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ABSTRACT 

 The engineer relies greatly on Meteorological data for solar energy applications. In most 
case the available equipments indicate only the hourly or daily total irradiance on a flat 
horizontal surface. However, a more basic or fundamental information may also be necessary 

especially when application call for a knowledge of the apparent motion of the sun relative to an 
observer on earth. In such cases, the controlling equations are often stated without proof. 

 The present submission synthesizes this aspect of spherical geometry in heavenly 
kinematics in form concise enough for engineering and meteorological applications. The final 
expressions will be familiar to workers in meteorology and to engineers involved in solar energy 
instrumentation and utilization on ground. The analyses are educational adaptations of 
engineering mechanics to this growing field of heliotechnoloy.  

 

NOTATION [1] 

 = solar altitude angle 

 = surface tilt angle, towards Equator +, 

away from Equator - 

 = solar azimuth angle, clockwise from 
North 

 = solar declination angle 

, i = incidence angle (on surface) 

 = latitude 

 = solar hour angle, solar noon = 0.00, 
afternoon +ve 

L = longitude 

t =        time (hours) 

INTRODUCTION 

In solar energy measurements and 
applications some convenient reference co – 
ordinates are necessary for locating the Sun 
both in space and in time. The following 
study first generates compact spatial inter- 
relation between such relevant parameters 
as the solar declination, altitude, azimuth 
and hour angles as related to the observer’s 
latitude [2,3]. Next, true Solar time is 
deduced in terms of the longitudes of the 

observer and the observer’s time zone with a 
complementary modifier called the “Equation 
of Time” [2,4]. Insolation data must of 
necessity be reported on the basis of the 
True Solar Time often termed the Local 
Apparent Time. 

This paper considers what is often taken as 
the necessary first step towards equipment 
installation and data reporting. In the case of 
the North-South or “Equatorially” mounted 
solar equipment, latitude, declination and 
azimuth settings are usually necessary if the 
apparent motion of the Sum is to be 
accurately tracked. Complexity then arises 
since the device must be geared to solar time 
using a clock-type actuating subsystem. In 
the more common utilitarian flat – plate 
collector assembly, the azimuth is fixed 
North-South or at the local solar noon 
position and the declination follower is the 
only gear that maybe varied with time 
(perhaps weekly and sometimes annually) 
since a location’s latitude is constant for a 
rigidly fixed equipment, it is important that 
the optimum angle of tilt be employed, and 
this, in turn depends on the particular solar 
energy application being maximised.  

 General relations with particular 
reference to Nigeria are also considered.
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Samples of optimum tilt angles are 
computed for maximised solar cooling in 
comfort room air-conditioning for some 
Nigerian cities. 

2. THEORY  

2.1 CO-ORDINATES ON THE LOCAL 
HORIZON PLANE: THE SOLAR AZIMUTH 

ANGLE (0) AND ALTITUDE ANGLE (0) 
On the local horizon plane, the Sun can be 

located in terms of the azimuth angle () and 

the altitude angle (). The azimuth is 
measured in the observer’s horizon plane 
either: 

i. from the direction of True North (N) 
through 3600clockwise towards the 
East (E), or 

ii.  From the direction of True South (So) 
towards the West (positive) or East 
(negative), the empirical maximum 
value being 1800. 

In either case the angle () is bounded by the 
plane that contains both the Sun (S) and the 
local zenith or directly overhead direction 

(0). The altitude angle () is measured in the 

0 - S plane from the horizon upwards to the 
sun. 

It follows from Fig. 1 that if the point 0 
represents the observer and  

0S = 1.00 

e1  =  Cos () . Sin () 

n  =  Cos () . Cos ()   (1) 

q  =  Sin () 

 

 

 

 

 

 

Fig. 1: Altitude and Azimuth Angles. 

 

In effect, the scalar quantities e1, n and q 
represent the decomposition values of the 

unit vector  ̅  (  ⃗  ) along the corresponding 

Cartesian co-ordinates. A more general 
vector expression takes the form  

 ̅  [      )       )] ̅  [     )       )] ̅  
[     )] ̅      (2) 

 Where  ̅    ̅̅̅   and   ̅̅ ̅ are unit vectors in the 
orthogonal system. 

The events of sunrise and sunset occur 

when   = 0.00. Sunrise occurs in the local 
horizon plane on scent. Sunset is in the 
Easterly direction as the sun crosses the 

Westerly direction in which case the sun just 
goes below the horizon on ascent. When 
atmospheric refraction or optical aberration 
in neglected, the exact times for the two 
events are determinate in terms of the 

observer’s latitude (0). For this purpose the 
position of the sun has to be located in some 
more convenient co-ordinates with the 
Earth’s centre as origin. 

2.2. THE SOLAR DECLINATION (0) AND 

THE LOCAL HOUR ANGLE (0) 
With the set of co-ordinates in which the 
Earth’s Centre (C) is the origin, two 
Cartesian axes are located in the equatorial 
plane. The first is the original Easterly 
direction (E). The second is represented by 
the line joining C to the interception of the 
observer’s longitude with the equatorial 
plane it is therefore a vector in the direction 
of the observer’s zenith as if the observer 
were translated along his local longitude to 
the Equator. This is denoted as the meridian 
direction (M). The third co-ordinate is the 
North Pole direction (P) from the Earth’s 

centre. It may be noted that while P denote 
the North Pole, N (used earlier) is a Northerly 
direction on the surface of the globe. 

In this second triad the Declination of the 

Sun () is measured from the equatorial 
plane to the Sun in the plane normal to the 
Equator and containing the Sun. The Solar 

Hour Angle () is measured in the equatorial 
plane starting from the meridian direction 
towards the West. By implication the solar 
hour angle is zero
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at the moment of the Sun’s transit over the 
meridian, positive after solar noon (when the 
sun is in the Westerly direction) and negative 
before solar noon. 

Fig. 2 (a) and 2 (b) represent the triad and 
with CS = 1.00, the orthogonal components 
are: 

 e2  =  - Cos () . Sin () 

 m = Cos (). Cos ()  (3) 

and p  =  Sin () 

or 

 ̅  [      )       )] ̅  [     )       )] ̅
 [     )] ̅ 

     (4)             

In this case, the unit vector    
 

is 
decomposed in the direction CE, CM and CP. 

 In Fig. 2 (a) the equatorial 
plane is drawn with the observer at 0 having 

been displaced 0 from local solar noon. 
Both the Sun (S) and the North pole (P) are 
at a plane normal to the Equator, and from 
the sketch, the horizontal component of the 
solar beam must be due West. 

 Equations (3) and (4) may be deduced 
from Fig. 2 (a), but, Fig. 2 (b) gives the same 
results more directly except for a minor 
deficiency in visualization: it is 

 

Fig.2: Declination and Hour Angles. 

 

not as immediately obvious as in Fig. 2 (a) 
that, in the equatorial plane, the co-

ordinates are Cartesian and that  measured 
positive from solar noon.  

 The declination () varies rather 
slowly over the period of one day but quite 

significantly within the year. The maximum 

and minimum values of  occur at the 
solstices (about 21st June and 21st 
December). The variations are virtually 

sinusoidal with an amplitude ( max.) of 
about 230 27’ (= 23.450). this value 
represents what is normally referred to as 
the “Obliquity of the Ecliiptic” which is the 
angle at which the Earth’s axis of rotation is 
inclined to its celestial orbit around the Sun. 
At the time of the Equinoxes (about 21st 

March and 21st September)   = 0.00. One 
aspect of deduction from theory considers 
some acceptable working data base for solar 
declination angles. More precise values for 

any day within a year are reported annually 
in some Almanacs.  

2.3  Rotated Co-Ordinates  

A relationship is found between the first two 
sets of equations by a rotation of the co-

ordinate systems around the direction E 

through the observer latitude angle (0). 
Since  the minimum Sun – Earth distance is 
about 1.445 x 108 km and the maximum 
planetary radius (Earth’s Equator) is some 
6.378 x 103  km, it follows that the Sun’s 
distance from the Earth is well over 20,000 
times large than the planetary radius. Such 
a rotation thus makes the observer position 
(0) and the Earth’s centre (c) virtually 
coincident.   

This is analogous to orthogonal vectors in 
triads for which  

     ⃗⃗⃗⃗   ̅  

    ̅    ̅    ̅  

 

    ̅    ̅    ̅  Since this rotation is about the direction   
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E,   
e1 = e2      (5) 
and the remaining components are such that 

 ̅   ̅  and   ̅̅ ̅  ̅ are pairs of perpendicular unit 
vectors in a plane. From the co – planner 
reproduction of Fig. 3 it is observed that  

q = mCos () + pSin () and   

n = mSin () + pCos ()   (6) 
 

 
 
 
 

 
 
 
 
 
 
 
 

Fig. 3: Rotated Co-ordinates. 
 
From equations (1) to (4) 

 e1 = Cos () .Sin () 

 n = Cos () .Sin () 

 q = Sin ()  

 e2 = -Cos () .Sin () 

 m = Cos () .Cos () 

and p = Sin () 
Using these in (5) and (6) the following 
transcendental equations are obtained:-  

Sin () = Cos () .Cos () .Cos () + Sin () 

.Sin ()     (7) 

Cos () .Cos() = -Sin () .Cos () .Cos ()+ 

Cos () .Sin ()    (8) 

Cos() .Sin ()  = -Cos () .Sin ()  (9) 
 
 In the above relations the azimuth 

angle () is over 3600 starting from true 
North. When measured from true South with 
East negative (i.e before solar noon) and 
West positive, (8) and (9) transform into:  

Cos () .Cos() = Sin () .Cos () .Cos ()-Cos 

() Sin ()     (10) 

since Cos(180  )0 = -Cos ()0. 

and Cos() .Sin ()  = Cos ().Sin () (11) 

since Sin(180  )0 =  Sin() 
Equations (7) to (11) from the basis for many 
kinematics relations necessary in solar 
irradiation measurements, collector tilts and 
general data reporting. 
 
3. DEDUCTIONS  
3.1 SOLAR AZIMUTH ANGLE 

3.1.1 THE AZIMUTH ANGLES () 
CONTINUOUS FROM TRUE NORTH 

(a) From (9), Sin () 

=  -Cos () .Sin ()/Cos () . 

or Sin () = -Cos () .Sin (w)  /Cos ()  
 (12) 

The rising and setting azimuth Angle (0) is 

determined in terms of 0 and  by setting  
= 0.00 

Sin ()a=0 = Sin (0) = -Sin (0) /Cos ()  

or Sin (0) = -Cos () .Sin (0)  (13) 
 

(b) Dividing (9) with (8) gives the general 

solar azimuth equation  

Tan () = Sin ()/ [Sin () .Cos () - Cos() 

.Tan ()]     (14) 
 

(c) (7)  x Sin() + (8) x Cos  () results, on 
simplification, in the relation  

Sin () = Sin () .Sin () +Cos () .Cos 

() .Cos ()    (15) 
 

It would follow from the above that the rising 

and setting azimuth angle (0) also 

determinate in terms of   and  resulting in 
the relation: 

Cos (0) = Sin ()/ Cos ()   (16) 

3.1.2 THE AZIMUTH ANGLE () FROM 
TRUE SOUTH (WEST:- POSITIVE, 
EAST:- NEGATIVE) 

From (11) 

(a) Sin() = Cos () .Sin()/Cos () (17) 

 Sin (0) =  Sin (0).Cos () (18) 

(b)   Tan () = Sin().[Sin() . Cos 

() - Cos () .Tan ()]   (19) 

(c)   Sin () = Sin  () .Cos () - Cos    

().Cos ()    (20) 

Hence Cos (0) = -Sin ()/Cos () (21) 
 
Equations (12) to (16) are of more 
generalised application but workers in the 
Northern Hemisphere, especially beyond the 
Tropics prefer those from (17) to (21) since 

the angle 0 is then never up to 900 when 

0<0.00 i.e when 

the Sun is south of the Equator: cold 

climatic periods of more current concern, 

demanding solar domestic heating 

applications. 

 

3.2 SOLAR ALTITUDE AND SOLAR 

TIME EQUATIONS 
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3.2.1 SOLAR NOON AND MAXIMUM 

SOLAR ALTITUDE ANGLE  

From equation (7)  

Sin () = Cos (). Cos ().Cos ()+ Sin () .Sin 

() 

 This expression, with the correct use 

of signs, is adequate for all observed values 

of the declination (). This declination is 

considered positive when the sun is North of 

the Equatorial plane and negative when 

south. 

 At the local Solar Noon the solar hour 

angle () is zero and the sun attains its 

maximum altitude in the skies 

Sin (max) = Cos () .Sin ()+Sin ().Cos () 

 = Cos ( - ) 

 = Sin[90  (-)] 

    

Hence (max  = [90  ( - )]  (22) 

For the  regime bounded by max (i.e. the 

Tropics)  

max  = [90 - ( - ) when <  (23) 

or max  = [90 - ( - ) when > (24) 

 In essence the maximum possible 

solar altitude angle is 900 and occur when  

=for any location. Outside the Tropics the 

Sun never goes directly over the zenith and 

max <900 at all times. 

3.2.2 SUN-RISE TO SUN S-RISE 

DURATION AND DAY – LIGHT 

FRACTION (F)  

 Since the Earth’s rotation of 150 

represents one hour on the 24 hour cycle, 

then from equation (7) with 0  = 0.00, the 

solar hour angle and hence time difference 

between sun- rise and sun – set can be 

found 

Thus 0.00 = Cos () .Cos ().Cos (0)+ Sin 

 ().Sin () 

   
       )    

      [      )     )       )     ] 

or   
       )    

      [      )      )]    (25) 

and     
 

  
     [         ] 

= Day – Light Duration    (26) 

In the above relations to is hours from solar 

noon to sun – rise or sun – set.  

 Theoretically this difference in time 

between sun – rise and sun – set would be 

2to hours since  = 0.00 and hence t = 0.00 

at solar noon. Allowance for the earth’s 

curvature and atmospheric diffraction or 

aberration may be made using the empirical 

corrective relation [5] 

o = - [0.833 + (0.0388) h 0.5]o  (27) 

where h = local height above standard sea 

level in meters. Thus the day – light duration 

is slightly larger than the result obtainable 

from (26) especially at high ground 

elevations.  

 Many meteorological observatories 

report the sun – rise and sun – set times and 

duration using the upper edge of the Sun as 

the transit base across the horizon [6]. 

Where these are not available, and defining 

the “Day – light Fraction (F)” as the 

proportion of the 24-hour period for which 

the sun is above the horizon plane, 

F = 2to/24 =to/12 = 
0/180ωo

o  

  
 

   
     [      )      )] 

or   
 

 
 

 

   
     [      )      )]      (28) 

Since Cos (90 + A) = - Sin (A) 

 Day – light Duration (2to hours) or Day 

– light Fraction (F) are important in the 

estimation of cumulative total irradiance 

received in the day. 

 The precise times or the events of sun 

– rise, noon and sun – set are more logically 

considered under Solar Time Relations. 

3.2.3 TRUE SOLAR TIME 

CONSIDERATIONS 

 In an earlier paper [7], Solar 

Time Relations were presented. It is shown 

that the 24 – hour day does not reflect the 

actual duration of the Solar day. The later, 

called the sidereal day, 

represents the exact period for one complete 

rotation of the planet Earth around the Sun. 

the average value of the sidereal day is 

23.93447 hrs. [8]. It is therefore vital to 

know the corrections that must be imposed 

on the 24 – hour clock time in order to 

establish the more correct reference for Solar 

Time on which solar data must necessarily 
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be based. This correction parameter (in 

minutes) is termed the “Equation of Time 

(E.T)”: an obvious misnomer since it is not 

an equation by any imagination. It is a time 

– scale modifier such that the duration of the 

true solar day on any date (for which the 

Equation of Time is known) becomes 

Solar Day = 24 hours + (E.T) mins.  (29) 

 As may be expected, the sidereal day 

itself is not exactly constant and the 

Equation of Time for any calendar date will 

vary slightly between successive years. This 

inherent variability would limit any 

deductions from data to approximate 

solution in the nearest minute only. 

Reference [4] gives such values for each day 

of the calendar year.  

 With Nigeria’s adapted Standard 

Meridian being 150E, reference [7] gives the 

following equations for any location within 

Nigeria 

L. A. T = [(L.S.T - I) + L/15 + E.T/60] hrs. 

(30) 

and (L.S.T)noon   = 13, 00 - (L/15 + E.T/60) 

hrs.      (31) 

 

Where L.S.T. is the Nigerian Time as given by 

the clock and Lo is the exact longitude of the 

observer’s location. It is clear from equation 

(30) that True Solar Time (L.A.T) and the 

clock time (L.S.T) may not necessarily 

coincide in any location. 

 

 Furthermore, this time modifier 

affects the Day – Light fraction (F) of 

equation (28) in the sense that the sidereal 

day is not 24 hours but more nearly (24 + 

E.T/60) hours. However, this correction is 

often neglected in computing the fraction (F) 

mainly because the theory precludes 

atmospheric diffraction which has a grater 

influence on the observed day – light 

duration. 

 On combining (26) and (31), the 

precise clock times for sun – rise and sun – 

set can be written yielding: 

      )           [   ⁄       ⁄ ]

 
 

  
     [      )      )]    

      )          [   ⁄       ⁄ ]  
 

  
     [      )      )]                    (32) 

The corresponding Solar Times are: 

            
 

  
     [      )      )]     

(33) 

(- for sunrise, + for sunset) 

3.3 SOLAR DECLINATION  

 It is stated that the obliquity of the 

Earth’s ecliptic orbit around the sun is about 

23.450. The Earth’s axis of rotation however 

wobbles very gentle like that of a retarding 

spinning top: tracing a complete circle in 

about 25, 000 years [2]. This so-called 

“Precession of the Equinoxes” affects the 

obliquity of the ecliptic. In consequence, the 

magnitude of the maximum and minimum 

declination (max) varies slightly over the 

years and the precise times for the solstices 

and the equinoxes, also oscillate slowly with 

time.  In 1975 the quoted obliquity of the 

ecliptic was 23.4425340 or 230 26’ 33.123’’ 

[3]. The commonly accepted mean value is 

230 27’8.26” or 23.4522940 [8]. A close 

engineering figure is 23.450 which yield the 

approximate working formula.  

0 = 23.450 Sin [ 360 (284 + N)/365]0 (34) 

 

Where N = Day count starting from January 

1 or January 2. The above relation has a 

quoted accuracy of 0.500. 

 

 Table 1 gives results based on 

Klein’s “average day” for each calendar 

month [9]. Klein’s recommendation uses 

equation (34) with January 1 as first count 

and is useful where monthly declination 

settings are considered sufficient. 
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TABLE 1 SOLAR DECLINATION IN DEGREES (MONTHLY AVERAGES) [9] 
 

Month  Jan. Feb. Mar April  May  June  July  Aug. Sept. Oct. Nov. Dec. 

Date  17 16 16 15 13 11 17 16 15 15 14 10 

N 17 47 75 105 135 162 198 228 258 288 318 344 


0
 -20.92 -12.95 -2.42 +9.41 +18.97 +23.09 +21.18 +13.45 +2.22 -9.60 -18.91 -23.05 

 

 

 
Declination values for the 21st day of each calendar 
month in 1964 are used in the ASHRAE correlation 

[10] 

 = 23.470 Sin [360 (284 + N)/365]0 (35) 
Choice of the 21st day of each calendar month has 

other implications in Sun – Earth distances and the 

extra – terrestrial “solar constant”. These are 

outside the limited objectives of this paper. 

 In the more expansive 5 – day values [10] 

the declination values are accurate for the 21st day 

of each month in 1977 and eqn. (35) is used in 

establishing other entries. 

 Russo’s formulation [11] is based on the 
ideal pure Newtonian Sun – Earth system. The 

slightly more elegant (and more complicated) 

correction takes the form:  

0 = 23.450 Cos [180 (A + N + T/24)/ 186]0 (36) 

where A = 13 (12 for leap years) 

 N = year Date (January 1 = 1) 

          T = GMT (Greenwich Mean Time) 

The equation thus takes daily variations of 

declination into account. For average day values  

 T = 12 

Computation with the above relation reveal that, for 

correction declination signs, either 23.450 be 

replaced by -23.450 or 

0 = 23.450 Cos [180 -180(A + N + T/24)/ 186]0 
 (37)  

 Equation, (37) is found to give the closest fit 

(when compared with others) with Almanac records 

over the years. Maximum error observed is of the 

order of 0.30. However, the Almanac value for any 
date should be used if available. 

 

 

 

 

4. SAMPLE APPLICATION OF THEORY  
 Table 2 represents Solar Space – Time 

Angles and Solar Times for the City of Lagos on the 

21st day of December in any year. The results are 

as calculated using equations (7) to (12), (17), (30) 

and (31). 

For Lagos,  

Latitude () = 060, 27’N = 6.450N 

Longitude (L) = 030 , 24; E = 3.400E 

On 21st December, 

Declination () = -23.400 

E.T     = +2mins. 

TABLE 2: ANGLES AND TIME DERIVATIONS FOR 

LAGOS ON 21ST DECEMBER 

L.S.T 0 0 10
 20 L.A.T 

6,55 (R) -87.2 0.00 113.6 -66.4 6,11 

7,00 -86.1 1.0 113.7 -66.3 6,16 

8,00 -71.1 14.5 116.2 -63.8 7,16 

9,00 -56.1 27.6 120.7 -59.3 8,16 

10,00 -41.1 40.0 128.1 -51.9 9,16 

11,00 -26.1 50.7 140.4 -39.6 10,16 

12,00 -11.1 58.2 160.4 -19.6 11,16 

12,44(N) 0.00 60.15 180.0 0.00 12,00 

13,00 +3.9 59.9 187.2 +7.2 12,16 

14,00 +18.9 54.9 211.1 +31.1 13,16 

15,00 +33.9 45.4 226.8 +46.8 14,16 

16,00 +48.9 33.7 236.2 +56.2 15,16 

17,00 +63.9 20.9 241.9 +60.9 16,16 

18,00 +78.9 7.5 245.3 +65.3 17,16 

18,33(S) +87.2 0.00 246.4 +66.4 17,49 

 



NIJOTECH VOL. 3 NO. 1 MARCH 1979                       EZEILO   42 

 

L.S.T = Local Clock Time, L.A.T = True Solar 

Time, (R) = Sun–rise, (N) =Solar Noon, (S) = 

Sun–set 

From the above  

i. Clock Time and Solar Time can differ 

appreciably. 

ii. Altitude Angle at Solar Noon  

= 60 .150 = max 

As a check, max = [90 – (-)] 0,  

 (23) 

   = [90 (6.45 + 23.40)]0 

   = 60 .150 

1 =  azimuth from true North 

2 = azimuth from true South 

 Although this is virtually a limiting 

situation, the sun does not pass daily through 

or even close to the zenith as our man–in–the–

street may want to believe. 

 

TABLE 3: COMPARISON WITH “AGROMET 

DATA” 

(a) AGROMET ENTRIES 

 

 

 

 

(b) CALCULATED RESULTS 

 

 

 

 Other observations from results include 

the Day – Light duration of 11.633 hrs and the 

Day – Light Fraction of 0.484 each of which 

checks with equations (26) and (28) 

respectively. 

 Table 3 compares sun–rise, sun–set and 

duration data as reported in the Nigerian 

Agrometeorological Bulletin [6] with 

corresponding theoretical evaluations. 

 

Agromet Station: Sokoto 

Latitude () = 130, 01’N = 13.01670N 

Longitude (L) = 050, 15’E = 5.25000E 

Elevation [12] = 350 metres 

 

The above evaluations are based primarily on 

equations (25) and (26) and can be seen to 

under–estimate the day–light duration by 

about 9 minutes only. Use of the empirical 

correction factor given in (27) adds about 13 

minutes to these theoretical values and hence 

slightly over–estimates the data. 

 

5. DISCUSSIONS  

 The fore-going represent fairly 

general and concise expressions for adequately 

tracking the solar beam. For concentrating 

devices and direct insolation recorders like 

normal incidence pyrheliometers and cavity 

radiometers it would be obvious that the 

actuating mechanism must be geared to solar 

time. For the others the position of the Sun 

relative to the collector should be known since 

the amount of direct irradiance is proportional 

 

 

 

 

 

 

 

 

 

Date in   Rise  Set  Duration  

1974   (a.m)  (p.m)  Hrs.  Min

s.  
March  4  6,53  6,49  11  56  

 11  6,48  6,50  12  02  

 18  6,45  6,50  12  05  

 25  6,41  6,50     12   09 

Date in

 

 D

ate in  

 E.T  
N  0 

Rise  L.A.T.  Set  Duration  

1974   (mins)  (a.m )  (noon)  (p.m )  Hr

s.  

Mins.  

March  4  -12  62  -7.53  6,58  12,51  6,44  11  46  

 11  -10  69  -4.81  6,53  12,49  6,44  11  51  

 18  - 8  76  -2.02  6,49  12,47  6,45  11  56  

 25  - 6  83  +0.81  6,44  12,45  6,46  12  01  
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to the Cosine of the incidence angle (io) 

 Generally, solar energy equipments 

demand large area collectors and daily 

azimuthal adjustments would be complex and 

expensive. In practice, therefore most collectors 

are either permanently fixed or have their tilt 

angles slowly varied over the seasons as 

determined by the slowly varying solar 

declination and also by the desired duty 

expected of the installation. In the Northern 

Latitudes, solar space heating is a necessity 

and for this reason the collector tilt (0) is 

optimized for the cold winter months. A 

location that is 400 N in latitude may well have 

a collector tilt angle of 500 to 550 from the 

Northern horizon plane and facing South. The 

commonly recommended angle in such 

climates is  

0 = + (Latitude +100).  

Obviously, this does not represent the 

optimum year – round value for maximum 

solar intensity that may be obtained from 

equation (22). 

 The above is an example where the 

season determines the equipment duty and 

hence the declination selection. Within the 

Tropics, solar energy is scarcely if ever required 

for space heating, and yet, as much solar 

energy as possible is normally required for all 

the known and envisaged applications. Solar 

grain dryers or solar domestic water heaters all 

demand maximal solar energy input. Solar 

coolers require elevated temperatures for any 

one of the thermodynamic cycles currently on 

trial, and the same goes for solar power 

systems. Since maximum intensity is thus 

desired, adjusting the collector to maximize 

energy harvest at solar noon is vital in all cases 

where azimuth tracking cannot be achieve or is 

undesirable. It follows that equation (22) 

becomes valid but the declination angle is still 

determined by the desired duty of the 

equipment. In the case of solar drying of 

agricultural products the harvest season may 

well be the deciding factor for solar cooling of 

buildings, the maximum demand will be during 

the hottest season.  

 Fig. 4 represents a location with latitude 

0 North (0<23.450), while the solar declination 

is 0 North. At solar noon the optimum tilt 

angle (0) for this collector must be such that  

0 = ( - )0 from the direction of true North in 

the observer’s horizon plane and facing South. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: Collection Tilt Angle. 

 

Equations (22) to (24) indicate this as a 

condition for normal incidence. Since the 

latitude angle () is fixed for any location, the 

season of any required duty (which determines 

) would decide the angle of best tilt. Table 4 

gives ranges of flat collector tilt angles as 

calculated for some Nigerian cities on the basis 

of the Nigerian society of Engineer’s Code of 

Practice for Comfort Air-conditioning [12]. All 

tabulated optimum tilt angles apply only to 

rigidly fixed collectors for maximising solar 

energy harvest at local solar noon. 

Design Month is on basis of maximum comfort 

cooling demands. Thus, if the duty is space 

over a limited period, declination averaging 

may be desirable and if over the entire year 

then the annual mean could be used. This 

averaged value for the year is represented by  

=  

 Since  average = 0.00. 

 

 Finally, the response time of any 

energy collecting or measuring device varies 

with the equipment and in practice an azimuth 

shift or orientation of up to 100 past solar noon 

may by advisable. The choice is arbitrary and 
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TABLE 4: RECOMMENDED TILTS OF STATIONARY FLAT PLATE COLLECTORS FOR SOME 
NIGERIAN CITIES (COOLING MODE ONLY) 

 

City Latitude 

()  [6] 

Cooling Design 
Month [12] 

Declination (0) 

[9] 

Collector 

Tilt (0) 

Benin 060,19’N March -2.42 +8.745 

Calabar 040,58’N March -2.42 +7.395 

Enugu 060,27’N March -2.42 +8.875 

Ibadan 070,26’N March -2.42 +9.855 

Ilorin 080,29’N March -2.42  +10.905 

Jos 090,29’N April +9.41 +0.464 

Kaduna 100,29’N April +9.41 +1.074 

Kano 120,03’N April +9.41 +2.644 

Lagos 060,27’N March -2.42 +8.875 

Maiduguri 110,57’N April +9.41 +2.544 

Port Harcourt 040,51’N February -12.95 +17.804 

Sokoto 130,01’N April +9.41 +3.614 

 
 

0 = ( -  )0, + = Inclination to the North Horizontal Plane and facing South (i.e. faced 
towards the Equator) 

- = Inclination to the South Horizontal Plane and facing North or faced towards the 
North pole. 

 50 and  40 represent the limiting variations in the month. Thus  50 in March 1 

approximately and -50 is for March 31. 
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