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Abstract

Although growth and yield data are available in rubber plantations in Nigeria for aggregate rubber
production planning, existing models poorly estimate the yield per rubber tree for the incoming
year. Kalman filter, a flexible statistical estimator, is used to combine the inexact prediction of the
rubber production with an equally inexact rubber yield, tree girth, tapping height, stimulation and
tapping system measurements to obtain an optimal estimate of one year ahead rubber production.
Six rubber clones-GT1, PB260, PB217, PB28/59, PB324 and RRIM703 were studied using 12-
year data, generated from permanent experimental plots. Stochastic autoregressive model was fitted
to the data to identify optimal management strategy that accounts for risk due to seasonality.
STAMP, an OxMetric modular software system for time series analysis, was used to estimate
the yield parameters. Our results show that significant test of actual yield to model forecast is
less than 1.96. Hence, the null hypothesis that the actual yield is within the forecasted value is
accepted at 5% significant level. Based on the impulse response function of the lead equations, the
long-run elasticity of yield was estimated to be highest for PB324 (2211gm/tree) and lowest for
RRIM703 (1053gm/tree). PB260 is the best short term clone with the highest dynamic multiplier
of 0.59. More important, the estimator minimized the variance of estimation errors from 55%
of plantation prevision to 10%. It is our opinion that Kalman filter is a robust estimator of the
biotechnical dynamics of rubber exploitation system.

Keywords: Kalman filter, parameter estimation, rubber clones, Chow failure test, autocorrelation, STAMP, data

characterization

1. Introduction

Obtaining reliable information for the predictive
yield of rubber clones that is needed for aggregate
rubber production planning and for the determination
of the long run elasticity of yield, required for rub-
ber clone selection from historical yield and growth
data, has remained a great challenge for rubber plan-
tation managers: the information emanating therein
is found to be replete with imprecision for purposes of
planning due to substantial error in measurements,
heterogeneity of plants population in age and size,
non independence of observations and multiple obser-
vations with serial correlation. The current predic-
tion models which include use of mean [1], ratio [2]
and the linear regression predictors [3] are considered
rather inappropriate because several characteristics of
the modelling data violate statistical assumptions un-
derlying regression techniques. Further, the objective

of forecasting is to minimize uncertainty, to identify
and evaluate risks. As it stands today, most yield
projections do not provide estimates of the variance
of the predictions which is crucial in updating proce-
dure, to assess the precision of predictions, to evaluate
the general performance of the models and to calcu-
late confidence intervals for the estimates. The prob-
lem therefore goes beyond estimation of conditional
means, variances and covariance based on the prop-
erties of multivariate normal distribution because of
the serial correlation between the observations nor is
it just estimating model parameter values from a set
of field data. It demands the use of field data and in-
formation about growth and development to estimate
model parameters.
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2. Review of Literature

In this paper, the objective is to modify the popu-
lation model to make a better prediction for a specific
agricultural field not for a general situation. A filter
is an algorithm that is applied to a time series to im-
prove it in some way- filtering out noise. The task of
filtering is to eliminate by some means as much of the
noise as possible through processing of the measure-
ments. This task is achieved by using measured values
to update the model state variables each time an ob-
servation is available. Hence, Kalman filter is not just
a linear estimator where the slope (A) is a fixed matrix
and the intercept (b) a fixed vector but it is a linear
minimum variance estimator where the slope (A0) and
the intercept (b0) in the prediction equation are cho-
sen to minimize the expected mean square error such
that[4]:

E‖ X −A0Y − b0 ‖2 ≤ E‖ X −AY − b ‖2∀A, b (1)

The basic key to this process is the structural time
series state space model in which the state of the time
series is represented by its various unobserved compo-
nents such as trend and seasonality.

In using Kalman filter as an estimator, one of the in-
dependent estimates is a current estimate or monitor-
ing measurement and the other is a previous estimate
that is updated for expected changes overtime using a
prediction model (Fig. 1 refers.) The variance for the
updated estimate includes the effects of the errors in
the previous inventory that are propagated over time
and the model prediction errors between previous and
current estimates. Errors in the composite estimator
are typically less than errors in either of the prior esti-
mates alone [5]. The drawback of the Kalman filter is
that it assumes that the model estimates are unbiased
[6].The simple Kalman filter is therefore an optimal
estimator, only if the system is linear and reasonable
methods are available to accurately determine the co-
variances P, Q, and R [7]. Further, when the normality
assumption is dropped there is no longer any guaran-
tee that the Kalman filter will give the conditional
mean of the state vector though it remains an opti-
mal estimator because it minimizes the mean square
error within the class of all linear estimators [8].

The rubber tree yield model is treated as a time
series in state-space form. The structure of the gen-
eral state space models depends on the assumptions
that are used to specify the state space vector com-
ponents. In contrast to ARMA models, the specifi-
cation of structural time series model requires judge-
ments about the structures that are present in the
sequence of observations. Following the presentation
in [8] and [9], structural time series models consists of
components that capture (deterministic or stochastic)
trend, seasonality, and random error. Using µt and βt
to denote the trend and slope at time t, the relation

Figure 1: Kalman filter process.

between trend and slope is described as follows:
Trend:

µt = µt−1 + βt−1 + ηt (2)

Slope:

βt = βt−1 + ζt (3)

Seasonality:

s−1∑
j=0

γt−j = ωt (4)

System equation:

xt = φ1xt−1 + φ2xt−2 + . . .+ φpxt−p + µt + γt + εt,

t = p+ 1 . . . T

(5)

Substituting:

xt = φ1xt−1 + . . .+ φpxt−p + (µt−1 + βt−1 + ηt)+

(ωt − γt−1 − γt−2 − . . .− γt−s+1) + εt

Measurement equation

zit = λixt + ξit i = 1, 2, . . . , k, t = 1, 2, . . . , T (6)

The equation is written in the form of the general
state-space model with εt, ηt, ζt assumed indepen-
dent, normally distributed random variable with zero
mean and finite variance. Thus the parameters to be
estimated in structural time series formulations are:
φ . . . φp, σ

2
ε , σ

2
ε , σ

2
η, σ

2
ζ , σ

2
ω, λ1, . . . , λk, Σξ.

The system equation in matrix form is as shown
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below.

Xt =



xt
xt−1
·

xt−p+1

µt
βt
γt
γt−1
γt−2

...
γt−s+2



=



φ1 φ2 · · · φp 1 1 −1 −1 · · · −1
1 0 · · · 0 0 0 0 0 · · · 0
· · · · · · · · · ·
0 0 · · · 0 0 0 0 0 · · · 0

1 1
0 1

−1 −1 · · · −1
1 0 · · · 0
0 1 · · · 0
...

...
...

...
0 0 · · · 0





xt−1
xt−2
·

xt−p
µt−1
βt−1
γt−1
γt−2
γt−3

...
γt−s+1



+



ηt + ωt + εt
0
·
0
ηt
ςt
ωt
0
0
...
0


(7)

where: Xt; d × 1 vector used to represent the yield
state of the clone at the start of period t, Zt; k × 1
vector used to represent the current yield, ∅: AR co-
efficients, εt: random error terms, ω: seasonal random
error, λ: measurement transition matrix, η: trend er-
ror or irregularity, t: the lag.

The unknown variances and the components are es-
timated by casting the model into state space form
and employing the Kalman filter in which the vari-
ances are obtained using the expectation maximiza-
tion (EM) algorithm. The EM algorithm is a recursive
method of obtaining maximum likelihood estimates
of the unknown elements of the state and error sys-
tem matrices of the state space form. Estimates of
the component are then calculated using a smooth-
ing procedure which first estimates the components
recursively for t = 1, . . . , T and then runs a second
“backward” recursion over t = T, , 1 to obtain the
smoothed estimates[10]. Full details of the estima-
tion procedure may be found in [11]. Autocorrelation
and partial autocorrelations functions are tradition-
ally used for selecting between ARMA models but
does not apply to time series models in state-space
form [12].

3. Material and Method

Growth data were obtained from a trial plot located
at Osse River, Ovie South West Local Government
Area of Edo State, Nigeria, established since 1990
for the purpose of monitoring and analyzing the
dynamics of rubber clones of rubber plantation
belonging to Rubber Estate Nigeria Limited (RENL).
The site is planted with different standard rubber
clones for long term periodic observation. The
rubber clones are GT1, PB260, PB217, PB28/59,
PB324 and RRIM703. Data are collected on budding
and planting success, girth, resistance to disease,
evolution of tapping density and yield per clone and
by replicate. Diameter measurements are made at
100cm height on 40 trees per clone per Fisher plots
biannually.

Once a clone is of the right girth (50cm at 1m)
and tapping density (40%) the clone is opened for
tapping. The trunk circumference is thereafter
measured using a measuring tape at 1.7 metre height
previously marked with white paint. The production
is weighed in replicate and expressed in gram per tree
(g/t) and in kilogram per hectare (kg/ha). The trial
has been opened since 1998 and tapped on S2D4 6d/7
tapping intensity. In other words, the tapping system
used is the half spiral cut (S2) from tapping year one
to nine and alternate quarter cut (S4) and half spiral
cut thereon at fourth daily frequency (D4), six days
tapping, followed by one day rest(6D/7). Hence trees
are tapped 6 times per month. Ethrel 10% is routinely
used to enhance production- 1 gram of stimulant
is applied on 1 cm band of the tapping panel after
dilution with water to 2.5, 3.3 or 5% concentrations
depending on the clone. The stimulation frequencies
are varied depending on the clone and the year of
tapping. A fairly standard and consistent tapping
policy was followed over the period under study. The
aforementioned clones were used to determine yield
response to girth, tapping height, tapping system,
concentration and rounds of stimulation. The yield
data used consist of daily data averaged per tree in
gram and summed by quarter. Total quarterly dry
rubber production per year provides adequate data
for yield parameter estimation and for forecasting
the seasonal breakdown of the incoming year rubber
production per tree using Kalman filter. The one
year-ahead estimate is used to prepare the aggregate
rubber production plan for the plantation.

Although there are many ways of estimating trends,
the focus here is on signal extraction by filtering using
the crop record itself. Prediction of one-step-ahead
yield per tree is within the frame work of Gauss-
Markov Discrete-Time Kalman filter model where the
underlying system equations are difference equations
rather than differential equations. The impetus for the
choice of discrete-time systems is that tree growth and
yield observations are made and used at discrete time
instants. The general framework deployed is to de-
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Figure 2: Box Plot of GT1 rubber yield data.

compose the series of 48 observed rubber yield values
into unobserved trend and noise components. This is
to facilitate the description of the series in terms of its
component of interest such as the seasonal behaviour
of yield and the trend movement. The predictive ca-
pacity of the model is also enhanced by the decom-
position. The stochastic trend model used here is the
smooth trend in which the trend and its slope compo-
nent evolve as random walk. The slope innovation and
the noise component are assumed to be independent,
zero mean white noises with constant variances.

The yield data analysis therefore involved selecting
a model and fitting it to the generated data so as to
estimate the parameters using Structural Time Series
Analyser, Modeller and Predictor–STAMP software,
which executes the process as described earlier. Fur-
ther, the normal probability plots of the residual are
obtained to support the result and assumptions on
error terms. Finally, Kalman filter is applied to mini-
mize the noise associated with the forecast of the time
series model. In selecting between deterministic (risk
free) and stochastic model, Akaikes Information Crite-
rion (AIC) and Bayesian Information Criterion (BIC)
were used to measure the trade-off between predic-
tion error and number of explanatory variables with
smaller values being preferable:

AIC =
−2× log lik + 2× (n+ d)

T
(8)

BIC = −2× log lik + log(T )× n (9)

where log lik is the logarithm of the model likelihood,
n is the number of estimated parameters and T is
number of data.

The estimated parameters were subjected to signifi-
cance analysis to decide which explanatory variable is
important in determining the dynamic of the rubber
production. Backward elimination was used to refine
the model by removing the statistically insignificant
parameters from the model specification. Further, the
selected model was tested using prediction error vari-
ance (p.e.v.) which is the basic measure of goodness
of fit in time series model in the form of mean de-
viation and Ljung-Box statistic, the Q statistics that
measures lack of fit. In addition to this goodness of
fit test, models are further diagnosed by generating
in-sample and out-of sample predictions. In-sample
predictions were made from t = d + 1 to t = T
and compared with the observations thereby study-
ing the models capability to reproduce observations
and to capture the underlying mechanism generating
the data sequence. Out of sample prediction start
from t = T + 1 and the length of prediction is arbi-
trary. This is the most powerful test for a time series
model. Post sample observations are used as a yard-
stick by which to judge the forecasting accuracy of the
model estimated on the basis of the sample observa-
tions. After selecting the model, diagnosis check is
carried out by examining the residual i.e. the differ-
ence between one step predictions and observations.
The residual analysis is to check that serial correla-
tions of the residuals are independent and identically
distributed as initially assumed. Finally, is a check on
the convergence of iterative procedure because when
the number of parameters is high relative to the num-
ber of available data the algorithm fail to converge to
the true optimum indicating an intrinsic problem of
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Table 1: 12-Year yield data of six RENL rubber clones
(gm/tree).

matching the model to data. Hence solutions should
be viewed with caution in that case.

4. Results and Discussion

4.1. Data characterization

Table 1 depicts the quarterly rubber production per
tree from 1998 to 2009 for the six rubber clones under
study. A box plot for the characterization of the GT1
rubber production data is shown in Figure 2, while
Table 2 shows the result of data characterization of
all the clones. Two clones GT1 and PB217 have out-
liers due to change in stimulation from 2.5 to 5% for
2009 physiological year. The interquartile range of
the rubber clones sample data ranges from 3708g for
RRIM703 to 4525g for PB324 rubber clones. This ob-
servation reflects the variability in the rubber clone
yield response to seasonal changes. In other words,
PB324 is more sensitive to season than RRIM703.

4.2. Plot inspection

Figure 3 shows the actual plot of GT1 rubber clone
yield per tree from January 1998 to December 2009.
The graph shows a seasonal pattern of yield usually
associated with tropical climate of dual seasons- dry
and wet season within a year. The overall trend of the
series is constant over the years. Its salient character-
istics are a trend, which represents the long-run move-
ments in the series, a seasonal pattern which repeats
itself more or less every year and the irregular compo-
nents which reflects non-systematic movement in the
series. The choice of model is therefore informed by
the decomposition of the series into its components
as shown in Figure 4. The model to be considered
initially is therefore the basic structural time series
model (BSM) without cycle which is given by:

yt = µt + γt + εt (10)

where µt is the local level component modelled as the
random walk µt+1 = µt + ξt, yt is the trigonometric
seasonal components and εt is a disturbance term with
mean zero and variance σ2ε.

As displayed in Figure 4, the seasonal effect hardly
changes and is therefore considered fixed. The esti-
mated level does pick up the underlying movement of
the series and the estimated irregular is alright.

Structural time series model that separately models
all the series components -seasonality, trend and ex-
planatory variables was therefore implemented within
the framework of state-space representation. The con-
vergence of the yield model at steady state is strong
for all clones.

4.3. Comparism of rubber yield models - de-
terministic Vs stochastic models

In Table 3, two models are compared - determin-
istic and stochastic structural time series models for
purposes of model specification. Goodness of fit pa-
rameters and prediction criteria used are shown in the
table. From the table, the lead model is stochastic-
lower Akaike information criterion (AIC), lower Q-
stat, higher Rs2 and better normality.

4.4. Parameter estimation

The result of the optimization algorithm in Table 4
is obtained from quarterly rubber yield per tree and
the explanatory variable data set of the six RENL rub-
ber clones under study as processed by STAMP. The
series is modelled as a linear combination of trend, sea-
sonal, irregular, autoregression and explanatory vari-
ables (11).

Y = Trend + Seasonal + Irregular + AR(1)

+Explanatory variables
(11)
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Table 2: Box plot data characterization.

Clones Minimum Maximum 1st Ql* Median 3rd Qu* IQR* LW* UW* Outlier

GT1 2605 15078 4882 6230 8623 3741 -730 14235 15078

PB217 3081 17777 5828 7406 10083 4255 -555 16466 17777

PB260 3229 13587 5031 6980 99467 4436 -1623 16121 -

PB28/59 2658 12118 4736 6402 9133 4397 -1860 15729 -

PB324 2279 16610 5377 7715 9902 4525 -1411 16690 -

RRIM703 2574 12370 5014 6620 8722 3708 -548 14284 -

*QL = Lower quartile, Qu = Upper quartile, IQR = Interquartile range, LW = Lower whisker,
UW = Upper whisker

Table 3: Comparism of rubber yield deterministic and stochastic models.

Clones Pev-
D

Pev-
S

Nor-
D

Nor-
S

H(12)-
D

H(12)-
S

Q-D Q-S Rs2-
D

Rs2-
S

AIC-
D

AIC-
S

Pev/
Md-D

Pev/
Md-S

GT1 1.91 1.87 2.84 1.75 0.98 1.27 7.7 5.6 0.61 0.62 14.93 14.9 1.09 1.14
PB217 2.02 1.97 6.75 4.4 0.74 0.81 6.3 7.4 0.57 0.58 14.97 14.95 1.04 1.01
PB260 2.68 2.45 6.78 2.73 0.39 0.67 25.2 16.61 0.54 0.58 15.26 15.17 1.01 1.17
PB28/59 1.96 1.99 5.84 7.06 0.14 0.19 15.3 18.1 0.59 0.59 14.95 14.96 1.18 1.38
PB324 1.93 1.88 1.56 6.01 0.67 0.60 10.3 8.33 0.62 0.62 14.93 14.91 1.35 1.11
R703 2.03 2.27 3.27 3.11 0.23 0.36 12.6 9.0 0.59 0.54 14.98 15.09 1.12 1.08

Table 4: Parameter estimation.

Clone Seasonal
σ2ω

Irregular
σ2ε

Level
σ2η

Slope
σ2ξ

φ1

AR(1)
Lead In-
dicator -
Ht

Lead In-
dicator -
Gth

Lead Indi-
cator Stim.
Conc.

Lead Indi-
cator Stim.
Round

GT1 0 115293 11659 0 0.39 25** 931*

PB217 0 1168 0 0 0.30 -553* 687**

PB260 0 0 0 2735 0.59 28** 531**

PB28/59 0 0 0 1161 0.51 24** -856***

PB324 0 0 0 0 0.32 1570***

RRIM703 0 609 0 6078 0.33 -737**

***0.01, **0.05 and *0.1 significant level

Figure 3: GT1 g/tree quarterly actual Series Plot.
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Figure 4: RRIM 703 gm/tree decomposition of actual series (black) into level (broken), seasonal and irregular.

The model parameters are estimated by maximum
likelihood (exact score). Autoregression and explana-
tory variable coefficients estimated by STAMP are as
shown in Table 4. The level of significance of each
explanatory variable is depicted by *, ** and *** rep-
resenting 0.1, 0.05 and 0.01 significant level of the co-
efficient being zero i.e. of Tcritical > Tcalculated -
accepting the null hypothesis of no significant contri-
bution in the model. Hence any of the coefficients with
probability below any of these figures is considered sig-
nificant and forms part of the lead equation. Tapping
system is found not to be important at all three levels
of significance within the limits of analysed data set
and period and therefore eliminated from further con-
sideration as yield explanatory variable. Rubber yield
and marginal girth increment are inversely related.

Multivariable models are used to improve the accu-
racy of predictions [13].The coefficient of the explana-
tory variables: - girth, tapping cut height, stimula-
tion and stimulation levels, tapping system, depicts
the variables direct impact on yield per unit change
in its value. It is worth noting that the estimated
variance of disturbance for all the clones is zero except
for GT1and PB217. This implies that the departure of
the estimated trend from straight line as shown in Fig-
ure 4 (level) is due to the effect of the explanatory vari-
ables resulting from management exploitation policies
on rubber tree stimulation, tapping cut height, clone
selection, tapping system etc. The model estimates of
negative girth relation to yield is supported by the var-
ious literature reviewed earlier which have it that rub-
ber production is in direct competition for metabolites
with the biomass of the rubber tree [14] and [15]. This

observation underscores the ongoing trial in Nigeria on
inorganic fertilizer supplemental application for rub-
ber tree in tapping entitled “Interaction between Fer-
tilization Levels of Rubber Tree Mature Crops and
Yield Potential” - IFC-CIRAD-RENL Trial. Litera-
ture also supports the inference on tapping cut height
as it relates to increasing magnesium content of rubber
tree with height for increase in latex production [16].
Seasonality that renders the rubber business risky and
therefore stochastic is significant on the yield of all the
clones at 99% confidence level and therefore is of high
management interest as it defines the processing plant
raw material supply chain and hence marketing plan.
The result matches the wet and dry spell of southern
Nigeria and its effect on rubber tree latex production.
The seasonal value by quarter is estimated for each
clone to be used for appropriate quarterly adjustment
in the aggregate rubber production planning.

The dynamic multiplier and the impulse-response
function estimated by STAMP for the six clones are in
consonance with [17] clonal typology of PB217 as be-
longing to low-medium metabolism clonal group that
requires high intensity stimulation on the one hand
and PB260 of high metabolism, demanding low stim-
ulation intensity on the other end of the spectrum. It
is today an important plantation practice that informs
the annual campaign of latex diagnosis in which physi-
ological status of the natural rubber tree is ascertained
by the tree biochemical parameters such as dry rubber
content, sucrose and inorganic phosphorus content as
well as the proportion of thiols (an antioxidant) using
optical density spectrophotometer in order to optimise
the exploitation of rubber plantations.
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Figure 5: PB260 Residual statistics plot.

4.5. Long run elasticity of rubber yield per tree

The long-run height elasticity of rubber production
per tree is obtained from the lead equation of each
rubber clone: xt = 0.39xt−1+25ht+931st+µt+γt+εt,
εt v N(0, 1.2E+05) of GT1 rubber clone for instance
as follows [18]:

lim
j→∞

[
∂yt+j
∂wt

+
∂yt+j
∂wt+1

+
∂yt+1

∂wt+2
+ · · ·+ ∂yt+j

∂wt+j

]
= 1 + φ+ φ2 + · · · = 1/(1− φ)∀ ≤ 1

(12)

where wt = random variable and φ = the dynamic
multiplier

25

1− 0.39
= 41

The result suggests that a permanent 1cm increase
in tapping height will lead to 41g increase in rubber
production per tree. PB324 has the highest long run
elasticity of yield of 2211 gm per tree while RRIM 703
has the least potential of 1053gm/tree on the long run
as shown in Table 5.

4.6. Test of mis-specification

R2
s: The most suitable coefficient of determination

is that around the season mean (Table 5) because of
the seasonal effect, which for all the clones is positive
and far from zero- greater than 50. Its relevance as
a goodness of fit criterion is therefore not marginal.
Normality: In Table 3.5, PB28/59 model normality is
7.06 > 5.99 at 5% critical value with 2 degree of free-
dom. Hence the predictive value of PB28/59 model is
highly suspect with the generated data. Higher nor-
mality values are often caused by outliers.

Table 8: Chow failure test statistics.

Clones Failure
Chi2 Test

P-value Accept
Ho

GT1 11.69 0.17 > 0.05

PB217 11.81 0.16 > 0.05

PB260 9.88 0.27 > 0.05

PB28/59 3.27 0.92 > 0.05

PB324 8.54 0.38 > 0.05

RRIM703 4.21 0.83 > 0.05

Q(q,d)-stat-The Box-Ljung Q-statistics is a test for
residual serial correlation based on the first q resid-
ual autocorrelations and distributed approximately as
χ2d where d= q− p is a lack of fit statistics. If model
is correctly specified residuals should be uncorrelated
and Q should be small with large probability value
(> 0.01). The null hypothesis for the test is that all
the autocorrelations of residuals for lags 1 to k, are
zero. In Table 6, K = 8, GT1, PB217, PB324 and
RRIM703, the null hypothesis cannot be rejected with
p-values greater than 0.05 at 95% (min p=0.15) and
at K=12, PB260 and PB28/59, null hypothesis cannot
be rejected at 99% with values greater than 0.01(min
p=0.02). In Table 6 the Q-stat probability value for
GT1, PB217, PB 324 and RRIM 703 are large show-
ing no residual correlation but PB 28/59 and PB 260
have low probability value depicting significant resid-
ual correlation at 5% but satisfactory at 10% signifi-
cant levels. Autocorrelation-The statistic denoted by
r(j) give the autocorrelation at lag j. An excessive
amount of residual serial autocorrelation is a strong
indication that the model is not adequately captur-
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Table 5: Impulse response function and Long-run elasticity of yield/tree in grams.

Clones Dynamic mul-
tiplier AR(1)

Height Impulse Re-
sponse Function

Girth Impulse Re-
sponse Function

Stimulation Impulse
Response Function

Long-run elas-
ticity of yield

PB324 0.32 1570 2211

PB217 0.30 -555 687 1774

PB28/59 0.51 24 -856 1600

GT1 0.39 25 931 1541

PB260 0.59 28 531 1118

RRIM703 0.33 -737 1053

Table 6: Test of mis-specification.

Clone Rs2 Q-Stat Q-Prob. Std Error Normality r(1) H(12) Durbin-
Watson

GT1 0.62 5.61 0.40 1368 1.75 0.02 1.27 1.78

PB217 0.58 7.4 0.53 1404 4.4 0.05 0.81 1.80

PB260 0.58 16.6 0.06 1565 2.73 0.22 0.67 1.50

PB28/59 0.59 18.13 0.06 1410 7.06 0.21 0.19 1.56

PB324 0.62 8.33 0.21 1372 6.02 0.27 0.60 1.70

RRIM703 0.54 8.99 0.15 1506 3.11 0.16 0.36 1.59

Table 7: Test of specification result.

Clone Ratio p.e.v/m.d
in square

Residual
Skewness

Residual
Kurtosis

Residual Bowman
Shenton Ch2

p-value P<0.05 = S

GT1 1.14 0.43 0,18 1.24 0.54 NS

PB217 1.01 0.73 0.15 3.41 0.18 NS

PB260 1.16 0.57 0.43 2.36 0.31 NS

PB28/59 1.39 1.01 1.9 11.92 0.003 S

PB324 1.1 0.43 0.05 1.19 0.55 NS

R703 1.08 0.64 0.16 2.63 0.27 NS

Figure 6: In sample prediction test- RRIM 703.
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Figure 7: Kalman filter one-step ahead forecast of yield per tree for aggregate production planning.

ing the dynamic structure of the series. The r(1) is
the serial correlation coefficients at the first lag (Ta-
ble 6) distributed approximately as N(0,1/T) where T
is the length of the time series. The acf fluctuates close
to zero [r(1)] and fall within 95% confidence interval
given by ±1.96/

√
T±0.28 for large sample. Hence the

model produced non significant residual autocorrela-
tion.

Heteroskedasticity (H) occurs when the errors for
different dates have different variances but are un-
correlated with each other. H(h) is the ratio of the
squares of the last h residuals to the squares of the
first h residuals where h is set to the closest integer of
T/3 [11]. A high value on F-distribution indicates an
increase in variance overtime. A test for Heteroskedas-
ticity distributed approximately as F (h,h) gives 2.69.
The low value for the Heteroskedasticity statistic H
(12) indicates a degree of Heteroskedasticity in the
residuals which is however not significant (Table 6).

In summary, a strong evidence of first-order auto-
correlation is established using Durbin-Watson test
statistic for the six clones which cast doubt on any in-
ferences drawn from a least squares model currently in
use. Hence, a time series model that accounts for the
autocorrelation of the random error was implemented
in the study. Coefficient of determination Rs2, that
measures the percentage change in the series explained
by the model, is that around the season mean. It is
positive for all the clones and far from zero > 50%. Its
relevance as a goodness of fit criterion is therefore not
marginal. The result of the residual autocorrelation

function (acf) test shows that the models explain the
persistence by producing random residuals which sat-
isfies the statistical assumption of the Kalman filter.

4.7. Residual test

Further, the assumptions underlying the local level
model are that the disturbances εt and ηt are nor-
mally distributed and serially independent with con-
stant variances. The Normality: 5% null hypothe-
sis of normality on Bowman-Shenton χ2 distribution
is shown in Table 7. PB28/59 residual is not nor-
mally distributed with Bowman-Shenton χ2 p-value
at 0.003<0.05. Ratio p.e.v./m.d in square- The basic
goodness of fit measure is the prediction error variance
(PEV) whose square root is the equation standard er-
ror. It is the variance of the residuals in the steady
state. The ratio prediction error variance/mean de-
viation square should be equal to unity for correctly
specified model. In Table 7 the goodness of fit crite-
rion is found satisfactory for five clones PB 217, GT1,
PB260, PB324 and RRIM 703 with near unity but
rather on the high side for PB 28/59 at 1.38. This out
come will be useful in the post sample period evalua-
tion of the models.

In Figure 5, estimated spectral density of the resid-
uals bears a reasonable resemblance to the theoret-
ical spectrum of a white noise trend- flat spectrum
not bumpy. Estimated probability distributions of the
model residuals also closely resemble the correspond-
ing theoretical normal distributions (density in Fig 5)
with minor asymmetry for some clones. Fig 5 also
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Table 9: Variance of model forecast to actual 2010 (kg/tree).

Qtr Model
Forecast

Actual RENL Pre-
vision

% Variance
Model

% Variance
Plantation

1 12.4 5.00 3.65

2 14.6 10.86 5.68 14.2 47.6

3 14.7 13.23 7.08 9.6 46.4

4 13.9 13.99 6.40 5.8 54.2

Mean 13.9 12.67 5.73 9.5 54.7

depicts the standardized residual plot, the autocorre-
lation function and the cumulative sum residual plot.
The standardized residual is the prediction error or
innovation divided by the prediction error standard
deviation while the cumulative sum is the sum of the
residuals divided by the standard deviation. It is used
to detect structural change in the model. The result
of the residual acf plot shows that the models explain
the persistence by producing random residuals which
satisfies the statistical assumption of the Kalman filter
(Fig 5).

4.8. In sample prediction test

Fig 6 shows the measured/calculated plotted
against time as produced, in order to see how the
model error varies with the dependent variable. The 8-
quarter in-sample predictive test for RRIM703 shows
that prediction and observed values fall within the in-
tervals, confirming absence of any major intervention
on the process. The prediction against observed val-
ues (Fig 6) is to check the agreement between mea-
sured and calculated values. The standardized plot is
based on the residuals divided by the estimate of the
standard deviation. The cumulative sum test is also
plotted. The in-sample prediction is clearly consistent
with structure of the model specification with predic-
tion line plots falling within the specified intervals.

The Chow failure test probability at 95% confidence
level is greater than 0.05 (p> 0.05). The difference be-
tween one step predictions and observations is there-
fore not significant. Table 8 shows test result for all
the clones on residuals.

4.9. Incoming year rubber production forecast

Figure 7 shows the yield forecast of the incoming
year. The lines on the either side of the forecast func-
tion are based on the estimated root mean square er-
ror (RMSE) and indicate the prediction interval that
limits the rubber yield per tree estimate used for the
aggregate production plan. As the forecast horizon
increases so does the uncertainty attached to the fore-
casts and the prediction interval becomes wider. The
one year ahead forecast from Fig 7 is shown in Table
9 compared with actual 2010 production and RENL
prevision for the same year. The gap between ac-
tual rubber production and Kalman filter estimation

model is reduced to 10% on the average against plan-
tation management prevision gap of 55%. First quar-
ter 2010 is far from the predicted but in line with data
trend and closer to RENL prevision. The increase in
stimulation concentration from 2.5% to 5% is a pos-
sible reason for the high model forecast value for the
1st quarter of 2010/11.

Significant test of actual yield to one year ahead
model forecast in Table 10 is less than 1.96 for the
rubber clones and hence the null hypothesis that the
actual yield is within the forecasted value is accepted
at 5% significant level (95% confidence level).

5. Conclusion

The structural time series decision models esti-
mated by Kalman filtering provides an efficient an-
alytical framework for tracking the yield dynamics
of rubber plantations that results from various man-
agement rubber exploitation policies. And guarded
by theoretical insight, dependability of empirical data
and judicious choice of analytical techniques, an ap-
parently entrenched problem of noisy rubber crop col-
lection and prediction environment has herein been
rendered more predictable and dependable as a major
contribution to rubber plantation industry. However,
a wider application of the Kalman filter approach to
rubber yield parameter estimation requires a deeper
investigation of the Kalman filter assumptions, espe-
cially the linearization of the rubber tree yield series,
whose relaxation may render Kalman filter application
heavy-going.
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