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ABSTRACT  

Conventionally, parameters of the Induction Motor (IM) are determined using the standard no-

load and locked rotor test. Performing the no-load test is simple and involved running the 

machine uncoupled to a load, while measuring the power, voltage, current and shaft speed at 

different voltage test points. On the other hand, the locked rotor test requires full control of the 

rotor mechanically in the locked condition before measurements are taken. This paper presents a 

method for estimating the parameters of IMs without the need for the no-load and locked rotor 

tests. The method is based on optimization approach using a relatively new swarm based 

algorithm called the Artificial Bee Colony (ABC) optimization. Two different equivalent circuits are 

implemented for the parameter estimation scheme; one with parallel and the other with series 

magnetization circuit. Parameters of a standard 7.5kW IM are estimated using the measured and 

estimated stator current, input and output power and the power factor. Based on the 

experimental results obtained, the optimization method using the ABC algorithm gave accurate 

estimates of the IM parameters when compared to the reference parameters determined using 

the IEEE standard 112-2004. The maximum errors of -13.730% and 2.249% are obtained for the 

parallel and series equivalent circuits respectively.  

 

Keywords: Inductions Machines, Parameter Estimation, Artificial Bee Colony, Magnetization Circuit, 

Optimization Algorithm  

 

1. INTRODUCTION  

Induction machines are by far the most widely used 

machines constituting about 80% of the total number 

of machines used in industry [1, 2]. This is mainly 

due to their low cost, reliability, robustness and low 

maintenance cost when compared to other types of 

machines. In high performance electric drive systems 

such as the Field Oriented Control (FOC) or Direct 

Torque Control (DTC), accurate parameter estimation 

is needed to guarantee good controller response and 

overall performance [3]. Over the past few decades, 

considerable attention has been given in developing 

new methods for IM parameter estimation. 

Conventionally, the IM equivalent circuit parameters 

are determined using the standard no-load and 

locked rotor tests. These two tests however 

represent the extremes of the machine operation, 

and therefore do not correspond to the normal 

operating conditions. Consequently, alternative 

methods have been considered in literature. A review 

of the major parameter estimation techniques for IMs 

can be found in [3]. Generally, the methods can be 

classified into two major groups, namely: signal 

injection methods and system identification methods. 

Signal injection methods are usually performed at 

standstill with the motor excited using a dc or ac 

signal and parameters determined based on the 

resulting response. Several studies using signal 

injection method are reported [4 – 6]. However, the 

major drawback of this method is the problem of 

torque ripples due to the injected signal [7]. System 

identification methods can be based on steady state 

measurements [8 – 12] or transient measurements 

[13, 14]. Steady state methods use simplified motor 

models to solve the parameter estimation problem 
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but require multiple tests measurements at different 

loading conditions.  

Optimization techniques that are inspired by the 

phenomenon of natural evolution and Swarm 

Intelligence (SI) have been applied for IM parameter 

estimation [15-17]. These methods rely only on 

measurements of the motor terminal voltages and 

currents under steady state operation. Thus, the no-

load and locked rotor test are avoided making them 

suitable for field or in-service applications. Generally, 

optimization methods are based on error 

minimization criterion. In this paper, the error 

function for optimization is defined by the percentage 

difference between the measured (experimental) and 

the estimated stator current, input and output power 

and the power factor. The optimization problem is 

then solved using the ABC optimization algorithm. 

 

1.1 Steady State Model of an Induction 

Machine 

The stator and rotor voltage equations of a squirrel 

cage IM under a balanced sinusoidal supply and in 

the steady state operating condition as presented in 

[18] is given by: 

 ̅        ̅         ̅                            

  
  
 

  ̅         ̅                             

Where s is the slip. Substituting the flux linkage 

space vectors in (1) and (2) gives: 

 ̅        ̅         ̅      (  ̅     ̅  )       

  
  
 

  ̅         ̅      (  ̅     ̅  )       

The space vector equations (3) and (4) corresponds 

to the following phasor equations. 

                                       

                                     

Combining (5) and (6) results in the per-phase 

equivalent circuit of an IM as shown in Fig. 1. 

The resistances    and    are added to the equivalent 

circuit to account for the core loss and the stray load 

loss in the machine. The value of    can be 

determined according to IEEE standard 112 [19] 

using the equation: 

           
(     )

   

                              

Where     is the slip at full-load. 

The parameters associated with the equivalent circuit 

are the resistance and leakage reactance of the 

stator and rotor, the core loss resistance and 

magnetization reactance. Detail procedures for 

obtaining these parameters are presented in the next 

sections. 

 

1.3 Parameter Estimation Using ABC Algorithm 

The parameter estimation method uses the steady 

state equivalent circuit of an IM to derive an 

objective function for optimization. In most 

conventional T-models, the core loss resistance is 

omitted for simplicity. However, applications such as 

efficiency estimation or the design of high-

performance electric drive systems, the core loss is 

crucial and therefore must be considered [20]. In this 

paper two equivalent circuits are used: one with a 

parallel and the other with a series core loss 

representation as illustrated in Fig. 1. 

 

1.3.1 Objective Function Formulation 

The goal of the optimization is to search for the 

motor parameters by minimizing the error between 

the measured and estimated quantities such as the 

stator currents, input power, output power and 

power factor using experimental and computer 

simulation data. In order to minimize the number of 

unknown variables for the optimization algorithm, the 

resistance of the stator winding    can be obtained 

through direct measurements across two terminals of 

the stator windings [19].  

 
Fig. 1: Equivalent circuit of an Induction Motor 
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For a star connected machine, the stator resistance is 

given by:  

                                       

Where        is the resistance measured across the 

two stator terminals. 

The ratio of stator to rotor reactance can also be 

used to determine the stator reactance based on the 

NEMA design class of the machine [21] as shown in 

Table 1. 

 

Table 1: Ratio of     ⁄  based on NEMA design class 

    ⁄  NEMA Design class 

    ⁄       A, D and wound rotor motors 

    ⁄       B 

    ⁄       C 

 

With the stator resistance and reactance determined, 

only four variables are to be searched using the 

optimization techniques. These parameters are the 

rotor resistance (  ), the core loss resistance (    ), 

the rotor leakage reactance (     and the 

magnetization reactance (  ). 

Since values of resistances are affected by 

temperature changes, the stator and rotor 

resistances are to be corrected according to IEEE 

Standard 112-2004 [19] using (9): 

     (
    

    
)                                 

Where    and    are the resistance at a specified 

temperature    and the measured resistance at    

respectively.   is the zero-resistance temperature 

constant (C = 234.5 for copper and C = 224.1 for 

aluminum). Thus, the corrected resistances for the 

stator and rotor are: 

            (
    

    
)                          

           (
    

    
)                         

The following equations can be derived based on the 

equivalent circuit shown in Fig.1: 

   
 

        

                               

   
 

  
 

        

                          

For parallel magnetizing circuit: 
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The parallel magnetization branch shown in Fig. 1 

can be transformed into a series connection [22] and 

the series resistance (  
 ) and reactance (  

 ) 

expressed as: 

   
  

  
    

   
    

 
                                            

  
  

   
   

   
    

 
                                          

Thus, the series admittance is: 

  
  

 

   
     

 
                                       

  
  as presented in equation (23), is used as the 

magnetization admittance in (15), (16) and (18) for 

the series magnetization circuit. 

The goal of optimization is to minimize the error 

between the measured and estimated quantities 

defined by the following functions: 

   (
         

  
)                             

   (
                 

      

)                     

   (
        

  
)                          

   (
                   

       

)                         

The objective function to be minimized is therefore 

as given in (28): 

     ∑(∑  
 

 

   

)

 

 

   

                                         

subject to the inequality parameter vector constraint: 

                                          

Where n and m are the number of load points and 

the number of measured data respectively,   

                is a vector containing the unknown 

motor parameters. 

 

1.4 Abc Optimization Algorithm 

Artificial Bee Colony (ABC) Optimization is one of the 

new swarm intelligent optimization technique 
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developed by Karaboga [23]. ABC algorithm 

simulates the intelligent foraging behavior of honey 

bee swarm. Several research works have 

demonstrated the performance of the ABC algorithm 

compared to other population-based optimization 

algorithms [24, 25]. The advantage the ABC 

algorithm over other population-based algorithms is 

its simple structure- requiring only few control 

parameters. 

The ABC algorithm consists of three categories of 

bees: the employed bee, onlooker bee and the scout 

bee. the employed bee constitutes half of the colony 

size while the remaining half is the onlooker bee. The 

number of employed bee is equal to the number of 

food source, thus there is exactly one employed bee 

for each food source. Employed bee search for food 

sources and pass the information to the onlooker 

bees. An employed bee whose food source is not 

improved after a number of trails determined by the 

ABC control parameter called the ‘limit’ becomes a 

scout bee and abandoned its initial food source. The 

position of the food source represents a possible 

solution to an optimization problem and the nectar 

amount represents the fitness of the solution. The 

stages in the ABC algorithm can be explained as 

follows: 

 

1.4.1 Initializing the food source 

The initial food sources are produced randomly within 

the specified boundaries of the optimization 

constraints. This can be represented by (30). 

       
             (  

      
   )                

Where,             ,           . NS is the 

number of food source and D is the dimension of the 

problem. 

After the initialization,      is subjected to repeated 

cycles going through the employed, onlooker and 

scout bee phases until the stopping criteria is 

achieved. 

 

1.4.2 Employed Bee Phase 

Each employed bee in the ABC algorithm is assigned 

to a food source. An employed bee evaluates the 

fitness (nectar amount) of its food source and search 

a neighboring food source using (31) 

              (         )                               

  and      are randomly selected numbers within the 

boundaries             and -1 to 1 respectively. 

After obtaining      , a fitness value for a minimization 

problem      can be assigned to the solution using 

(32) 

     {

 

       

                      
  

     (     
)               

  

             

Where      
 is the objective function value of the     

solution. 

A greedy selection is applied between the old solution 

     and the new      by selecting the better one 

depending on its fitness value. The employed bee 

memorizes the new position and forgets the old one, 

otherwise the previous position is kept in memory. If 

     cannot be improved, its counter (holding the 

number of trials) is incremented by 1, otherwise, the 

counter is reset to 0 [25]. At the end of the search 

cycle, the employed bee shares the information of 

their food source to the onlooker bees. The quality of 

food source is determined by a probability function    

given by (33): 

   
    

∑     
    
   

                             

 

1.4.3. Onlooker bee phase 

In this stage, the onlooker bees are enrolled into 

foraging by the employed bees. The onlookers select 

a food source based on its probability represented by 

(33). As in the employed bee phase, the position of 

food source is modified using (31). The greedy 

selection is applied and new solution is memorized or 

the old solution is retained depending on its fitness. 

If the solution cannot be improved after a number of 

trials determined by the ‘limit’, then its counter is 

incremented by 1, otherwise, it is reset to 0. This 

procedure is repeated until all onlookers are 

distributed onto the food sources. 

 

1.4.4 Scout bee phase 

After completing a cycle, the ABC algorithm checks 

for any exhausted food source to be abandoned. The 

criteria for determining the food source to be 

abandoned are based on the trail counter. A food 

source whose trial counter is greater than the control 

parameter of the ABC algorithm called the ‘limit’ is 

abandoned and replaced with a new one discovered 

by the scout bee. In the basic ABC algorithm, it is 

assumed that only one source can be exhausted and 

only one employed bee can be a scout in each cycle 

[23]. 
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5. RESULTS AND DISCUSSIONS 

To verify the proposed ABC parameter estimation 

method, a 7.5kW standard efficiency IM with 

nameplate data given in Table 2 is tested using the 

experimental setup shown in Fig. 2. The induction 

machine is coupled to a dynamometer through an in-

line torque transducer. 

The IEEE std 112-2004 impedance test method 1 

[19] was performed and the results obtained are 

shown in Table 3. These results are used as the 

reference values for comparison with the proposed 

ABC method.  

For the ABC method, a rated temperature test as 

specified in the IEEE standard 112-2004 is first 

performed. This test is to allow the machine’s 

temperature to stabilize before taking measurements.  

The temperature test is followed by the load test. in 

this test, the machine is subjected to loads at five 

points approximately spaced between 125% down to 

25% of the rated load. Readings of the stator 

current, voltage, shaft speed, electrical and 

mechanical power and the stator winding 

temperature are taken at each load point. The results 

from this test are shown in Table 4. 

The power factor is calculated for each load point 

based on Table 3 using (34) 

   
     

√     
                                       

The data in Table 3 and in addition the power factor 

for each load point are used as the measured 

quantities in (24) to (28) to compute the cost 

function for the ABC optimization algorithm. The code 

for the ABC optimization was implemented using the 

Matlab (2014) software package based on the 

parameter settings shown in Table 5. 

 

 

 
Fig. 2: The experimental test rig (1) Induction machine (2) In-line torque transducer (MEGTROL TM 300 series) 

(3) Dynamometer (15kW DC machine). 

 

Table 2: Nameplate data of the test motor 

                                                

7.5Kw 380V 15.1A 50Hz 1450rpm 4 B F 

 

Table 3: No-load and block rotor test parameters 

7.5kW Motor                                         

IEEE std 112 Parallel circuit 1.900 1.310 3.497 5.220 98.500 1400.700 

IEEE std 112 Series circuit 1.900 1.310 3.497 5.220 98.015 6.893 

* Stator resistance measured directly 

 

Table 4: Load test results for the 7.5kW test motor 

                                                                

125 375.68 19.08 11,123 9,213 1,425 116.17 

100 376.94 15.15 8,731 7,471 1,445 124.28 

75 378.18 11.70 6,474 5,671 1,462 118.78 

50 379.40 8.66 4,236 3,817 1,476 115.68 

25 380.39 6.51 2,294 1,925 1,489 108.88 
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Table 5: The parameter settings for the ABC algorithm 

               )                  )      Iterations           (D)            ) 

50 100 50 4 200 

 

Figs. 3a to Fig. 3g shows the convergence of the cost 

function and the motor parameters using the ABC 

algorithm for the parallel equivalent circuit. As shown 

in the figures, the algorithm is run three time with 

the same input data to test for consistency. 

   
(a)                                                                              (b) 

  
(c)                                                                                               (d) 
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(g) 

Fig. 3: Convergence profiles (parallel circuit): (a) 

Objective function (b) Rotor resistance (c) Rotor 

leakage reactance (d) Magnetization reactance (e) 

Magnetization reactance (Zoomed) (f) Core loss 

resistance (g) Core loss resistance (Zoomed) 

 

As can be seen in Fig. 3a, the objective function 

converges after about 42 iterations for all the three 

cycles. As shown in Fig. 3b and Fig. 3c, consistent 

steady values of 1.3084  and 5.2351  are obtained 

in all three optimization cycles for the rotor resistance 

and leakage reactance respectively. On the other 

hand, inconsistent results are obtained for the core 

loss resistance and magnetization reactance as can 

be seen in Figs. 3d to Fig. 3g. The disparity can be 

seen to be more pronounced in the estimation of the 

core loss resistance as can be observed in the Fig. 

3g. This problem has been observed in [26] and is 

due to the small impact of the core loss resistance on 

the stator IM currents. 

One way of solving this problem is to use a series 

instead of the parallel circuit for the magnetization 

branch. Fig. 4a to Fig. 4e show the results for the 

series equivalent circuit. 

As can be observed, the ABC algorithm was able to 

tracks the equivalent circuit parameters including the 

core loss resistance and the magnetization reactance 

in all the optimization cycles. 
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(e)  

Fig. 4:. Convergence profile (series circuit): (a) 
objective function (b) Rotor resistance (c) Rotor 

leakage reactance (d) Magnetization reactance (e) 
Core loss resistance 

 

Table 6 summarizes the final parameter estimation 

results for the parallel and series equivalent circuits. 

The results are the average values for 10 cycles of 

the ABC algorithm. 

 

Table 6: No-load and block rotor test parameters 

7.5kW Motor                           

Parallel 1.320 5.285 109.000 1593.000 

Ref. 1.310 5.220 98.500 1400.700 

Error (%) -0.763 -1.245 -10.660 -13.730 

Series 1.309 5.233 97.948 6.738 

Ref. 1.310 5.220 98.015 6.893 

Error (%) 0.764 -0.249 0.068 2.249 

 

From Table 6, it can be observed that accurate 

parameter estimates are obtained for both the 

parallel and series equivalent circuits when compared 

to the reference values. This is because the ABC 

algorithm as a global optimization method avoids 

convergence to an undesired local minimum. 

However, in terms of the percentage error, the series 

equivalent circuit gives more accurate results when 

compared to the parallel equivalent circuit. 

 

6.  CONCLUSSION 

In this paper, a simple, yet accurate method for IM 

parameter estimation is presented. The method relies 

on external measurements to formulate a distance 

criterion objection function that defined the 

relationship between the measured data and their 

corresponding estimates. The estimated quantities 

are defined based on two different arrangements of 

the magnetization branch in the IM equivalent circuit. 

Based on the experimental results obtained, the ABC 

algorithm was able to track the machine parameters 

for both the parallel and series equivalent circuits 

with acceptable level of accuracy. However, the 

results show that the series equivalent circuit 

implementation gave more accuracy in terms of the 

percentage error and repeatability. 
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