over every packet

passing through the system. Therefore,

data plane has a large amount of data

processing tasks. Since data are

transmitted at high speeds, these

processing tasks are also required to

perform at high speeds. Most

computational intensive operations are

also performed on the data plane.

 Control plane, which takes charge of

control and management tasks that

coordinates the functions between the

data plane and control plane within the

system, and with the outside systems. It

updates the tables on the data plane,

performs signaling, interface

management, and other complex actions

that cannot be executed on the data

plane.

Micro-Level Functions

Since the performance-critical operations are

located in the data plane and are required to

perform at transmission speeds, this paper

focuses mainly on the functions on the data

plane and refers to them as micro-level

functions. The followings are typical micro-

level functions: Encapsulation, Checksum,

Data Parsing, Data Modification, Bitwise

Comparison, Queuing/Scheduling, Cyclic

Redundancy Checks, Fragmentation, Table

Lookup and Classifications; see [1] for details

of these micro-level functions. Furthermore,

there are many network services running on

the data plane which may consist of several

micro-level functions. Some typical network

services are: Address Resolution Protocol

(ARP), Internet Protocol Security (IPSec),

Firewall, and Network Address Translation

(NAT) [1].

OBJECTIVE OF THE RESEARCH

The objective of this paper is to design the

TCP/IP function (in this case, checksum) in a

way that it can meet the discussed challenges.

Specifically, the paper will:

 investigate the TCP/IP functions.

 design the performance critical micro-

level function using FPGA.

 perform simulation to gain insight into

the performance potential of the design.

LITERATURE REVIEW

From review of relevant literatures, the

checksum calculation is observed to be one of

the most computing intensive and time-

critical functions that may impede the

processing speeds of general purpose

processors (GPPs). Checksum calculation is

usually on the IP header, ICMP's entire

message (including header and data), TCP and

UDP's entire message.

Kay et al [8] categorized the processing

overheads into several operations, including

checksum, data move, data structure,

errorcheck, mbuf, opsys, protspec, and others.

They showed that checksum calculation is the

main processing overhead, and the overhead

grows as the size of the message increases.

In Tsai et al [10], a profile of the IPv4

forwarding on the Intel IXP1200 network

processor with the 64-byte packets is

illustrated. The Header Validation occupies

DESIGNING TCP/IP CHECKSUM FUNCTION FOR ACCELERATION IN FPGA

33

the highest processing time. The header

validation mainly performs the following

operations:

 Check version in the version field

 Check the header length field

 Calculate the header checksum

In these three steps, the checksum calculation

is the most time consuming operation.

In the profiling of IPv4 packet

forwarding by Kohler [17], the result shows

that the checksum has the largest processing

overheads. He achieved this using a click

router and classified the IP forwarding

functions into several elements such as : the

CheckIPHeader which calculates the

checksum, the LookupIPRoute which

performs table lookup. The costs were

measured by Pentium III cycle counters. The

profiling result shows that the CheckIPHeader

dramatically outranges over the other

elements.

In Duke [18] it was observed that at

(MTU = 1500 bytes) and data rate of

300Mb/s, copy and checksum functions take

over 30% of the CPU processing time. Also at

maximum transfer unit (MTU) of 8kb and

data rate of 300Mb/s, the copy and

checksum functions constitute over 30% of

the CPU utilization. While over (45%) of

CPU utilization was observed for copy and

checksum function at (MTU = 56kb) and data

rate of 400mb/s.

CHECKSUM CONCEPT AND

CALCULATIONS

Checksum are used to ensure the integrity of

data portions for data transmission or storage.

Due to transmission errors, the transmitter

calculates a checksum of the data and

transmits the data together with the

checksum. The receiver calculates the

checksum of the received data with the same

algorithm as the transmitter. If the received

and calculated checksum don’t match , a

transmission error has occurred.

Traditionally, the Internet has been using

a 16-bit checksum. The sender calculates the

checksum by following these steps [4]:

1. The message is divided into 16-bit

words.

2. The value of the checksum word is set to

zero (0).

3. All words including the checksum are

added using one’s complement addition.

4. The sum is complemented and becomes

the checksum.

5. The checksum is sent with the data.

The receiver uses the following steps for error

detection:

1. The message (including checksum) is

divided into 16-bit words.

2. All words are added using one’s

complement addition.

3. The sum is complemented and becomes

the new checksum.

4. If the value of checksum is 0, the

message is accepted; otherwise it is

rejected.

Checksum Calculation for IP Packet

Header

The calculation of the checksum is a sequence

of 16-bit one’s complement additions. Let’s

take the checksum calculation of the IP packet

header as an example. The IP packet header is

depicted in Figure 2.1. Each row of the header

contains 32 bits and is divided into two 16 -bit

fields. To compute the checksum, the

checksum field in the header is first set to all

zeros. The 16-bit one's complement addition

is performed over every half of the row, and

the final result which is the complement of

the final sum is put in the Header Checksum

field [1, 5].

ANALYSIS AND DESIGN OF A TCP/IP

CHECKSUM SYSTEM

The checksum system is used to maintain a

running sum of data sent or received over a

communication line. Normally, the data is

sent as a packet of data bytes containing the

computed checksum from the sender. The

system sums all new data presented to it.

The architecture for the state machine for

checksum calculation divides the machine

into three parts: system, data subsystem, and

control subsystem. The system connects the

data and controller subsystems. The data

subsystem maintains the values of data

manipulated by the machine using registers to

 E.B. EYO & T.A. NWODOH

34

hold the data value and multiplexers when

more than one input to the register is possible.

The controller computes the controls to the

multiplexers and registers within the data

subsystem. The architecture diagram is shown

in Figure 2. The System has external inputs

and outputs that connect to either of the two

internal subsystems. The main purpose of the

System is to connect the Data and Control

subsystems [13].

Figure 1: Checksum Calculation for IP Packet Header

Figure 2: Architecture of Proposed Checksum System

... . .

.

DESIGNING TCP/IP CHECKSUM FUNCTION FOR ACCELERATION IN FPGA

35

To synchronize its operation with the outside

world, the system is set to run, given a data

byte, and notified that there is newdata to

sum. For instance, given that the data packet

contained:

03 06 04 02

The system will receive the data input of 03,

06, 04, 02 in hexadecimal. The sequence of

external data and control given to the

checksum system is shown in steps 1-8 of

Table 1. When Run = 0 and newdata = 0 the

system is at its initialization state with the

initial sum equals to zero. When Run = 1, the

system is notified of the presence of a packet

of data (four bytes in this case). On being

presented with a data byte from the packet,

newdata changes from 0 to 1, thus the first

data byte is fetched and added to the

initialized sum and subsequently other data

bytes are fetched consecutively and

accumulated. The computed sum accumulates

as 0, 3, 9, 13, 15 (00, 03, 09, 0D, 0F in

hexadecimal). The complement of the final

computed sum is regarded as the checksum

(F0). When newdata is low, computation is

put on hold, and the value of the result

remains constant within that period. The

checksum system developed in this research

must indicate when the checksum has been

computed (it is done at run = 0 and newdata =

0). Accordingly, step 9 begins a new data

packet indicated by run changing from 0 back

to 1. In actual use, the sender's packet would

be recomputed to determine whether the data

packet had been correctly received [13].

Table 1 Typical Simulation Illustration Table

Data run

New

data

Additions

Result
done

1. 03 0 0 00 1

2. 03 1 0 00 0

3. 03 1 1 03 0

4. 06 1 1 09 0

5. 04 1 1 0D 0

6. 02 1 1 0F 0

7. 02 1 0 0F 0

8. 02 0 0 0F 1

9. 07 1 0 0F 0

10. 07 1 1 07 0

METHODOLOGY

The following steps are used to achieve the

above stated objectives:

I. Determining the inputs and outputs.

II. Defining states and transition conditions

in a state diagram.

III. Defining the outputs of each state (the

outputs include device outputs and state

control outputs).

IV. Determining computational device

required.

V. Diagram for data /control subsystems and

connections.

VI. VHDL codes for the control subsystem, data

subsystem and the system, for compilation

and simulation.

Inputs and Outputs

The diagram below (Figure 3) represents a

black box with the required inputs and

outputs. Here Data and computed sum

(Result) are n-bit inputs and outputs, while

run, newdata, and done are single-bit control

signals.

Figure 3: Checksum system with I/O ports

States and Transitions

Figure 4 illustrates first the high-level

operations necessary (Figure 4a). These high-

level operations are decomposed to control

outputs of multiplexers and registers (Figure

4b).

Registers: Since a value must be maintained

through multiple states, it can be made a

register (the alternative is to set the value in

each state). That includes any internal values

and outputs. For the system in this research,

there is Sum, Result, and done that are

maintained. Sum and Result are in n-bit

registers, done in a single-bit register

(flipflop) or be set in each state (the method

actually used). In this design, only the n-bit

values (Sum and Result) are formally treated

as registers and named as rSum and rResult

registers respectively. When to assign a value

 E.B. EYO & T.A. NWODOH

36

to the rSum register is controlled by the

rSumLoad signal from the control subsystem.

If rSumLoad = 1, the register value changes

on the clock edge. The same is true for

rResult register, when rResultLoad = 1. The

purpose of rSum register is to hold the

accumulation sum, while the rResult register

is to hold the Result after the sum is

computed and run = 0 (sum'ing is stopped),

since Sum = 0 when run = 0.

Multiplexers: The need for a multiplexer is

determined by whether a variable has multiple

assignments. The checksum device has one

variable Sum with two assignments (Sum=0,

and Sum=Sum+Data). The multiplexer

selects the input that the rSum register will

receive, when the control signal muxSum is 0

the input of "00000000" is selected, when 1

the input Sum+Data is selected.

Figure 4(a): Moore State Diagram for

Checksum Device- High-level

Figure 4(b): Multiplexer/Register-level

The Computational Device

The checksum requires the operation of

Sum+Data which can be implemented using

the Carry lookahead adder . The

implementation of the checksum function can

be reduced to the implementation of a 16-bit

one's complement adder. Furthermore, one's

complement addition can be performed by a

two's complement adder by propagating the

carry-out signal to the carry-in. Therefore, the

first target is to design a fast 16-bit two's

complement adder.

Data Subsystem

Steps 2-4 of the methodology produces the

data registers needed to hold state

information, multiplexers to select between

data sources, and computational operations on

the data. A diagram of the devices and

connections as shown in Figure 5 can help

visualize data subsystem architecture. The

Data subsystem receives three Control

subsystem inputs and the Data input,

outputting the Result. The data subsystem

component in VHDL would have an interface

similar to [13]:

 COMPONENT DataSubsystem

PORT (clk : IN STD_ LOGIC;

MuxSum, rSumLoad, rResultLoad: IN STD_

LOGIC;

Data: IN STD_LOGIC_VECTOR (7

DOWNTO 0);

Checksum: OUT STD_LOGIC_VECTOR (7

DOWNTO 0));

 END COMPONENT;

Control subsystem

The control subsystem of Figure 6 consists of

the implementation of the FSM corresponding

to the state diagram. The state diagram is

implemented directly in a high level VHDL

representation. The VHDL control subsystem

component has an interface similar to [13]

COMPONENT ControlSubsystem

PORT (clk, run, newdata: IN STD_ LOGIC;

MuxSum, rSumLoad, rResultLoad, done:

OUT STD_ LOGIC);

 END COMPONENT;

DESIGNING TCP/IP CHECKSUM FUNCTION FOR ACCELERATION IN FPGA

37

Figure 5: View of Data subsystem details

Figure 6: View of Data and Control

subsystems

The Checksum Computation System

The design takes 64 bits per clock cycle. This

is a modification of the control and data

subsystems of Figures 5 and 6. To achieve

this, four adders are used to perform the 64-

bit calculations and accumulation of the

addition results (see Figure 7). The first two

adders are placed in parallel. Each has two

16-bit inputs, thus making 32-bit word. Both

adder inputs are combined to give a 64-bit

word input. When data is applied at the inputs

pins, calculation is effected by the two

parallel adders (CLA1 and CLA2) and their

respective addition results are sent to the

input pins of the third adder (CLA3) for

further additions. The addition result from the

third adder is then forwarded to the fourth

adder (CLA4) to perform accumulation. The

result from the fourth adder is transferred

through multiplexer1 to the result register’s

input and from the register the result is

forwarded through multiplexer2 to an inverter

which receives and complements the input

value to produce the checksum output.

The computer processor, on the

prompting by the done signal from the

system, fetches the Checksum value from the

inverter output for placement in the checksum

space of the TCP or IP header, if the host is

the sender; or would compare the checksum

value with the value (0000) to determine its

validity, if the host is the receiver. However,

if the checksum value is not the same as

(0000), then the packet is discarded.

IMPLEMENTATIONS AND RESULTS

Quartus II software (9.1 web edition) is

deployed for the compilation and timing

simulation of the designed system.

TIMING SIMULATION

The designed checksum function is used to

maintain a running sum of data received or

sent over a communication line. Normally, the

data is sent or received as a packet of data

bytes with the computed checksum. The

checksum calculation in the IP header is used

as an example. A typical IP packet header

contains the data as shown in Figure 8.

 E.B. EYO & T.A. NWODOH

38

Figure 7: Modified Checksum System

Figure 8: IP Packet in 64-bit words

The IP header contains 20 bytes, and structured into five 32-bit word data. Consequently, there

are three 64-bit word inputs for the 64-bit circuit as shown in figure 9.0.

Figure 9: 64-bit words of the IP header

DESIGNING TCP/IP CHECKSUM FUNCTION FOR ACCELERATION IN FPGA

39

The other half of the third 64-bit input data word is padded with zeros to make up for a complete

word. The waveform for the timing simulation is shown in Figure 10.

Figure 10: The waveform for the timing simulation

 The waveform depicts the required

behavior with the use of test vectors, such as

the IP data, run, newdata, rsum, rResult

and done. The run signal synchronizes it

operations with the outside world. When it

changes from low to high, it notifies the

system that a new data packet is available,

and the system initializes Sum to zero (rSum

= 0000), and starts a new addition. The

newdata signal, when at low puts the system

on a hold state and when high, notifies the

system of the presence of a new data bytes or

word from the data packet to add and

accumulate. The final sum is held in rResult

register and transferred to an inverter which

complements it and produce the checksum

value. The purpose of rResult register is to

hold the current result of rSum register after

the accumulation is ended when run = 0. The

result is then inverted by an inverter and sent

to the output as the checksum value. The

system indicates with done when the

checksum is computed .

 In the waveform diagram, the Sum and

Result values are treated as rSum and

rResult registers respectively. Also, at times

10ns and 150ns a new data packet begins,

indicated by run changing from 0 to 1.

Throughout the period of additions and

accumulations of data, the checksum value

remains as FFFF (complement of 0000), until

after checksum’ing is concluded and stopped,

before the actual checksum value is presented

at the output. In order words, the system

always initializes before the commencement

of a new checksum’ing process. The

accumulation uses the expression:

 Sum = Sum + Data (1)

The (+) symbol here represents the summing

functionality of the carry-lookahead adder

CLA4, (Figure 7.0).

Expression (1) is the same as:

 rSum = rSum + Data (2)

Where

Data = (InputA1 + InputA2) + (InputB1 +

InputB2) (3)

The (+) symbol in between the brackets here

represents the summing functionality of the

carry-lookahead adder CLA3, (Figure 7), and

that within the brackets represent CLA1 and

CLA2 adders respectively.

 The system is first initialized to zero

(Run = 0, rSum = 0000). At the rising edge of

the clock pulse at 25ns (above newdata

pulse) when (Run = 1), the first set of data is

loaded into the inputs (inputA, inputA2,

inputB1, inputB2) of adders (CLA1 and

 E.B. EYO & T.A. NWODOH

40

CLA2). Addition of the data is effected and

their outputs forwarded as inputs to CLA3

adder to produce the value (6416). This

becomes an input to adder CLA4. At the same

time the initialized value in rSum register is

clocked to the other input port of adder

CLA4, where the accumulation of the values

is effected to produce the sum (0000 + 6416 =

6416), which is subsequently transferred to

the output of rsum register at 37.522ns to

replace the former value. The propagation

delay due to the loadings through the input

pins and additions of data through the adders,

and the accumulation that produces the sum

and eventual transfer to the rSum register

output is (37.522 – 25.00 = 12.522ns). At

other instances of the positive edge of the

clock, (55ns and 85ns) the process of

additions and accumulations are repeated on

the next set of data within the data packet.

When run go from high to low, computation is

ended, and the system goes back to the

initialization state, but the rResult register

retains the final value (EDFF) of the

concluded computation. The complement of

this value gives the checksum value (1200).

Stratix III, EP3SE50F484C2 is the chosen

target FPGA device. The timing analyzer’s

report contains the following information:

Fmax -- 204.75 Mhz (performance for the slow

1100mv 85c Stratix III model)

Fmax -- 222.17 Mhz (performance for the slow

1100mv Stratix III model)

For the 1100mv 85c Stratix III model, since

64 bits are processed per clock cycle, the

throughput is calculated as follows:

Throughput = 64 bits * Fmax mhz = 64 *

204.75 * 10
6

 = 13.104 Gbps

For the 1100mv Stratix III model, the

throughput is:

Throughput = 64 bits * Fmax mhz = 64 *

222.17 * 10
6

 = 14.218 Gbps

The throughput is 13.104 Gbps and 14.218

Gbps respectively, which satisfies the

requirement for the design. For the fields that

change in the course of transmissions, like the

TTL of the IP hearder, the checksum

calculation could be replaced by the

checksum incremental update, which

recognizes the changed fields in the data to be

calculated, and perform checksum update

using the following equation [1, 15]:

HC` = ~ (~ HC + (- m) + m`)

 = ~ (~ HC + ~m + m`) (4)

Where HC` is the new checksum, HC is the

old checksum, m represents the old value of a

16-bit field and m` represents the updated

value of a 16-bit field. The (~) symbol

denotes (complement of). Consequently, the

total number of additions is reduced. For

example, the IP header has 20 bytes, if

checksum calculation is performed over the

whole IP header using the 64-bit machine, 5

additions will be performed. However, since

there are only two changed fields (TTL and

Checksum), only 1 addition is needed.

Consequently, the throughput of checksum

calculation speed will triple. For instance, to

compute the new checksum in the next hop,

the following data and computations are

required:

HC (old checksum value) = 1200 (from Figure

10)

M (old TTL value) = 4006 (from Figure 8)

M` (new TTL value) = 3006

Complement of HC = EDFF

Complement of M = BFF9

HC` (new checksum value) = ~ (EDFF +

BFF9 + 3006 + 0000)

= ~ (inputA1+inputA2+inputB1+inputB2) –

using checksum device.

= ~ (DDFF) = 2200 (5)

Three clock pulses are required to compute

the entire IP packet header in the former host,

but only one is needed here, thus the

computational speed of the checksum is

tripled.

CONCLUSIONS

The processing functions in the TCP/IP stack

are investigated and focus is on the data plane

which requires processing at transmission

speeds. Micro-level functions are reviewed,

and network services built upon these micro-

level functions are identified. Based on

DESIGNING TCP/IP CHECKSUM FUNCTION FOR ACCELERATION IN FPGA

41

profiling results, the checksum function is

selected as a performance-critical function

and then implementation in an FPGA. The

implementation details of the selected TCP/IP

function is discussed - a 64-bit checksum

system was designed, compiled and simulated

successfully with throughputs of 13.104 Gbps

and 14.218 Gbps.

 The simulation result shows that the

research objective is successfully achieved.

Test results and performance confirms that

the checksum function in FPGA is a viable

option for offloading the checksum

calculation from the GPPs at transmission

speeds of the order of 10 Gbps and above.

Consequently, this eliminates the latency of

the read/write operations between the

processor and memory, the latency due to the

buffer/memory copy operations, and that due

to I/O bus speeds limit. The system can also

be used with the new IPv6 protocol.

REFERENCES

1. W. Lu, “Designing TCP/IP functions in

FPGAs”, M.Sc thesis, Delft University of

Technology, China, 2003. [online].

Available:http://ce.et.tudelft.nl [Accessed:

April 14, 2008].

2. Chen Zhonghe, “TCP/IP offload engine

(TOE) for an Soc system”, National Cheng

King University. [online]. Available:

http://www.altera.com/literature/de/3.3-

2005_Taiwan_3rd_chengkuregu-web.pdf

3. T. Henriksson, etal, “VLSI implementation

of internet checksum calculation for 10

gigabit Ethernet”, Linkopings University,

Linkoping. [online].Available:

http://www.tomhe.isy.liu.se. [Accessed:

April 4, 2009].

4. B. Forouzan, Data Communications and

Networking, 4
th

 ed. Singapore: McGraw-

Hill, 2007. [online]. Available:

http://www.mhhe.com/forouzan

5. Ack. William, “TCP/IP checksum

calculations”, [online]. Available:

http://www.codemiles.com/post524.html

[Accessed: March 3, 2009].

6. S. Brown and Z. Vranesic, Fundamentals of

Digital Logic with VHDL Design, 2
nd

 ed.

Toronto: McGraw-Hill, 2005.

7. EE201-Homework 4, “System – level

optimization of the embedded webserver”.

[online]. Available:

http://www.ee.ucla.edu/~schaum/ee201/

8. J. Kay and J. Pasquade, “Profiling and

reducing processing overheads in TCP/IP”,

University of California, San Diego.

[online]. Available:

http://www.jkay.cs.ucsd.edu. [Accessed:

March 3
rd

, 2009.]

9. Mel Tsai, etal, “A benchmarking

methodology for network processors”,

University of California, Berkeley. [online].

Available: mtsai@eecs.berkeley.edu

10. V. A. Pedroni and E. Kaufmann, “Digital

electronics and design with VHDL”, 2008.

[online]. Available:

http://www.ebyte.it/library/refs/Refs_EE_B

ooks.html

11. Prof. Grishman, “Lecture 9-carry

lookahead”, [online]. Available:

http://www.cs.nyu.edu/courses/fall08/v22.0

436-001/lecture9.html

12. Tim Pagden, “Carry look ahead blocks”,

DOULOS, 1996. [online]. Available:

http://www.doulos.com/knowhow/vhdl_desi

gners_guide/models/carry_look_ahead_bloc

ks/ [Accessed: Dec. 12, 2009]

13. J. F. Doyle, “Laboratory10 and

Homework10 Register Transfer Logic”,

[online]. Available:

http://homepages.ius.edu/JFDOYLE/c421/ht

ml/hw10.htm

14. Altera Corporation, Quartus II 9.1sp1 web

edition, August 2009.

15. T. Mallory and A. Kullberg, “Incremental

updating of the internet checksum”, BBN

Communications, January 1990. [online].

Available: http://tools.ietf.org/html/rfc1141

16. http://www.mbdowney.com/ee14713_

vhdl_code.html

17. Eddie Kohler, “The click modular router”,

Ph.D thesis, Massachusetts Institute of

Technology, 2001.

18. http://www.cs.duke.edu/ari/

publications/tcpgig.pdf

http://ce.et.tudelft.nl/
http://www/
http://www.tomhe.isy.liu.se/
http://www.mhhe.com/forouzan
http://www.codemiles.com/post524.html
http://www/
mailto:mtsai@eecs.berkeley.edu
http://www/
http://www.cs.nyu.edu/courses/fall08/v22.0436-001/lecture9.html
http://www.cs.nyu.edu/courses/fall08/v22.0436-001/lecture9.html
http://www.doulos.com/knowhow/vhdl_designers_guide/models/carry_look_ahead_blocks/
http://www.doulos.com/knowhow/vhdl_designers_guide/models/carry_look_ahead_blocks/
http://www.doulos.com/knowhow/vhdl_designers_guide/models/carry_look_ahead_blocks/
http://homepages.ius.edu/JFDOYLE/c421/html/hw10.htm
http://homepages.ius.edu/JFDOYLE/c421/html/hw10.htm
http://tools.ietf.org/html/rfc1141
http://www.mbdowney.com/ee14713_%20vhdl_code.html
http://www.mbdowney.com/ee14713_%20vhdl_code.html
http://www.cs.duke.edu/ari/

