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ABSTRACT  

 A prediction method is presented for the static pressure recovery in subsonic 

axisymmetric truncated conical diffusers. In the analysis, a turbulent boundary layer is assumed 

at the diffuser inlet and a potential core exists throughout the flow. When flow separation 

occurs, this approach cannot be used to predict the maximum pressure location. The analysis 

can easily be modified to accommodate two-dimensional diffuser and conical diffusers fitted with 

tailpipes. 

 The predicted overall static pressure recovery compares favorably with available 

experimental results and agreement is generally within 5 per cent. 

 

NOTATION  

A  Cross-sectional area 

AR  Diffuser area ratio 

CF Local skin friction coefficient  

CP Statistic pressure recovery 

coefficient defined as 
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H Boundary layer shape parameter 

  (=  * ) 


H,

1
H  Shape parameters defined in the 

text 

M Mach number 

m mass flow rate 

Po ,  P Pressures: total and static 

R Local radius 

R* Throat Radius 

Re Reynolds number base on pipe 

diameter 

R Reynolds number base on 

momentum thickness 

RO Gas constant 

r Recovery factor =  (Tr -Te / (To - Te) 

X Axial distance 

To, T, Tr Temperatures: total, static 

and recovery. 

u Velocity  

 Boundary Layer thickness 

*, Boundary layer displacement and 

momentum thickness  

 Local density of fluid 

 Diffuser cone angle 

 Ratio of specific heats  

 Dynamic viscosity 

 

Subscripts 

e Free stream condition   

s Value at separation point 

t Tailpipe value 

1,2 Inlet and outlet 

 Bar indicates mean values over cross-

section 

 

1. INTRODUCTION 

 

 A diffuser which terminates in a 

sudden enlargement into a parallel 

section is termed a truncated diffuser. In 

Fig 1, ABCD defines a full diffuser fitted 

with a tailpipe, ABED defines a 

truncated differs and AFEC represents a 

pipe flow with sudden enlargement. 
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Fig I: Diffuser configuration 

 

 In dealing with certain practical 

design situations where diffuser length is 

restricted by space consideration, it might be 

preferable to use a truncated diffuser of low 

cone angle rather than a wide angle diffuser. 

The former will give a more stable and 

symmetric flow than the latter, although at 

the expense of some loss in the static 

pressure recovery 

 A systematic survey of literature on 

this topic revealed that only in [1] and [2] 

has performance prediction of truncated 

diffusers been considered. In [2] the loss in a 

truncated diffuser was given by the sum of 

the loss in the remaining conical portion 

treated as a full diffuser discharging into a 

parallel tailpipe and the loss at the sudden 

enlargement. In [1] the author postulated 

that the loss of a truncated diffuser would be 

greater than that of a full diffuser by the 

amount of the sudden enlargement loss and 

presuppose these theories given knowledge 

of the full diffuser and sudden elargement 

losses for the particular diffuser geometry 

and inlet conditions. 

 In this paper, the authors have 

developed a prediction method which will 

give the overall static pressure recovery 

coefficient for truncated diffusers when the 

inlet conditions are specified. The pressure 

rise within the diffuser cone is limited by the 

growth of the boundary layer on the diffuser 

wall, hence a reliable turbulent boundary 

layers prediction method has been invoked 

in the analysis. 

2. THE ANALYSIS  

 The flow model is treated as three 

distinct regions, namely, 

i. a region of attached flow, 

ii. a separated region, and  

iii. a region of flow re-attachment and 

development.  

 

For the three regions the following 

assumptions are applicable, viz,  

a) The fluid is a perfect gas and the 

recovery factor is constant. 

b) The flow is axi-symmetric. 

c) A potential core exists throughout the 

flow region. 

d) Adiabatic flow, i.e. heat transfer to or 

from the diffuser is neglected. 

e) Static pressure is a function of axial 

distance only. 

f) Radial velocities are negligible. 

 

For the attached flow the only additional 

assumption is that the flow will separate if H 

= 3.1 or d/dx = 0.012 

 For the separated flow it is also 

assumed that an axial zone of constant 

pressure extends into the parallel pipe. Skin 

friction term is neglected. 

 For reattaching flow which takes place 

in the parallel pipe the skin friction is 

neglected [3]. 

 

2.1 ATTACHED FLOW 

 In this region the problem reduces to 

the calculation of compressible turbulent 

boundary layers. Green’s method [4] is 

employed in the analysis. Following Green, 

Morkovim’s hypothesis is invoked to extend 

to the compressible flow the existing 

relations for entrainment function. The 

boundary layer momentum integral equation 

is solved simultaneously with the diffuser 

overall continuity equation and an auxiliary 

equation derived from consideration of the 

rate of entrainment of fluid into the 

boundary layer. The basic equations are 

listed below. The momentum-integral 

equation: 

FIG I: DIFFUSER CONFIGUATION 
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The skin-friction equation: Modified Ludwig and Tillman correlation. 
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In the entrainment equation for an axisymmetric flow with a thin boundary, the 

entrainment function is given as: 
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Using the definition of mass flow thickness,  
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Correlation between H1 and H is obtained as: 
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Re-writing (1), (3), and (5) in a non-dimensional form using the definitions 

 

   
 

  
     

 

  
  

   
 

  
      

   

  
      

  

  
  

    
   

  
    

  
 (    )

  
  

 



NIJOTECH VOL. 3 MARCH 1979 ODUKWE AND EZEKWE 24 

and eliminating   
  from equations (3) and (5) 

using equation (1), the system reduces to 

two simultaneous differential equations in 

the unknowns H and   

               (7) 

               (8) 

Where 
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The solution is obtained by a simultaneous 

step by step integration of equations (7) and 

(8) starting from prescribed inlet conditions 

using a fourth-order Runge-Kutta principle. 

 

2.2 Separated Flow 

Momentum integral equation reduces to 

.  
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Continuity equation: 
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Integrating these equations, we obtain the 

displacement and momentum thickness as: 
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2.3   Re-Attaching Flow 

Continuity equation: 
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Integrating equation (13) we obtain 
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Momentum-integral equation (neglecting Cf): 
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substituting the expression for * in equation 

(14) , an ordinary; differential equation with 

Me and  as variables is obtained. The 

solution is obtained by step-by-step 

integration of equation starting from the 

results already obtained for separated flow. 

For the prediction to be accurate, the 

calculations must be terminated at the 

maximum pressure position. (dp/dx  = 0 

which implies that d*/dx  = 0).  

 Fig. 2 shows the growth of boundary 

layer parameters (H and ) for 15 degrees 

diffusers with initial Mach number of 0.6 

and 1 /R* of 0.0025. 

 

2.4. THE OVERALL STATIC PRESSURE 

RECOVERY  

 The pressure recovery was obtained 

using the assumption of constant total 

pressure in the core flow. Momentum 

balance was employed in the tailpipe 

analysis. This is given as  

 ,  
     *(     )   (     )+-           

  (15) 

When this equation is applied between the 

tailpipe inlet and the maximum pressure 

position, the pressure recovery in the 

tailpipe is obtained. The sum of these two 

recoveries gives the overall pressure 

recovery. 

 In the analysis of the performance of 

propulsion devices, diffusers, or other 

systems in which there is a flow of fluid in 

an enclosed duct, it is desirable to use a one 

– dimensional representation of the fluid. 

Since in reality the flow properties, viz, 

veloicity, pressure etc. are generally 
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Fig. 2(a): Growth of Boundary Layer Momentum 

Thickness in Truncated 150 Diffuser. 

 

non–uniform at any station of the flow, a working 

knowledge is needed of the averaging procedures 

which are commonly employed to describe the 

integrated properties of the flow. The mass 

momentum average definition [5] is used in the 

present analysis and the static pressure recovery 

coefficient is defined as: 
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Fig. 2 (b): Growth of Boundary Layer shape Factor 

in Truncated 150 Diffuser. 
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3. COMPARISON WITH EXPERIMENTAL 

RESULTS 

 In Table 1 the predicted and measured 

static pressure recovery coefficients [6] for four 

diffuser configuration, viz, 

i.  = 100, AR  =  2.0 , 1.5 

ii.  = 150, AR  =  2.0 , 1.5 

are compared. The inlet Mach number for the 100 

diffuser was 0.7 and for 150 diffuser 0.2.The 

boundary layer at the diffuser inlet was thin in 

all cases and  the ratio 1*/2R1 is approximately 

0.005. 

 
TABLE 1: COMPARISON OF PREDICTED OVERALL STATIC PRESSURE RECOVERY 

COEFFICIENTS WITH EXPERIMENTAL DATA OF [6] 

Diffuser 

Included 

Angle 

  
 

   
 (approx)  

AR 

 

 ̅  

CP 

Predicted Experiment [6] 

 

100 

 

100 

 

150 

 

150 

 

0.005 

 

0.005 

 

0.005 

 

0.005 

 

1.5 

 

2.0 

 

1.5 

 

2.0 

 

 

0.7 

 

0.7 

 

0.2 

 

0.2 

 

0.65 

 

0.76 

 

0.58 

 

0.63 

 

0.68 

 

0.71 

 

0.60 

 

0.66 
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From the table it is observed that the 

experimental points lie within 5 per 

cent of the theoretical values. There is 

no systematic variation of error with 

truncation or inlet Mach number. 

 In Fig. 3 the predicted and 

measured variations of pressure 

recovery are shown for 150 diffuser of 

area ratio of 1.5 and inlet Mach 

number of 0.2. The maximum 

variation is about four per cent.  

  

Fig. 3: predicted and Experimental; 

Axial pressure Distribution (150 

Diffuser; AR 1.5,  ̅      ) 

 

4. CONCLUSIONS 

 

 A prediction method for the 

pressure recovery of truncated 

diffusers for adiabatic flow wth 

turbulent inlet boundary layers has 

been evolved. The predicted results 

compare favorably with available 

experimental results and the theory 

demonstrates that precision is 

attainable over a wide range of inlet 

Mach number and for different 

geometrical configurations. Mach 

numbers of 0.2 and 0.7 used in 

comparing the theoretical and 

measured results are within the 

incompressible regime and close to 

choking condition respectively. 

  

 It ought to be mentioned that 

the analysis applied to axi–symmetric 

flows, but it can be modified for used 

with two-dimensional diffusers. 
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