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ABSTRACT  

This paper presents the design of PID-type controllers for a one-dimensional, distributed heat conduction system 

starting from the parabolic partial differential equation modelling the system. The partial differential equation 

modelling the system was lumped using the orthogonal collocation method resulting in third-order lumped model. 

This lumped model was then used for the controller design based on a method of PID controller design previously 

developed for higher-order systems by the authors. The results of closed-loop simulations demonstrate the superior 

performance of the PID-type controllers so designed. The approach presented is quite general and may be used to 

carry out PID-type controller designs for other single-input, single-output distributed parameter systems. 
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1. INTRODUCTION 

The dynamics (or transient response behaviour) of 

heat transfer and other transport processes are 

modeled by partial differential equations (based on 

first principles or mechanistic modeling approach), and 

therefore belong to the class of systems known as 

distributed parameter systems (DPS). In these systems, 

the state/output and/or the input may vary both 

spatially and temporarily [1, 2]. 

Some practical examples of heat-transfer processes 

may not necessarily be one-dimensional. However, 

when the diameter (or width) to length ratio is small 

(and this the case for many fins and rod applications), 

it is found that the assumption of the system being one-

dimensional is a reasonable one which simplifies the 

analysis of the problem without significant loss in 

accuracy. Common examples of this include: heat 

transfer in fins, rods and other extended surfaces which 

are often utilized to increase the heat-transfer rate [2 – 

4]. 

There are two major approaches for the design of 

feedback controllers for distributed parameter 

systems, namely:  early and late lumping approaches 

[1]. Like many other processes that are modeled by 

partial differential equations i.e. distributed parameter 

systems (DPS), the control design problem for many 

dynamic heat transfer processes can effectively be 

reduced to the design of PID-type controllers based on 

the ”early lumping” approach. The alternative approach 

based on ”late lumping” involves the application of 

distributed parameter system theory and the 

mathematical rigour required by this approach is not 

attractive for industrial deployment for many practical 

processes [1, 5]. The attraction of the ”early lumping” 

approach is the use of a simpler model that closely 

approximates the original DPS, and consequently leads 

to less number of equations to be solved. Additionally, 

one can then employ any of the large body of controller 

design methods for lumped parameter (LP) systems 

with much ease. 

Although a classical method such as the finite 

difference technique can be readily applied to lump a 

DPS in the spatial variable(s), it is well known to be 

computationally inefficient (and often results in a 

lumped parameter system of high order) compared 

with other techniques such as the method of weighted 

residuals, of which the orthogonal collocation method 

is a popular one[6, 7]. Other approaches to lumping a 

DPS are the use of the modal decomposition method 

[1]; use of Laplace transform method to derive transfer 

functions of the system which are irrational functions, 

and then approximating the irrational transfer 

functions by a rational one in order to carry out 

controller design [8, 9]. A brief review of the various 
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modeling and lumping techniques for DPS is presented 

in [10]. 

In this paper, the  objective is to explore the use of the 

method of orthogonal collocation to lump the dynamic 

model of a one-dimensional heated rod, and to 

subsequently use a modified Internal Model Control 

(IMC) approach to design PID-type controllers for the 

point temperature control at the designated position 

along the heated rod. The approach adopted allows to 

easily compute a low-order lumped model which is 

then directly employed in the controller design using 

the modified IMC-PID method previously developed by 

the authors. Although the modal decomposition 

method could be applied to the system studied here, it 

is to be noted that the level of mathematics involved is 

often a discouraging factor for industrial practitioners. 

Moreover, the method is only applicable to linear 

second-order partial differential equations which have 

real and discrete spectrum of modes (eigenvalues), and 

with a spatial operator that can be made self-adjoint[1]. 

Thus, the motivation for the use of the orthogonal 

collocation method to lump the system studied here is 

that it is quite general, and together with the PID-

design method employed, the entire process is much 

easily programmed for automatic computation on a 

computer, thereby making it much more attractive for 

the practitioners in industry. 

Although several advanced design techniques such as 

internal model control (IMC) and model predictive 

control (MPC) are available, the bulk of process control 

applications are still largely carried out using PID-type 

controllers. Consequently, the design of SISO 

controllers, especially of the PID-type, for SISO DPS 

systems is of practical importance, and continues to 

attract the attention of practitioners and researchers 

alike. As pointed out by [11], the popularity and wide 

acceptability of PID controllers in many process control 

applications is so because of its structural simplicity, 

constant disturbance cancellation, error-free tracking 

of constant setpoints, and reduced sensitivity to 

parameter variations. A similar view was also 

expressed by [12] who note that “the wide diffusion of 

conventional controllers (PI-PID) in process control 

(≥95% ccording to [13]) cannot be explained only in 

terms of resistance to change from operators or lack of 

challenging problems to face. The reasons for that have 

to be found in the major simplicity, reliability and 

favorable ratio between performance and cost.” These 

facts explain why methods for the design/tuning of 

PID-type controllers abound in the literature. 

The classical methods for the design of PID controllers 

are the semi-empirical rules [14, 15]. These methods 

give controller settings which are often found to be  

more under-damped than desired in many applications 

[16]. As a result, extensive efforts have to be used (in a 

trial-and-error fashion) to fine-tune the controller on-

line in order to obtain acceptable closed-loop response 

behavior of the controlled process. Thus methods for 

the systematic design of PID controllers with better 

performance continue to be active areas of research 

[12, 17–29]. A brief survey of some of the recent 

research trends for PID controllers can be found in 

[30], while [31–34] are some of the papers in the 

literature on the design or application of PID-type 

controllers to distributed parameter systems. 

 

2 METHODOLOGY 

2.1  The One-Dimensional Heated Rod and its 

Mathematical Model 

Consider the schematic diagram in Figure 1 in which a 

thin metal rod has one end in a water bath maintained 

at    .  
   , and the other end inserted into a steam 

chest. Air at   .  
   , is blowing transversely across the 

rod. The temperature of the right-hand end is assumed 

fixed at   .  
   , while the temperature of the left-hand 

end may be controlled by adjusting the steam pressure 

[1]. 

Making the following assumptions: (i) that  density,  , 

specific heat,  , the thermal conductivity,     , of the 

system are constant, (ii) that the metal rod has a 

uniform cross-sectional area, A, (iii) the diameter of the 

rod is small compared to its length, then by writing a 

microscopic energy balance on the system, it is straight 

forward to show that the mathematical model of the 

system can be put in the dimensionless form [1]. 

 

 
Figure  1: A thin metal rod being heated at one end and the other end maintained at a constant temperature [1]  
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subject to the following initial and boundary 

conditions:  
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where the following dimensionless/deviation variables 

are defined as:  
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Here, )(tTs
  is the adjustable temperature of the steam 

chest, AhSh /= , h  is the heat transfer film coefficient 

between the metal surface and the surrounding air and 

S  is the surface area for heat transfer per unit length 

of the metal rod. 

 

2.2  Lumped Model of the One-Dimensional Heated Rod 

Using Orthogonal Collocation 

To covert the PDE model, Eq. (1) of the heat conduction 

system into a lumped parameter (LP) model, using 

orthogonal collocation, a trial solution of the following 

form is assumed [35]:  

   ,    ∑ k         

   

   

                           

Substituting the trial solution  into Eq. (1) and setting 

the residuals to zeros at the collocation points,  leads 

to: 

   

  
 ∑     

   

   

     ,     1,2,                      

in which     and     are the first and second collocation 

matrices given by [35]  
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 and the collocation points   ,      ,1,  ,        1 are 

the roots of the orthogonal Jacobi Polynomial [35]:  

∫   
 

 

 1         
  ,  

       

 ,    1,    ,1,   1

                    1   

Using the two boundary conditions given by Eq. (3) i.e.  

   ,              ,     1,                    11  

   

  
 ∑(         )

 

   

              1,2,      12  

where  

    {
1            
            

                                    1   

Eq. (12) can be put in the standard state-space form:  

 ̇    x    u                                   1   

   x                                             15  

where the system states, x, and the matrices   ,    and 

C (for measurement at the point along the length where 

temperature is to be controlled) are readily 

determined. 

Note that compared with the modal decomposition and 

the Laplace transform approaches, the attraction of the 

orthogonal collocation lumping approach is that there 

are high quality computer routines [35] that allows the 

generation of the required collocation points and 

matrices automatically once the input parameters (

 ,  and the number of collocation points ( n )) are 

specified. Thus, the entire lumping step, together with 

the PID controller design method to be shortly 

presented, can be readily embedded into a computer-

aided design environment which can then be easily 

used by industrial practitioners. Efforts are currently 

on going  to develope such a computer-aided design 

environment for distributed parameter systems, and 

this shall be the subject of a future paper. 

 

2.3  PID Control Design/Tuning Method 

Details of the PID-type controller design/tuning 

method employed are available in [20]. Therefore, only 

an overview is presented here. Let the model of the 

process for which a PID controller is to be designed, be 

represented as  

      ̃    

∑ ̀  
 

 ̀

   

∑   
 

 ̀

   

          ̂                              1   

in which it has been assumed that any pure time delays 

originally present in the system model has been 

rationalized using, for example, a first-order Padé 

polynomial. 

By using the IMC design method[17, 18, 36] to design 

the IMC controller Ig  for Eq. (16), and then 

transforming this into the classical controller    

(through the equivalence:      (1   ̃   
) , it can be 

shown that the resulting controller transfer function 

for    can be simplified to the form: 
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in which the numerator coefficients, 
ib  are those of the 

denominator of the original model, Eq. (17); while the 

denominator coefficients, 
ia , now depend on some of 

the coefficients resulting from the factorization of  ̃    . 

into  ̃     and  ̃    , and the IMC filter parameter,   

[17]. 

The controller, 
cg , given by Eq. (17) can be very 

different from the classical PI/PID controllers. In the 

new PID-type controller design method, Eq. (17) is 

directly reduced to a PI or PID controller through the 

low- and high-frequency approximation of the 

controller transfer function, gc. Depending on whether 

a PI, an ideal PID, or a PID controller cascaded with a 

first-order lag  i.e. a “real ” or “practical” PID 

controller) is considered, different expressions for the 

controller parameters can be derived as shown in the 

following. 

 

2.3.1 Reduction to a PI Controller 

 At low- and high-frequencies, Eq. (17) can be 

approximated, respectively by PI controllers, as 

follows:  

     
 

      

   
,       

 
   

       
   

   
 

     1   

Let the fraction contributed by the low-frequency 

approximation to the PI controller be  , so that 

)(1   is the fraction contributed by the high-

frequency approximation, then the resulting PI 

controller transfer function is  

      
   (1  
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2.3.2 Reduction to Ideal PID Controllers 

Through a similar procedure as above, the ideal PID 

controller approximation of Eq. (17) is: 
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Expressions for the parameters of practical PID 

controllers (i.e. an ideal PID controller cascaded with a 

first-order filter) have also been derived from the low- 

and high-frequencies approximations of Eq. (17) 

Further details are available in [20].  

 

2.3.3 Controller Tuning 

For a given system, )(~ sg , the PI and PID controller 

parameters given above depend on both the filter 

parameter,   (which is implicit in 
ia ’s  and the 

parameter,   which determines the fraction of the 

low- and high-frequency approximations of Eq. (17) 

included in the PI and PID controllers. Thus apart from 

 , the parameter       1   provides an additional 

way of influencing the closed-loop response provided 

by the PI and PID controllers. 

Now, it is obvious that the approximation of the full 

controller, 
cg , given by Eq. (17), by a PI or PID-type 

controller will result in performance degradation from 

that attainable with Eq. (17), and may even lead to 

closed-loop stability problems when implemented on 

the original higher-order system. Thus to ensure 

closed-loop stability and acceptable performance, an 

appropriate value of the filter parameter,   must be 

chosen. The maximum closed-loop amplitude ratio 

criterion was used to ensure this, as follows: for a given 

value of  , choose  å
 such that: 

  
   

    |
 %          ,  

 ,     

1   %              ,    
 ,   

|          2   

where    is the desired maximum closed-loop 

amplitude ratio. A simple algorithm to solve this 

problem is the Interval Bisection Method for which a 

FORTRAN function subprogram ZEROIN is presented 

in[37]. The problem could also be solved in the 

MATLAB, SCILAB and MATHEMATICA environments.  

 

2.4 Application to the One-Dimensional Heat Conduction 

System 

2.4.1 Lumped Model and Transfer Function 

Based on the recommendations of [35] for parabolic 

partial differential equations,   ,      were 

chosen to generate the collocation points and the 

collocation matrices required for lumping the system. 

Although not presented here due to page size limit 

considerations, the dynamic response of the resulting 

lumped system was explored for various number of 

collocation points from 2 to 5, and compared these with 

the analytical solution obtained by the modal 



PID CONTROLLER DESIGN FOR A ONE-DIMENSIONAL HEATED ROD USING ORTHOGONAL COLLOCATION    A. O. F. Williams & V. O.Adeniyi 

 

Nigerian Journal of Technology  Vol. 37, No. 4, October, 2018          1003 

decomposition technique which can easily be shown to 

be given by:  

   ,    
 ̅     √   1    

√  

 ∑
2    ̅   ̅  

       

  (       )           

 

   

 

                  25  

where  ̅ and  ̅  represent the step change from 

 ̅ to  ̅ . The comparisons showed that a third-order 

lumped parameter model using the orthogonal 

collocation method gave an adequate dynamic system 

representation that can be used for subsequent 

controller design. 

For a particular system in which    1.  5, the 

lumped system from the application of orthogonal 

collocation can be put in the state-space model form in 

which the matrices are as follows:  

  [
   . 1 2 .    1 .   
1 .    22. 1 1 .   
 1 .   2 .      . 1 

]                   2   

   [5 .2          .          .  21]                          2   

Choosing the single temperature measurement location 

to be controlled at    .5,  .  .    .5    , which 

corresponds to one of the the collocation points, the 

output matrix c  is then given by.  

  [        1         ]                               2   

Note that any other point of interest along the length of 

the heated rod could also be chosen. If this is not one of 

the collocation points, then the output matrix C  is 

determined by application of the Lagrange 

interpolation technique [35]. The corresponding 

transfer function of this system is given by:  

     
     1 2.2 5   2 9  .55

   1 2. 5      9 5.  1   9 1 .  
 29  

This transfer function relates the effect of the 

manipulated variable, u (steam pressure to the steam-

chest), to the controlled variable which is the 

temperature at point 0.5=z . The control system is 

shown schematically in Figure 2.  

 
Figure  2: Schematic of metallic rod-temperature 

control system 

 

2.4.2 PID Controller Designs 

From the given transfer functions and the state space 

model, it is easy to check that the system is open-loop 

stable. This is a condition of the PID controller design 

method. 

Solving for the quadratic roots of the numerator of the 

system transfer function, it is seen that the transfer 

function )(sg  has a RHP zero at   1    = 78.5193. 

Using the Type II factorization to factor out this RHP 

zero[20], it is straightforward to show that the full-

order, classic feedback controller equivalent to the IMC 

controller for )(sg  is given by  

     
  

  

                                                   

where  

      1 2. 5      9 5.  1   9 1 .        1  

     1.115      [2 9  .5 ]  

   1.115  2      

 2 9  .5  2                               2  

Putting this in the form of Eq. (17), one  obtains that  
   1. ,                    1 2. 5  
    9 5.  1,          9 1 .  

                      

     1.115   ,

   2 9  .5     1.115  2    ,

   2 9  .5  2    

                      

Using the appropriate equations in Section 4, the PI and 

PID-type controller parameter expressions follow 

directly from the relevant coefficient   ’s and   ’s given 

above. For the designs,    1. 5 was used. 

 

3.RESULTS AND DISCUSSIONS  

Closed-loop simulations of the PID-type controllers 

designed using the presented approach were carried 

out for unit step change in setpoint. In the earlier 

work[20], it has been shown that the proposed PID 

controller design method gives comparable 

performance with the full-order internal model 

controller, and much better than PID controllers 

designed based on model reduction to a first or second-

order system. Thus, this work being an exploratory 

application of  an orthogonal collocation lumped-model 

of a distributed parameter system for PID controller 

design, performance comparison shall only be limited 

to the PID controllers designed using the classical 

Ziegler-Nichol tuning rules which is the starting point 

for industrial practitioners. 

 

3.1 Results 

3.1.1  Nominal Closed-Loop Simulation Performance 

For a unit step change in setpoint, Figure 3 shows the 

plots of the simulated response of the PI controller 
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designs, while Figure 4 shows a comparison of the PI 

controller designed by the method proposed in this 

paper, and that of a PI controller designed according to 

the Ziegler-Nichols tuning method. 

For the same step change in setpoint as above, Figure 5 

shows the plots of the simulated response of the ideal 

PID controllers designed for the System, while Figure 6 

shows a comparison of the performance of the ideal 

PID controllers (for   =0.6 and 0.9) designed by the 

proposed method, and that of an ideal PID controller 

with Ziegler-Nichols tuning parameters. 

 

 
Figure  3: Response of the System to a unit step change in setpoint. Legend: 1,2,3 new PI design with   

 . ,  . ,  .9, respectively. (a) Left: Controlled variable, (b) Right: Control input.  

 

 
Figure  4: Comparison of performance of new PI controller with    .9 (solid line) and ZN PI Controller (short-

dashed line) for a unit step change in setpoint of the System. (a) Left: Controlled variable response, (b) Right: 

Control input response.  

 
Figure  5: Response of System to a unit step change in setpoint. Legend: 1,2,3 proposed ideal PID design with 

  . ,  . ,  .9, respectively. (a) Left: Controlled variable, (b) Right: Control input.  
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3.1.2 Effect of Plant/Model Mismatch 

The foregoing simulations were carried out on the 3rd-

order model employed for controller design i.e. 

assuming a perfect model. In order to investigate the 

performance of the PID-type controllers designed by 

the method proposed in this paper to the effect of 

model/plant mismatch, they were all simulated on a 

10th-order lumped model of the rod system (obtained 

by modal decomposition) which is assumed to be the 

plant. Figure 7 shows a comparison plot of the 

performance of the designed PI controllers (with   = 

0.6, 0.9) on both the model used for controller design 

and the assumed 10th-order plant. The left  figure 

shows the closed-loop system response, while the right 

figure shows the manipulated variable response. On the 

other hand, Figure 8 show the comparison of the 

performance of the closed-loop system response with 

the ideal PID controllers (designed by the proposed 

method), on both the 3rd-order model, and the 

assumed 10th-order plant for two different values of 

: 0.9 (left figure), and 0.6 (right figure). 

 

3.2 Discussion 

3.2.1 Nominal Performance 

The closed-loop simulation results shown in Figures 3 - 

Figure 5 demonstrate the vastly superior performance 

of the PID controllers presented here, compared with 

those based on the classical Ziegler-Nichols tuning 

method. It can be seen that the proposed approach 

leads to PID controllers that drove the system output to 

the desired setpoint with smoother responses and 

shorter settling time. Additionally, it can be seen that 

the control inputs required by the PID-type controllers 

based on the Ziegler-Nichols tuning rules are highly 

oscillatory - implying high rate of control valve chatter. 

This is undesirable because it will result in faster rate 

of wear and tear on the valve seat. Conversely, control 

actions of the PID-type controllers designed by the 

proposed method are smooth and none oscillatory. 

 

  
Figure  6: Comparison of performance of new ideal PID and ZN PID controllers. Legend: 1,2 new PID controller with 

  .9,  . , respectively; 3 ZN PID controller. (a) Left: Controlled variable response, (b) Right: Control input 
response.  

 
Figure  7: Comparison plot of response of new PI controller on both model and plant to a unit step change in 
setpoint of the System. Legend: 1, plant and 2, model for   =0.6; 3, plant and 4, model for 0.9= . (a) Left: 

Controlled variable, (b) Right: Control input.  
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Figure  8: Comparison plot of performance of new ideal PID controller on both model and plant to a unit step change 
in setpoint of the System. (a) Top legend: 1, plant and 2, model for controller at   =0.9; (b) Bottom legend: 1, plant 

and 2, model for controller at 0.6= .  

 

It can also be seen that the value of the parameter ( ) 

influences the closed-loop dynamic response of the 

system. As the   is increased, the closed-loop 

response of the system becomes faster, and the 

corresponding control input also increases. Although 

not considered as part of the scope of present work, it 

is conceivable that one can setup an optimization 

problem to choose an optimal   that minimizes a 

desired objective function which defines the closed 

performance such as Integral Squared Error (ISE) or 

Integral Absolute Error (IAE) 

 

3.2.2  Effect of Plant/Model Mismatch 

The closed-loop simulation results shown in Figure 7 

and Figure 8 indicate that the designed controllers are 

not sensitive to the plant/model mismatch considered. 

The controllers designed by the proposed method still 

drove the output response to the desired points in a 

satisfactory manner.This is an attractive feature  since 

there is always a mismatch between models employed 

for controller design and the actual plant where this 

would be implemented. Thus, it is not desired that the 

controllers be highly sensitive to modelling errors as 

this could lead to significant deterioration of closed-

loop performance or the closed-loop system could even 

become unstable. Although the closed-loop simulation 

results are presented at only two parameter values of 

 , closed-loop simulation results at other values 

showed the same trend. 

 

4. CONCLUSION 

This paper has shown that using the orthogonal 

collocation technique is an attractive method to 

convert the parabolic partial differential equation 

modelling the one-dimensional heated rod into a low-

order lumped parameter model, which was then 

directly employed for controller design based on a 

method previously developed by the authors. Closed 

loop simulation results showed the superior 

performance of the proposed PID controllers compared 

with the PID controllers based on the classical Ziegler-

Nichols method. The approach described for the 

distributed one-dimensional heated rod system 

presented in the paper is quite general and may be 

used to carry out PID-type controller designs for other 

single-input, single-output distributed parameter 

systems. Consequently, the entire procedure is being 

developed into a computer-aided design environment 

to make it widely attractive for adoption by industrial 

practitioners and other researchers that may be 

working in this area. The computer aided design 

package to do this shall be subject of a future paper.  
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