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ABSTRACT 

This paper presents a makespan minimization of  -jobs  -machines re-entrant flow shop scheduling problem (RFSP) 

under fuzzy uncertainties using Genetic Algorithm. The RFSP objective is formulated as a mathematical programme 

constrained by number of jobs and resources availability with traditional scheduling policies of First Come First Serve 

(FCFS) and the First Buffer First Serve (FBFS). Jobs processing times were specified by fuzzy numbers and modelled 

using triangular membership function representations. The modified centroid defuzzification technique was used at 

different alpha-cuts to obtain fuzzy processing times (FPT) of jobs to explore the importance of uncertainty. The 

traditional GA schemes and operators were used together with roulette wheel algorithm without elitism in the selection 

process based on job fuzzy completion times. A test problem of five jobs with specified Job Processing and Transit Times 

between service centres, Job Start Times and Job Due times was posed. Results obtained using the deterministic and fuzzy 

processing times were compared for the two different scheduling policies, FCFS and FBFS. The deterministic optimal 

makespan for FBFS schedule was 61.2% in excess of the FCFS policy schedule.  The results also show that schedules with 

fuzzy uncertainty processing times provides shorter makespans than those for deterministic processing times and those 

under FCFS performing better than those under FBFS policy for early jobs while on the long run the FBFS policy performs 

better. The results underscore the need to take account of comprehensive fuzzy uncertainties in job processing times as a 

trade-off between time and costs influenced by production makespan. 
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1. INTRODUCTION 

The design of today’s manufacturing and assembly 

facilities, is classified according to the job processing 

order or route. The re-entrant flow-shop has recently 

attracted attention (Kumar and Singhal [10]). It is a 

system of m machines and n jobs for which some or all of 

the n jobs visit some or all of the m machines more than 

once. The principal directions of most Re-Entrant Flow 

Shop Problem (RFSP) solving are the optimization of 

makespan, average flow time, setup cost and idle time. 

To meet these objectives, dispatching rules such as 

Shortest Processing Time (SPT), First Come First Served 

(FCFS), First Buffer First Served (FBFS), Last Come First 

Served (LCFS), Earliest Due Date (EDD), Least Slack (LS), 

Last Buffer First Served (LBFS) and Critical Ratio (CR) 

are employed. A typical example of such a re-entrant 

production system is the production of the 

semiconductor. In semiconductor manufacturing, wafers 

traverse flow lines several times to produce the different 

layers composing each circuit. Much as optimal 

performance of re-entrant flow-shop schedule are 

desirable, scarcity of resources and the uncertain nature 

of data hamper the achievement of such feat. In 

particular, the uncertain nature of data greatly influences 

what the outcomes of the optimization model for the 

prediction of optimal decisions are. In solving RFSP, 

several methodical approaches had been exploited. 

Graves et al [6] proposed and developed a cyclic 

scheduling method that takes advantage of the flow 

character of re-entrant flow shops. In an obvious attempt 

to improve the same work, Wang and Choi [17] 

considered a chain re-entrant flow-shop that minimize 

makespan using branch and bound optimization 

algorithm and three approximation algorithms with 

worst-case performance guarantee. Chen et al [3] applied 

hybrid tabu search (HTS) to minimize the makespan of 

jobs in re-entrant flow-shops. Lee and Lin [11] proposed 

a simulated genetic algorithm model for scheduling re-

entrant flow shops, the work amply demonstrated the 

potential of soft computing techniques to RFSP and near 

optimal solution and in some cases an optimal solution 

can be obtained. Dugardin et al [4] worked on hybrid 
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multi-objective methods to solve re-entrant flow shops 

with two objectives. Like previous work, no attempt was 

made at scheduling under any form of uncertainty.  

Uncertainties are unpredictable events that disturbs the 

operations in a manufacturing system (Wang, et al. [18]). 

These are in two broad categories (Gholami and Zandieh 

[5]; Ouelhadj and Petrovic [13]) 

i. Resource-related uncertainty: machine breakdown, 

unavailability or failure of tools, loading limits, and 

defective materials (materials with the wrong 

specifications), etc. 

ii. Job-related uncertainty: job cancellation, due-date 

changes, early or late arrival of jobs, changes in job 

priority, and changes in job processing time, etc. 

There are a number of uncertainties inherent in 

measurement and specification of parameters and 

variables in shop scheduling. These include uncertainties 

in processing times, set-up time, due date and costs. They 

can be due to incomplete knowledge or uncertain 

environment. Generally, uncertain data can be expressed 

by probabilistic functions or fuzzy sets. Fuzzy sets 

provide an appropriate tool for handling imprecise 

information (Wang, et al [18]). 

Hapke and Slowinski [7] noted that fuzzy sets and logic 

can be used to tackle uncertainties inherent in actual 

flow shop scheduling problems. Tsujimura, et al [16] 

showed that fuzzy set theory can be useful in modeling 

and solving flow shop scheduling problems with 

uncertain processing times. In their work, the 

satisfaction degrees for job completion times are 

described using fuzzy sets, and the objective is to obtain 

a job sequence whose completion time has maximum 

degree of satisfaction. Ishibuchi, et al [9] used triangular, 

trapezoidal and bell-shaped membership functions to 

describe jobs data. Chanas and Kasperski [2] minimized 

lateness in a single machine scheduling problem with 

fuzzy processing times and fuzzy due dates. Puente, et al 

[15] presented a job shop in which uncertain duration 

was modeled using triangular fuzzy numbers and solved 

by a fast local search. Yao and Lin [19] reported that 

fuzzy flow-shop model is an extension of the crisp flow-

shop problem. RFPS under uncertainties is an emerging 

research area and methodologies for scheduling under 

uncertainty are aimed at producing feasible, robust and 

optimal schedules. Li and Ierapetritou [12] and Huang 

and Fujimira [8] provide an effective fuzzy based multi-

criteria genetic algorithm to solve re-entrant flow shop 

scheduling with the objective of minimizing the total 

turnaround time. Applying fuzzy set theory to scheduling 

optimization has primarily focused on use of meta-

heuristic techniques to obtain near-optimal solutions. 

This paper in consonance investigates the effects of 

uncertain processing times described by triangular fuzzy 

sets for the fuzzy processing times in RFSP.  

 

2. THE RE-ENTRANT FLOWSHOP PROBLEM DESCRIPTION 

A typical configuration of a RFSP is illustrated in Figure 

1. It consists of buffers                used to hold 

jobs,              in queue for processing at different 

service centres              which have processing 

times    representing regimes of jobs through buffers 

            

The layout consists of an open re-entrant line with 

service centers    and finite capacity storage buffers   . 

Once a job part    enters the line through buffer   , it is 

processed by the machines in the corresponding service 

center. It follows the process through buffer    and 

through the re-entrant lines to next buffer. The buffer 

through which a job enters the service center 

distinguishes the operation to be carried out and the 

processing time that is allocated to that operation. The 

sequence of operation for each job is                      . 

The objective is to obtain a job sequence that minimizes 

makespan. In the ensuing Mathematical model 

developed, the transit time between the service centre 

housing buffer   and the next is       ; the due date for 

jobs is represented as                ; the job 

completion times for individual jobs are                  

;      is the maximum completion time for a set of jobs 

while      represents the start time of job  , at service 

centre  , through buffer  . 

 

 
Figure 1: A Typical Reentrant Flowshop Generalized 

Configuration 
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2.1 Scheduling Policies at Service Centres 

The choice of jobs to process in each service centers are 

often dependent on scheduling policies. The following 

scheduling policies were considered in the modeling 

process. 

 

2.1.1 First Buffer First Served (FBFS) 

Jobs are processed in the sequence in which they entered 

the buffers according to the given buffer ranking. An idle 

machine at processing centre i, with    buffers processes 

the first job in buffer  , where                the set 

of buffers in the system and          the set of buffers 

attached to processing centre i. Where   ,            

contain jobs to process, the job at the buffer    which 

comes ahead of buffer    in the serial ranking of the 

system buffers,                                is processed 

first ahead of the one at   . 

 

2.1.2 First Come First Served (FCFS) 

Jobs are processed in the sequence in which they entered 

the shop. An idle machine at processing centre  , 

processes the waiting job that arrived the earliest, 

regardless of which buffer            it is in. 

 

2.2 The Mathematical Model 

The objective herein is to obtain a job sequence that 

minimizes makespan and gives the start times of 

individual jobs at the service centers based on the 

following assumptions: 

i. The system under consideration is an open re-

entrant line. 

ii. The machines in each service center are identical. 

iii. The machines can process only one part at a time. 

iv. Any two consecutive operations of a job must be 

processed on different machines. 

v. Every job may visit certain service centers more than 

once. 

vi. All jobs are ready for processing at time zero at 

which the machines in the service centers are idle 

and immediately available for work. 

vii. Preemptive scheduling: no operation may be 

interrupted when it has already been started. 

viii. Once an operation is started, it must be completed 

before another one can be started on that machine.  

ix. Machines never break down and are available 

throughout the scheduling period. 

x. Unlimited storage or buffer capacities in between 

successive machines (no blocking). 

xi. A job has to be processed at each service center on 

only one of the machines (no parallel machines).  

The RFSP proposed in this paper was modelled as     

integer linear programming using pre-defined 

parameters and variable representations. Using    to 

represent the processing time required for a job at the 

stage for which buffer   is attached to a service centre 

and     , the scheduled start time of job  , at service 

centre  , to which a buffer   is attached, the Mathematical 

Programming model is: 

          ∑∑ ∑         

 

   

 

   

 

   

                                        

Subject to: 

                                                                                       

                                                                 

                                                      

 

                                                       

                            (         )                                     

  {
               
                          

                      

 

2.3 Problem Constraints  

Constraint (1) set stipulates that jobs are ready for 

processing i.e. start time for the first job at the first 

service center through the first buffer. Constraint set (2) 

ensures that the operation on job,  , through a buffer,  , 

in a service center,  , is completed before next operation 

on the job starts in the succeeding service center,    , 

through buffer    . Constraint set (3) stipulates jobs,  , 

are scheduled sequentially in a particular service center, 

 , according to the order in which they come into the 

system irrespective of the buffer they arrive to. Set of 

Constraints (4) restricts the model to schedule jobs 

according to the FBFS buffer preference. 

Constraint sets (1), (2) and (3) are used for the First 

Come First Served (FCFS) scheduling policy, while sets 

(1), (2), (4) and the binary variable   in Constraint set 

(5) are used for the First Buffer First Served (FBFS) 

scheduling policy.  

With respect to the incorporation of fuzzy uncertainty in 

processing times, the various processing times,      for 

processing at service centre  , of job  , through buffer  , 

are simply changed to (    ) 
 representing the fuzzy 

processing time at service centre  , of job  , through 

buffer  , at an alpha-cut of  ,       . 

 

3. DERIVATION OF FUZZY INPUT MODEL 

In other to capture uncertainties of jobs processing time, 

fuzzy set principle was utilized and job processing time 

 ̅  are modelled by triangular fuzzy number (TFN). The 

fuzzy parameters are specified by the triplet         as 

depicted in Figure 2. The membership value of the   is 

denoted by     ,    . The fuzzy parameters 

          obtained at a membership grade of           

is called the alpha-cut of the set, modified centroid de-

fuzzification technique in [14] was used at different 

alpha-cut ranging from 0 to 1 at intervals of 0.1 to derive 

the fuzzy processing time  ̅  as illustrated in Eqn. 6. 
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Figure 2: Triangular Membership Function of Fuzzy 

Numbers 
 

 ̅   [                  
   ]                                    

Here   ,    and    are lower bound, mean membership 

value or a modal point and upper bound respectively of 

the relevant processing times [1]. A principal objective of 

RFSP is to determine the optimum schedule, as a result in 

this study, the feasible schedules under fuzzy 

uncertainties are also obtained and compared so as to 

identify optimal schedule. 

 

4. TEST PROBLEM, SOLUTION METHODOLOGY, RESULTS 

AND ANALYSIS 

4.1 The Test Problem 

The test problem consists of 3 Service stations and 5 

buffers as depicted in Figure 3. A test problem was 

constituted to validate the developed model whose 

generalized form was enunciated on in the last section. 

The test problem has 5 buffers (K = 5), three service 

centres (I = 3) and five jobs available for processing (J = 

5). Tables 1, 2 and 3 below specify the Job Processing 

and Transit Times, Job Start Times and Job Due times 

respectively. 

 
 

Figure 3: Configuration of the Test Problem for RFS 
Model 

 

Table 1: Job Processing (Deterministic and Fuzzy) and Transit Times 

Job Processing Times (        ) in hours Job Transit Times (       ) in hours  

   Deterministic Fuzzy        Value 
   2 (1.05, 2, 3.64)      0 
   3 (1.57, 3, 4.22)      0.1 
   2 (1.89, 2, 3.13)      0.4 
   0.5 (0.08, 0.5, 2.75)      0.4 
   0.8 (0.24, 0.8, 1.9)      0.1 

 

 

Table 2: Job Start Times (hours) 

Known Start Times (hours) 
Unknown Start Times (Decision Variables),      

Job No, j      Value 

1      0                     
2      8                     
3      12                     
4      15                     
5      19                     

 

 

Table 3: Job Due Times (hours) 

Job number j 1 2 3 4 

Due time (hours) 20 23 19 24 
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4.2 Model Solution Methodology 

The re-entrant flow-shop problem was solved using 

generic Genetic Algorithm (GA) as described in 

Algorithm 1 below.  

 

 
Algorithm 1: Generic Genetic algorithm. 

 

4.2.1 The Genetic Algorithm Parameters 

Genetic Algorithm chromosomes are constituted as byte-

string lengths for each     , of service station i        , 

job j                  , buffer k                  , of the 20 

decision variables denoting the scheduled starting times 

of jobs (Table 2). Thus each chromosome has a length of 

100 bytes. 

A constant population size of 200 chromosomes was 

adopted with a 2-point crossover, crossover-probability 

of 0.8 and byte-wise mutation probability of 0.2. 

Selection was by roulette wheel mechanism without 

elitism.    

 

4.2.2 The Fitness Function 

The fitness function was constructed in line with the 

objective of the problem to minimize the makespan of 

jobs schedule. Thus, for each chromosome the fitness is 

evaluated as the reciprocal of the sum of the start time 

and processing times        over all jobs, service 

stations and buffers, so that the minimum makespan can 

be returned as optimum subject to the constraint for any 

particular scheduling policy. 

 

4.2.3 Termination Criterion 

The genetic algorithm execution was terminated when 

either the upper limit of generations (200 generations in 

this respect) or the maximum number of individual 

chromosomes (the population size) converge on a 

minimum fitness value whichever came first. The 

individual chromosome  with  the  lowest  value  of  the 

fitness  function  represents  the  solution  returned  by  

this  algorithm.  This individual represents the 

production schedule with minimum makespan. 

 

4.2.4 Execution of the Algorithm 

The test problem was run with MATLAB optimization 

toolbox. All the toolbox functions are MATLAB M-files 

made up of MATLAB statements that implement GA. The 

hardware used for running the M-file programme is an 

All-In-One Intel Pentium CPU G2020 @ 2.90 GHz with 

4.0GB Memory. 

 

4.3 Results and Analysis 

4.3.1 Deterministic Model Results 

The performance of running the test problem using FCFS 

and FBFS policies with deterministic processing times 

are presented in Figure 5. Due to buffer preferences, the 

FBFS policy shows earlier jobs waiting for latter jobs that 

are to be processed in a preferred buffer as depicted in 

the Gantt charts illustrated in Figures 6 and 7.  

From the Gantt chart in Figures 6 and 7, more time is 

required to process same jobs with the FCFS policy than 

with FBFS policy, even though the FCFS policy out 

performs FBFS policy in terms of makespan. This is 

buttressed by the results depicted in Figures 8 and 9. 

Figure 8 shows that for some specific jobs (particularly 

jobs 4 and 5), FBFS performed better than FCFS. The 

superiority of FCFS in this instance is only for the first 2 

jobs to come into the production floor (jobs 1 and 2) for 

which the makespan differences between the two 

policies are more pronounced in favour of FCFS. The two 

policies appear to be at par in policy performance for Job 

3. Figure 9 shows that the optimal makespan returned 

for the FCFS (25.299 hours) is 61.2% in excess of the 

optimal makespan for the FBFS policy (15.694 hours). 

However, it is obvious from Figure 8 that the FCFS was 

only superior to FBFS in Total optimal makespan over all 

jobs.  

 

 

            .      .      .       

 

 

 

 

 

Figure 4: Representation of Solution Strings in Chromosomes 

{ 

Generate initial population randomly 

Calculate the fitness value of chromosomes 

While termination condition not satisfied 

{ 

Process crossover and mutation at chromosomes 

Calculate the fitness value of chromosomes 

Select the offspring to next generation 

} 

} 

.    .    . 

𝒕𝟐𝟏𝟐 𝒕𝟐𝟐𝟐 𝒕𝟑𝟓𝟓 .    .    . 
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Figure 5: Deterministic Scheduled Start Times for FBFS 

and FCFS Scheduling Policies 

 
Figure 6: The Deterministic Schedule for FCFS Policy 

 
Figure 7: The Deterministic Schedule for FBFS Policy 

 
Figure 8: Optimal Makespan for the Jobs in the 

Deterministic Condition 

 
Figure 9:  Maximum Optimal Job Makespan for the 

Deterministic Schedule 

 
Figure 10: Scheduled Start Time for the FCFS Policy at 

Different Levels-a  
 

The import  of this deductions and the trend is that while 

FCFS will prove a better policy for early jobs, as the jobs 

grow in number the FBFS policy will eventually prove 

superior at the expense of meeting due dates which FCFS 

ensures better. 

 

4.3.2 Fuzzy Model Results 

The fuzzy schemes support analysis at different degrees 

of fuzziness. This gives different sequences as presented 

in Figures 10, 11, 12 and 13. Figure 10 shows the 

distribution of starting times of each jobs at different 

buffer/service station over varying degree of fuzzy 

level-a  of processing times. 

Figure 10 shows short ridge heights of start times, 

rapidly growing ridge height over time and increasing 

dispersion of start times between different alpha-levels 

from buffer to buffer. This is an indication of early start 

times which will grow into delayed start times as jobs 

increase on the production floor. This is a reflection of 

the fact that this scheduling policy, even though an 

improvement on the deterministic version will result in 

the delay of later jobs as all jobs have to take to the FCFS 
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order regardless of when the jobs have been completed 

at previous service centres.  

Figure 11 depicts the corresponding variation of 

makespan with growing alpha-levels for the FCFS start 

time distribution discussed above. Figure 11 shows 

decreasing makespan for the FCFS policy as alpha grows 

from 0.1 to 0.9. This shows a positive influence of FCFS as 

fuzzy (alpha-cut) certainty grows. By implication 

uncertainty can deteriorate makespan.  

Figure 12 shows the distribution and variation of start 

times for the different jobs under FBFS policy. Unlike the 

counterpart distribution under the FCFS policy, Figure 

12 shows taller ridge heights of start times for early jobs 

with gentle ridge height increase over time and fairly 

even dispersions of start times between different alpha-

levels from buffer to buffer. This is an indication that 

early job start times under FBFS policy may have high 

start times but that the policy evens out delays in the 

start times in later jobs which will culminate into them 

starting earlier than if FCFS policy has been used. This 

accounts for the lower terminal start time (250 hours) 

for FBFS compared to 300 hours for FCFS at alpha level 

of 0.9. This is a reflection of the fact that the FBFS policy 

will perform better than the FCFS policy and result in 

shorter makespans on the long run.  

For both FCFS and FBFS policies, the schedules tend to 

the deterministic case while the optimal makespans 

decrease with increase in alpha-level. This underscores 

the importance of critical assessment of the level of 

uncertainty involved in processing times at different 

production floor service units so that informed 

scheduling decisions can be made at any time and for any 

job combinations. 

Table 4 presents value comparisons of the Optimal 

Makespan over all jobs at different alpha-levels of fuzzy 

processing times under the two policies. From Table 4, it 

is obvious that variations in Optimal Makespan under the 

FBFS is fairly constant and thus not as well pronounced 

as in the case of FCFS. This may tilt the table in favour of 

the former policy especially where processing time 

uncertainties are not known or evaluated at expense of 

longer makespan which literarily translates to greater 

production costs.    

Statistical test on the two streams of policy makespan 

results shows a high correlation of 0.997 in trend 

between the streams of values, attesting to similarity in 

trend (not in values) of the two. A one-factor Analysis of 

Variance (ANOVA) test conducted on the two, on the 

other hand, at 95% confidence level (      ) returned 

an F-value of 2784.753 (and a p-value of             ) 

compared to F-Critical of 4.4940 showing that there is a 

high statistical significance between the difference of the 

means of the two streams of values. The FCFS policy thus 

offer a more robust scheduling policy which can result in 

shorter makespans and by implication much lower 

production costs especially if good estimation of level of 

fuzzy uncertainty are handy for scheduling. However, as 

the number of jobs grows the FBFS policy, going by the 

analysis above will outperform the FCFS from some 

point.  

In summary, a robust and cost-effective scheduling 

policy for any instance will be a trade-off between level 

of uncertainty and makespan. The choice of the 

level-a will be then be determined by what is 

considered as optimality for the scheduler while 

considering the job start times and the makespan for 

each job. 

 

 
Figure 11: Makespans for the FCFS Policy at Different   - Levels 

 
Figure 12: Scheduled Start Times for the FBFS Policy at Different 

  - Levels 

 

Table 4: Optimal Makespans at Different level-a  of Fuzzy Processing Times for FCFS and FBFS 

  Fuzzy α- Level  
POLICY 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
FCFS 17.326 17.141 16.961 16.781 16.595 16.417 16.239 16.058 15.874 

FBFS 25.549 25.52 25.492 25.466 25.436 25.409 25.383 25.355 25.326 
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5. CONCLUSIONS AND POSSIBLE EXTENSIONS 

This paper has presented GA approach to RFSP with 

different scheduling policies under fuzzy processing time 

uncertainty. The proposed technique which is premised 

on the use of fuzzy job processing times has shown a 

higher prospect of results with respect to effectiveness. 

On comparison with the deterministic job processing 

time, the fuzzy model under the two scheduling policies 

demonstrated some level of superiority especially as 

displayed in the optimal makespan of the test problem.   

While a higher makespan time is required when 

scheduling with deterministic processing time for the 

scheduling policies considered. The FCFS performs 

better as against FBFS scheduling policy for early jobs 

but is out-performed by FBFS on the long run. 

Furthermore, scheduling under uncertain processing 

times inspires informed decisions on the choice of 

schedules on production flow lines. 

For future works, a hybrid genetic algorithm constrained 

by other scheduling policies under stochastic, fuzzy-

stochastic and stochastic-fuzzy uncertainties conditions 

may be used. Also, another direction of further study will 

be to explore the stability of system resources and 

production quality under both deterministic and 

uncertain schedule for multiple machines RFSP. 
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