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ABSTRACT 

Elasticity problems are formulated using displacement methods or stress methods. In this paper a displacement 

formulation of axisymmetric elasticity problem is presented. The formulation uses the Boussinesq– Papkovich – Neuber 

potential function. The problem is then solved by assuming Boussinesq – Papkovich - Neuber potential functions in the 

form of Bessel functions of order zero and of the first kind. The potential functions are then made to satisfy the governing 

field equations and the associated boundary conditions for the particular problem of a point load at the origin of the semi-

infinite linear elastic isotropic soil mass. The unknown parameters of the function are thus determined and used to find 

the stresses, strains and displacement fields in the loaded soil. The results obtained were identical with the results 

obtained by Boussinesq. 

 

Keywords: Axisymmetric elasticity problem, Boussinesq – Papkovich – Neuber potential function, Bessel functions of 

order zero and of the first kind, semi-infinite soil mass, displacement formulation, stress formulation. 

 

1. INTRODUCTION 

Axisymmetric elasticity problems of the half-space are 

elasticity problems where the loading is rotationally 

symmetric about an axis perpendicular to the surface. 

The cylindrical coordinate system is the natural 

coordinate system of choice for the description and 

analysis of axisymmetric problems. The problems are 

defined in terms of the radial, r circumferential,   and 

depth, z coordinate variables; and the corresponding 

displacements defined as ur, ,u  and uz (or, u, v, and w 

respectively) where ur, ,u  and uz are displacement 

components in the radial, circumferential and depth 

coordinate directions, respectively. The horizontal 

surface of the half-space is usually defined to lie on the 

r  plane and the vertical, z axis is directed into the half-

space. For axisymmetric problems, the stresses and 

displacements are independent of the circumferential 

coordinate,   and when there are no applied torques, 

the circumferential displacement components vanish. In 

the present study, the half-space is considered 

homogeneous, isotropic and linear elastic and the load is 

assumed to be applied statically. The deformations are 

assumed to be small; hence small deformation 

assumptions are applied.  The study of such an idealized 

elastic continuum is the subject matter of the classical 

theory of elasticity and in the case of vertical applied 

loads, was first studied by Boussinesq. This study is 

significant because from point load solutions, stresses 

and displacements due to any kind of distributed load 

applied to the surface of a soil mass considered 

homogeneous, isotropic, linear elastic half-space could be 

obtained by integration over the loaded region (area) 

with the point load solution considered as the Green 

function [1]. 

 

1.1 Bessel Functions and Axisymmetric Problems 

The Bessel’s equations are commonly encountered in 

partial differential equations in bodies having cylindrical 

symmetry. Bessel functions are also encountered in the 

solution of Laplace equations in cylindrical coordinates 

[2]. In advanced mathematics, Bessel functions denoted 

by Jn(x) are canonical solutions of Bessel’s differential 

equation: 

        (     )                         ( ) 

where, y(x) and    
  

  
    

   

   and n is called the 

order of the Bessel function; and can be a real or complex 

number. The most common case is for integer values of n. 

Solutions of the Laplace equation in cylindrical 

coordinates are Bessel functions of integer order, 

frequently called cylinder functions. A more general 

parametric representation of the Bessel equation is 
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obtained by replacing x with x  where   is a 

parameter, to obtain [2]: 

         (       )                      ( ) 

 

1.2 Research Aim and Objectives 

The research aim and objectives include: 

(i) To present the general governing partial differential 

equations for the axisymmetric elasticity problem of 

linearly elastic, homogenous, isotropic materials. 

(ii) To present a displacement potential function 

formulation using the Boussinesq – Papkovich - 

Neuber potential function for the axisymmetric 

problem 

(iii) To solve the axisymmetric elasticity problem of 

homogenous soil of semi-infinite extent loaded by a 

point load, P applied at the origin using Boussinesq – 

Papkovich - Neuber potential functions assumed in 

the form of Bessel functions. 

 

2. LITERATURE REVIEW 

Two formulations of elasticity problem are found in 

literature; namely displacement and stress 

formulations[3], [4]. In displacement formulation, 

displacements are the primary unknown variables, from 

which strain and stress fieldsare found by using the 

strain-displacement relations and the material 

constitutive laws. In stress formulation, stresses are the 

primary unknown variables and from the stress 

components, strain components are found from the 

stress-strain laws and then displacement components 

found from the kinematic relations. In stress 

formulationone will always make use of the compatibility 

conditions in the solutions process, in order to determine 

compatible displacement fields. 

 

2.1 Displacement Formulation of Three Dimensional(3D) 

Elasticity Problems 

Navier obtained the governing equations of three 

dimensional elasticity problems in terms of 

displacements by combining stress equations of 

equilibrium with the stress displacement equations as 

follows [5, 6, 7]: 
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2  is the Laplacian operator, u, v, w are the 

displacement components in the x, y, and z coordinate 

directions, respectively,  is the Poisson’s ratio  G is the 

shear modulus, and Fx, Fy, Fz are the x, y, and z 

components of the body force. 

Solutions of the Navier-Lame differential equations 

satisfying the boundary conditions would yield the 

displacement components, u, v, and w. Navier 

displacement formulation is a system of three 

coupledpartial differential equations in terms of three 

unknowndisplacement components;u, v and w. In the 

displacement formulation, the compatibility of 

deformations is guaranteed automatically since the 

displacements are determined such that boundary 

conditions and equilibrium conditions are identically 

satisfied. 

 

2.2 Stress Formulation 

The Beltrami-Mitchell equations for stress formulation 

ofthreedimensional elasticity problems are a system of 

six partial differential equations [4], [5] 
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where I1is the stress invariant 
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Where 

                                        (  ) 

            are the normal stresses, , ,xy yz  and zx 

are the shear stresses, Fx, Fy and Fz are the body force 

components in the x, y, and z directions per unit volume. 

Solutions of the Beltrami – Mitchell stress equations for 

given boundary conditions would yield six stress 

components                     and    . Analytical 

rigorous solutions for three dimensional elasticity 

problems are very difficult to obtain using 

mathematically exact methods and the number of three 

dimensional elasticity problems that have thus far been 

solved is very small. 

 

2.3 Airy Stress Potential Functions ɸ(r) 

Airy’s stress potential functions ɸ(r) are scalar fields 

defined in the structures’ domain that are solutions of 
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the biharmonic equation, that is the compatibility 

equation, and that gives stresses that satisfy the 

differential equations of equilibrium and hence provide 

compatible strains through Hooke’s stress – strain law. 

For any Airy stress function, ɸ(r) the Cartesian 

coordinate stresses (        and   )are defined by the 

following:[8] 
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whereV(x, y) is the body force potential 

Fx and Fyare body force components in the x and y 

coordinate directions 

                                         (  ) 

In plane strain, stress based governing equation is: 

  ɸ      ɸ   (
    

    
)                      (  ) 

In plane stress the stress based governing equation is: 

    ɸ    ɸ   (    )                      (  ) 

 A series of simple states of stress may be derived from 

the stress function expressed in polynomial form as 

follows: 

ɸ(  y)     
            

      
      

  

      
     

      
         

 (  ) 

where,ao, a1,a2 …a8 are  constants. Each term in this stress 

function satisfies the compatibility equation: 
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2 is the two dimensional Laplace operator, or the two 

dimensional Laplacian. 

Solutions to plane strain and plane stress problems of 

elasticity can be determined using Airy’s stress function 

methods. The Airy’s stress function method reduces the 

general formulation to a single partial differential 

equation in terms of a single unkno n  called the Airy’s 

stress function ɸ(x, y), which is a scalar field expressed in 

terms of the space coordinate variables x and y for 

problems on the x, y plane. The method is based on the 

general idea of developing a mathematical/analytical 

representation of the stress field that will automatically 

satisfy the differential equations of equilibrium. 

 

2.4 Airy’sStress Potential Function In Polar Coordinates 

The Airy’s stress potential functions ( , )r  in plane polar 

coordinates ,r  are given in terms of the 

stresses          and     as:[9, 10] 
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where ( , )r   is the Airy’s stress function in plane polar 

coordinates, ,r   are the radial and transverse 

coordinates of the plane polar coordinate system, 

, ,rr    are the normal stresses in the plane polar 

coordinate system, ,r  is the shear stress in the plane 

polar coordinate system. 

The Laplace and the biharmonic operators are 

respectively given as: 
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The field equations of elasticity theory are solved subject 

to the traction boundary conditions. 

 

2.5 Advantages of the Displacement Potential Function 

Method 

The Navier equations represent the displacement 

formulation of the field governing equations of three 

dimensional elasticity problems; and can be expressed 

for axisymmetric problems. The equations are unwieldly 

and complicated because they are three coupled partial 

differential equations in terms of the three unknown 

displacement components. The displacement 

formulation can be simplified by representing the 

displacement field using harmonic potential functions. 

This decouples the originally coupled Navier differential 

equations. There are many harmonic potential functions 

that can be used. The Papkovich – Neuber potential 

functions are harmonic functions that can be used to 

decouple the Navier differential equations. 
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3. THEORETICAL FRAMEWORK AND METHODOLOGY 

3.1 Governing Equations of Axisymmetric Elasticity 

Problems 

Axisymmetric elasticity problems are problems involving 

finding stresses and strains instructures, due to loads 

that exhibit rotational symmetry about the 

circumferential coordinate θ.If the two conditions of 

axially symmetric geometry and axisymmetric loading 

are satisfied, the response of the structure will be 

axisymmetric (or radially symmetric).Then,the 

response/behaviour of the structure– displacement, 

strains and stresses – are independent of the 

circumferential coordinate. 

The governing equationsare presented using the three 

dimensional cylindrical coordinate system (r, ,) where 

r is the radial coordinate which is the distance from the 

axis of symmetry, r> 0;   is the axial coordinate, directed 

along the axis of symmetry, and θ is the circumferential 

coordinate. The displacement field u(r, ) is  a function of 

the r and   coordinates, defined by the two components: 

 (   )   (  (   )   (   )  )              (  ) 

whereur(r, ) is the radial displacement, u (r, ) is the 

axial displacement, and u, the circumferential 

displacement is zero due to rotational symmetry. 

The strain tensor in cylindrical coordinates is 

represented by the symmetric matrix: 
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)                          (  ) 

Due to the axisymmetric deformations, r  and z  

vanish, and the strain tensor has only four distinct (non 

zero) components, thus: 
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The stress tensor in cylindrical coordinates is given by 

the symmetric matrix: 
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Due to rotational symmetry the stress components rθ 

and   θ vanish, and the stress tensor for axially 

symmetric elasticity problems simplify to: 
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The governing partial differential equation for 

axisymmetric elasticity problems are the strain-

displacement equations, the differential equations of 

equilibrium and the material constitutive laws, subject to 

the displacement and stress boundary conditions. 

 

3.1.1 Kinematic equations  

For small-displacement, linear elastic behaviour, the 

strain–displacement equations for axisymmetric 

elasticity problems are [11, 12]. 
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In matrix form, 
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3.1.2 Material constitutive law 

For linear hyperelastic materials, and neglecting thermal 

and prestress effects, the most general 

constitutive(stress-strain)equation for axisymmetric 

elasticity has the general form:[11][12] 
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where E11  … E44 are the coefficients of the stress-stain 

matrix, andwhere it is observed that the cross-coupling 

between the shear strain and the hoop stress must 

vanish in axisymmetry, leading to E34 = E43 = 0. 

For isotropic linear elastic materials ith Young’s 

Modulus  E and Poisson’s ratio , the stress-strain law 

simplifies for axisymmetrical problems to:[11][13] 

Ê      (48) 

where, Ê  is a matrixgiven by: 
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3.1.3 Differential Equations of Equilibrium 

The general three dimensional differential equations of 

staticequilibrium in cylindrical coordinates are the 

system of three equations:[12] [13] 
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WhereFr,F  andFθ are the components of the body force 

field in the radial, axial and circumferential coordinate 

directions, respectively. 

For axisymmetric cases, the differential equations of 

staticequilibrium simplify to: 
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The third equation of equilibrium is identically satisfied 

if Fθ = 0, because  θr =  θ   = 0, and  θ is independent of 

θ. If Fθ ≠    the problem of elasticity cannot be a ially 

symmetric. 

 

3.2 Displacement Potential Function Formulation of 

Axisymmetric Elasticity Problems 

For axially symmetric elasticity problems, the 

displacement field ucan be represented as Equation (34), 

where,ur(r   ) is the radial component of the 

displacement, u (r  ) is the   component of the 

displacement  and u(r  ) does not depend on the θ 

component. Thus: 

u (r  )                                   (  ) 

Axially symmetric elasticity problems can be defined 

using displacement potential functions. The Boussinesq – 

Papkovich – Neuber displacement potential functions 

 (r,z) and Ψ(r z) are defined in terms of the 

displacementsur(r,z) and u (r,z) as follows: 

u (r z)  
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and,  is the Poisson’s ratio. 

The Boussinesq – Papkovich – Neuber displacement 

functions  (r,  ) and Ψ(r  ) are harmonic functions  and 

thus satisfy the Laplace’s equationsin the cylindrical 

coordinate system.Thus 
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Where
2, the Laplacian operator in cylindrical 

coordinate system,is given by: 
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The normal strains,        are expressed in terms of 

the displacementpotential functions using the strain 

displacement relations for small displacement 

assumptions. 

Thus, 
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The volumetric strain,v is: 
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from Equations (59) and (60).The normal 

stresses              are found from the stress – strain 

laws.Thus, 
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4. RESULTS 

4.1 Application of Bessel Functions 

For the problem of point load P acting at the origin 

(0,0,0) of a semi-infinite soil presented in Figure 1, the 

boundary conditions are given from the theory of Dirac 

delta function representation in cylindrical coordinates 

system of point load, P and the relationship between the 

Dirac delta function ( )r and the Bessel function as: 



BESSEL FUNCTIONS FOR AXISYMMETRIC ELASTICITY PROBLEMS OF THE ELASTIC HALF SPACE SOIL: A POTENTIAL FUNCTION METHOD, C. C. Ike,et al 
 

Nigerian Journal of Technology  Vol. 36, No. 3, July 2017          778 

 
Figure 1: Point load P acting at the origin of a semi-infinite (half 

space) soil. 
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TheBoussinesq– Papkovich – Neuber 

displacementpotential functions ɸ and Ψ that satisfy the 

boundary conditions can be expressedusing Bessel 

functionsas: 
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Where,c1(k), c2(k) and c3(k) are all unknown functions of 

the parameter k. These three unknown functions will be 

determined from the boundary conditions and from 

Equations (60) and (92). 
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Thus, the integrals occurring in the expressions forthe 

Boussinesq – Papkovich – Neuber displacement potential 

functions ɸ and Ψ and their derivatives can be e pressed 

in terms of common mathematical functions. 
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By differentiation, 

  ɸ

   
  

 (   )

  
[
 

  
((    )    

   

  
)

  (    )
  

 (   )
]                    (   ) 

  ɸ

   
  

 (   )

  
(
 

  
[
   

  
   (   )])          (   ) 

  

  
  

  (   )

  

 

  
               (   ) 

Then by substitution, the normal strain componentsrr, 

 and     and the shear strain components rθ become: 
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The normal stress components  rr,   and     are: 
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The solution for the displacement fields and stress fields 

can be obtainedin terms of the threedimensional 

Cartesian coordinate system using the transformations: 
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Then, 
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5. DISCUSSION 

This work has successfully presented the governing 

partial differential equations for axisymmetric elasticity 

problems of linearly elastic, homogeneous, isotropic 

soils; represented the governing field equations using the 

Boussinesq – Papkovich – Neuberpotential function, and 

then solved the problem of homogenous soil of semi-

infinite extent loaded by a point load P applied at the 

origin using Boussinesq – Papkovich – Neuber functions 

assumed in the form of Bessel functions of order zero, 

and of the first kind. 

The field equations of axisymmetric elasticity for 

homogeneous, isotropic materials are given as Equations 

(42) (45), (48) and (53– 54).The Boussinesq – 

Papkovich – Neuber potential function formulation of the 

field equations are presented as Equations (62)- (69) 

and (75) – (84). The Boussinesq – Papkovich – Neuber 

potential functions were expressed using Bessel 

functions in the form of Equations(90) and (91) such 

that they contained unknown parameters c1(k), c2(k) 

and c3(k) which were determined using the boundary 

conditions.  The unknown parameters were determined 

as Equations (108), (109) and (110), yielding complete 

solutionsfor the potential functions.The displacement 

fields were determined as Equations (127) and (128) 

using cylindrical coordinates.The stress components 

were found as equations (136) – (139), using cylindrical 

coordinates. 

The displacement fields were determined using 

Cartesian coordinates as Equations (151)–(153) and the 

stress fields expressed in terms of Cartesian coordinates 

as Equations(154) – (157). 

The expressions found for the stress components and the 

displacement field were exactly identical with 

Bousinesq’s solutions [  ] and presented in most books 

on soil mechanics [15]. 

 

6. CONCLUSION 

The following conclusions are made from the study: 

(i) the axisymmetric elasticity problem of a half-space 

considered homogeneous, isotropic and linear elastic 

has been successfully formulated using the 

Boussinesq – Papkovich – Neuber displacement 

potential functions. 

(ii) the displacements and stresses were found by 

assuming the Boussinesq – Papkovich – Neuber 

displacement potential functions in terms of Bessel 

functions of order zero and of the first kind and 

applying the boundary conditions. 

(iii) the displacements and stresses , ,rr zz    

obtained for a point load acting at the origin of a 

semi-infinite elastic space were found to be exactly 

the same as those obtained by the use of stress 

potential function methods and presented in 

literature. 

(iv) the effectiveness and generality of the displacement 

potential function method for analysis of elastic half-

space problems is thus illustrated. 
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