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ABSTRACT  

Most expressions for dispersion of pollutants have failed to give 

accurate predictions in both channel and natural stream flows. This paper 

outlines the basic concepts on which the fundamental dispersion equations 

have been derived. Some of the advances on these equations are examined 

and their deficiencies pointed out.  

The paper finally outlines the author's contribution in the establishment 

of a prediction method based on the latest developments on pollutant 

dispersion problems. Comparison of the predicted results with measured 

results shows good agreement. 

 

  

INTRODUCTION  

In a modern technological society 

more and more water is required as 

the population grows and the 

standard of living increases. To 

meet this demand, an enormous price 

is paid by the communities in re-

purifying and indirectly reusing  

already polluted waters. Water 

pollution control has now become a 

major concern in almost every state 

of the industrialised world and 

often involves political decisions 

for long-term planning.  

In many inland rivers and streams, 

the most serious pollutional 

problem arises from the fate of 

organic solids discharged into 

them. The basis of any effective 

pollution control strategy in these 

waters is a clear understanding not 

only of the fate and consequences 

of the pollutants but also the 

mechanisms involved in their 

dispersion, distribution and 

transportation.  

Distribution of organic solid 

particles discharged into rivers 

and streams may involve the 

following mechanisms - dispersion 

by the process of turbulent 

diffusion, dispersion by molecular 

diffusion, permanent settlement at 

the bed and subjection to 

combinations of two or more of 

these processes acting 

simultaneously (the most common 

being joint molecular and turbulent 

diffusion processes). In nearly 

every field situation, however, 

turbulent diffusion is by far the 

most important mechanism causing 

not only the dispersion of 

suspended particles but also the 

distribution of sediments. If a 

comprehensive mathematical model is 

to be developed to represent this 

complex phenomenon an understanding 

of all terms and factors involved 

in the dispersion, mixing and 

transport of the organic suspended 

particles is essential.  

 

The term diffusion is often used 

synonymously with dispersion. 

Briefly, diffusivity is the 

characteristic variable which 

describes the physical property of 

the transport activity along a 

certain direction in the space of 

diffusant movement, whereas the 

dispersion coefficient is the 

overall apparent diffusivity of a 

fluid mixture. Thus, both molecular 

and turbulent diffusion describe 

mixing phenomena without 

consideration of the velocity 

gradient. The dispersion term 

includes the mixing caused by both 

molecular and turbulent diffusions 
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and that due to convective 

transport.  

 

2.  FUNDAMENTAL DISPERSION 

EQUATIONS  

The problems with many dispersion 

models may well have originated 

from the basic concepts of 

mechanisms of mass transfer in. a 

hydrodynamic medium. A review of 

these concepts and their associated 

fundamental quantitative and 

analytical equations is therefore 

very necessary.  

Fick's laws provide the basis for 

quantitative analysis of diffusion. 

These laws are rooted in the 

phenomenological concept that 

diffusion implies a random mixing 

process in which pollutants spread 

out from regions of higher to those 

of lower concentrations. The 

concept is purely empirical and 

does not give any information about 

the magnitude of the diffusion 

coefficient.  

The first law, that the rate of 

mass' transfer of the diffusing 

substance through unit area of a 

plane is proportional to the 

concentration gradient measured 

normal to the plane, can be 

represented mathematically as – 

 

dc

dc
jor

dx

dc
j X    (1)  

(the negative sign implying 

movement towards lower 

concentration) 

 

where,  j = flux (mass of 

diffusing substance passing through 

a  reference surface of unit area 

per unit time)(g/s cm
2
) 

X = coefficient of molecular 

diffusion (cm
2
/s) 

c = concentration of the diffusion 

substance (g/cm
3
) 

x = distance (cm) in x direction 

 

An expression for the accumulation 

of mass in the given volume can be 

obtained by considering an 

elemental volume bounded by two 

unit planes at x and x + x, with 
the volume of the element being ox. 

Thus the rate of change in 

accumulation of mass 

                
       

  

 

                   
 

It is easy to see that if c = 

diffusant concentration at the 

boundary x, the rate of mass 

diffusion away from the 

concentration into the control 

volume  

 

inj
x
c

X 

 

 =rate of entry into 

the element at point x. At the 

boundary x + x, the amount of mass 
leaving = the amount entering at x 

less amount diffusion and spreading 

over the distance x 
 

i.e.  
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 (2) 

Hence the net rate of accumulation 

of mass in the volume element 
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 (3) 

   

 

But the rate of accumulation of 

mass in the volume can also be 

simply represented by  

 

x
mass

Volume
t

mass





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

 )()(

 (4)  

Equating (3) and (4) dividing 

through by the volume x, and 

replacing mass by conc. c x vol., 

then:  

 

2

2
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c

t

c


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






    (5)  

Equation (5) represents Fick's 

second Law which is the basic, 

second-order partial differential 

equation of diffusion in one 

dimension. 
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 For the general three-

dimensional case in x, y and z 

directions, Equation (5) is 

extended thus; 

2
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(6) 

Equations (5) and (6) are derived 

for an otherwise quiescent fluid 

medium where the only transport 

mechanism involved is molecular 

diffusion. Hence, expressing these 

equations with a suffix to indicate 

the transport mechanism  

involved (m suffix for molecular 

diffusion). 

 

For Equation (5), 2
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(5a) 

and for Equation (6) 
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 If the elementary control 

volume considered is in a moving 

medium and moves in the direction 

of the flow and at the same 

velocity as the flowing fluid, then 

the above equations will be 

modified to take account of the 

rate of change due to convective 

transfer. Thus Equation (7) 

becomes; 
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This Fickian diffusion theory can 

be extended to dispersion in 

turbulent fluid motion. Such flow 

is defined by Hinze [1] as "an 

irregular condition of flow in 

which various quantities (for 

example, velocity and pressure) 

show a random variation with time 

and space, so that statistically 

distinct average values can be 

discerned". One finds that flows of 

engineering importance which occur 

in nature are predominantly 

turbulent. Fluctuating quantities 

of concentration and velocity 

vector involved in turbulent flows 

have to be combined by Reynolds 

rules of averages such that if a 

and b are fluctuating quantities 

and k = a constant: 
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Where ',' bbbaaa   and the mean 

of a fluctuation is zero i.e. 

0''  ba  

Equation (8) will, therefore, be 

valid for turbulent flows, even 

though it includes no turbulent 

diffusion terms, provided the time-

averaged values of the velocities 

),,( zyx uuu  and concentration )(c  

replace their instantaneous values 

),,,( cuuu zyx  and the transport 

associated with their turbulent 

fluctuations ),,,( '''' cuuu zyx  is also 

included [2]. 
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and applying the rules of averages, 

equation (8) becomes 
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The bars indicate the time-average 

of the quantity under the bar. 

Elder [3] defined coefficients of 

turbulent diffusion (eddy 

diffusivity) as: 

x
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(t suffix referring to turbulent 

process). 

 

Substituting these in Equation (9)  
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 The processes of molecular and 

turbulent diffusion are independent 

and therefore additive so that 

combined diffusivity mt is given by  
 

xmt = xm + xt 
 

ymt = ym + yt 
 

xmt = zm + zt 
 

Substituting in Equation (10) and 

assuming steady flow conditions in 

which  
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are reduced to zero, then Equation 

(10) reduces to  
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 (11) 

 

Subject to appropriate boundary 

conditions and knowledge of xu  and 

imt’ the above three-dimensional 

equation can, in principle, be 

solved to determine the spatial and 

temporal distribution of the  

time-mean concentration  . However, 
in attempts to obtain complete 

solution of the above equation 

using either the finite difference 

method [4] or the so-called Monte 

Carlo technique [5], researchers 

have come up against computational 

complexities which are 

prohibitively expensive in terms of 

both human and computer time and 

labour. 

 In situations where one or two 

characteristic lengths (e.g. in the 

vertical and/or lateral directions) 

may be much smaller than others 

(e.g. in the horizontal direction), 

the procedure conventionally 

adopted to bring the solution of 

Equation (II) down to manageable 

size is to average over one or more 

of the lesser of the space 

dimensions. For instance, averaging 

vertically, i.e. with respect to y 

(depth), yields a two-dimensional 

model for wide vertically mixed 

estuaries and bays and by averaging 

transversely, i.e. with respect to 

z, a two-dimensional model suitable 

for the investigation of narrow 

stratified estuaries will be 

obtained.  

For channels, rivers and streams, a 

one-dimensional model of Equation 

(II) - Longitudinal Dispersion 

Model - has proved to be a useful 

and adequate tool for predicting 

their dispersion processes. The 

model is achieved by averaging the 

concentration and the longitudinal 

velocity transversely over the 

entire cross-sectional area of the 

flow. Thus, referring to Fig.1 and 

using capital letters U and C for 

the cross-sectional mean velocity 

of flow and mean concentration of 

the dispersant, respectively 

 ''

''

cCcand

uUxu





 

Where, xu  and c  are as previously 
defined and u” and c” are 

fluctuations of the temporal means 

from the cross-sectional means. 
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 Substituting the component 

values of u  and c  in Equation (II) 
and apply the rule of averages for 

the last term: 

2
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Fig. 1. One-Dimensional Dispersing of a Pollutant Slug in a two-dimensional flow 
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Since 0









z

C

y

C
 (mean value of 

concentration over the cross- 

sectional area assumed). 

 The double overbar refers to 

cross- sectional averaging. The 

product -u"c" defines convection 

due to the difference between   and 
U. Thus for the local mass 

transport -rate may be expressed 

as: 
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x
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(13) 

which is equivalent to using the 

product of mean cross-sectional 

values         
 In general, for such Fickian 

formulations, 
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 Where, F = cross-sectional 

area A (or F could be depth, d, if 

averaging vertically over depth has 

been carried out). 

 

 Substituting Equation (13) in  

Equation (12), 
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Replacing {xmt + Dx} by DL we get  
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   (15)    

which is a one-dimensional 

longitudinal dispersion equation in 

which the dispersion coefficient, 

DL, can be seen from Equations (13) 

and (14) to be a function of 

velocity distribution and 

longitudinal molecular and 

turbulent diffusion. It has been 

said that  

diffusion contributes only about 

one per cent or less of the total 

dispersion in turbulent flow [6]. 

This means that DL - DX. Elder [7] 

pointed out that DL is known 

theoretically only in simple cases, 

otherwise it must be estimated from 

measurements.  

Values of DL are essentially in 

stream pollution forecasting. 

Knowledge of DL provides immediate 

information of the expected 

pollution concentrations at various 

times and locations along the 

downstream reach of the river flow. 

Distribution of organic suspended 

solids load, water temperature 

variation downstream of a source of 

thermal discharge, salt intrusion 

into tidal estuaries and the 

variation of the reaeration 

capacity of a stream are aspects of 

river pollution control linked to 

the longitudinal dispersion 

coefficient.  

Over the past two decades or so," 

the Longitudinal Dispersion model 

has been much investigated and 

discussed by research workers 

leading to advances in the 

understanding, development and 

application of its coefficient.  

 

3. ADVANCES IN ONE DIMENSIONAL 

LONGITUDINAL  

DISPERSION MODELLING. 

3.1 Analytical Evaluation of DL 

 Many investigators have 

attempted analytical evaluation of 

DL from the basic convective-

diffusion equation, equation (11) 

which completely describes the 

dispersion process. By a series of 

assumptions and simplifications 

this equation, in combination with 

equation (15), can be transformed 

to yield estimates of DL in terms of 

hydraulic parameters of the stream. 

 

 A pioneer in this field, 

Taylor [8] was first to attempt a 

theoretical expression for DL for 

laminar flow in a straight pipe 

using empirical expressions for 

velocity and Reymolds analogy to 

determine first, equation (15) and 

then assuming logarithmic velocity 

profile and using Von "Karman 

universal constant (0.41) obtained 

DL in "terms of shear stress at the 

wall as 

 

DL = 10.1 rU*     (16) 

where r = radius and 
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U* = shear stress at the wall. 

 Following Taylor's basic 

derivation procedure, Thomas [9] 

derived an expression for DL for a 

unidirectional flow in an 

infinitely wide channel. He assumed 

power 1a velocity distribution in 

the vertical direction: 

i.e. 

n

x

d

y
U 








      (17) 

where d = depth of flow and 

obtained,  

  

1

0 0
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0

'''''''2 1
y

ymt

L dyudydyudD


 (18) 

where y’ = y/d and the values of n 

for varying Reynold’s number can be 

obtained. 

 Elder [3] obtained simpler 

expression than Thomas by assuming 

a logarithmic velocity profile as 

Taylor  

i.e. )ln1( '*'' y
U

u 


  (19) 

Where   = Von Karman constant. 
DL was obtained as equal to 5.93 dU*  

    (20) 

A striking feature of the works of 

Taylor, Thomas and Elder is that  

lateral velocity gradients were 

assumed unimportant in the 

dispersion process. But 

experimentally determined values 

of· DL for canals and natural 

streams are considerably greater 

than the predictions of Elder and 

Taylor. This prompted Fischer [10] 

to make a comprehensive review of 

the three-dimensional flow equation 

[11). He argued that flows will be 

more strongly sheared laterally 

across the width than in other 

directions. Consequently, 

dispersion is better based on 

concentrations averaged through the 

depth instead of laterally as his 

predecessors. In the light of 

these, Fischer derived the 

equation, 
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 (21) 

 

Where, 

)(

0

''' ),()(

zd

dyzyuzq   (22) 

= the depth– integrated velocity at 

point z 

    

   = Uu x   

  zmt = Elder’s lateral 

turbulent mixing coefficient = 

0.23RU* 

  d = depth of flow 

  b = width of channel  

 In order to use Equation (21), 

a cross-sectional velocity profile 

is required and then the dispersion 

coefficient calculated by dividing 

the cross-section into vertical 

slices and forming a table of 

columns for, calculation of various 

terms in the equation. 

 A disadvantage of Equation 

(21) is that it involves a 

knowledge of the lateral 

distribution of the velocity and 

this is often difficult to 

determine. Nevertheless, even 

though the equation looks 

formidable in application, since it 

was developed from a logical 

simplification of the basic 

dispersion theory and flow 

conditions in a natural 

environment, it has been hailed as 

the most superior of theoretical 

derivations of DL [11].  

 

3.2  Evaluation of DL from 

Experimental Data Using Tracers. 

 The solution of Equation (15) 

provides the basis for various 

techniques used to compute DL from 

concentration-time (c-t) data 

obtained at a fixed point or points 

along a channel as a tracer cloud 

moves downstream. 

 Solution of Equation (15) 

yields: 

tD

utx

L4

)( 2
  

e
tDA

M
C

L

tx
4

),(       

  (22) 

Where, ),( txC   concentration of the 

tracer at given time t and distance 

x. 

 M      Mass of tracer 

injected, and  

 A  cross – sectional area 
of channel 
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 Equation (22) can be treated 

as a concentration - distance 

profile if the concentration is 

measured at various points along 

the channel at a given time t. The 

equation predicts the normal curve 

for the distribution of a tracer 

with distance. If c-t data are 

obtained, at any distance x, the 

curve will not be normal because 

the denominator changes with time. 

Because of tailing, direct 

substitution of C (x,t),M,A, t,u and x 

into the solution for computation 

of DL may be misleading. A computer 

programme for use with the solution 

to eliminate the tailing effect has 

been described [12]. 

 Another technique for 

computing DL from C-t data is the 

Change of Moment Method introduced 

by Fischer [13]. 

 From Einstein’s equation: 

2

2

1


dt

d
DL      

 (23)  

which applies to the tracer 

distribution during the diffusive 

period  

irrespective of what shape of 

distribution has been produced in 

the  

convective period, Fischer :deduced 

for uniform steady flow conditions: 
222

  Ut    

 (24) 

 Where, 
2

t  is the variance of 

the time-concentration curve 

measured at a fixed station. 

 Thus when measurements are 

taken at various fixed points, a 

dispersion coefficient may be 

calculated by substituting Equation 

(24) into Equation (27).  
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3.3 Empirical Determination of DL 

 Many investigators have 

proposed expressions of DL based on 

values established from 

experiments. Most of the 

expressions, no doubt, are 

applicable only to the given field 

situation and the same dynamic 

conditions under which the tests 

were performed. Some of the 

expressions are listed in Table 1. 

 

4.0 OJIAKO PREDICTION METHOD 

 The great varieties in the 

analytical methods, experimental 

techniques and empirical 

formulations, give differing values 

of DL which vary widely for the same 

flow cond1.tion. Some empirical 

expressions are altogether 

inapplicable to natural streams. 

The author [23] sees the reasons 

for inaccurate predictions from 

most of the expressions in the 

nature of equation (15) which lacks 

terms to account for sinks and 

sources of the dispersant in 

settlement and resuspension from 

stagnant places on the bed of flow. 

The bed roughness, bends, 

irregularity of the sides in the 

given flow regime, all combine to 

create pockets of stagnant pools 

into which some tracer elements 

diffuse and are temporarily (and in 

some cases permantly) detained, 

causing time lag in arriving at the 

sampling section. The result, as 

can be in Fig.2 is often a marked 

difference between observed and 

predicted dispersed profiles, shown 

in the shaded area. Observed 

distributions usually have long 

tails on the trailing portions and 

truncated on the leading edges. 

Equation (11) was modified by 

incorporating a forcing term to 

account for the deficiency. 

 

Hence ),(
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2
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
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


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 (28) 

The solution of this equation is  
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k may, be determined from 

comparison of tracer profile and 

computer simmulation technique. k 

was studied using experimental 

channel runs of dye (Rhodamine B) 

tracer and well sieved organic 

particles of acrylic B and 

suspension polystyrene samples of 

various sieve sizes. Cut-bricks 

were used in creating roughness and 

dead zones on the channel bed. 

Results showed that k can be 

expressed numerically as 









rRsCoshQ

vk
k

)(Re

2
3

1

(30) 

 

 

 

 

TABLE 1 – SOME EMPIRICAL EXPRESSIONS FOR DL 

  REFERENCE FLOW FIELD EXPRESSION FOR DL 

Krenkel and others [14] Open Channel 9.1U*d 

Glover [15] Natural Streams 500U*d 

Yotsukura and Fiering 

[4] 

Open Channel 13.0U*d 

Patterson and Gloyna 

[16] 

Open Channel 0.8e
0.34U√A 

Fischer [17] Natural Stream 

*

223.0 ''

Umh

u 

 

Thackston and Krenkel 

[18] 

Natural Streams 

4
1

*

*25.7 










U

U
dU  

Fischer [19] Open Channel 

)(
2

23

t
dx

dU 
 

McQuivey and Keefer [20] Natural Streams 

SeW

Q
058.  

Fischer [21] Natural Streams 

*

22011.

Uh

WU

m

 

Liu [22] Natural Streams 

AU

WU

*

32
 

 

 



NIJOTECH VOL. 5 NO. 1 MARCH 1981               OJIAKO 23 

 

 = characteristic length in 

the cross – secton of the channel 

= the     distance from 

the streamline of maximum velocity 

to the more              

distant blank. 

Se = Energy slope 

   = 0.18(
  

 
)1.5 

W  = Width of channel 

hm = Mean Hydraulic Radius 

where v = velocity of flow 

    Q = discharge 

  Res  = Reynold’s number 

for the settling of the tracer  

     particles 

  = vsds   (31) 

vs   = settling velocity of 

the tracer particle in quies 

medium  

ds  = mean sieve diameter 

of the trace particles 

v  = Kinematic viscosity. 

 

Rr   = a roughness number. 

 

  
v

gRSk2
  (32) 

S   = bed slope 

R   = Hydraulic mean radius 

K2  = height of equivalent 

sand grain roughness. 

K1  = is a constant 

numerically   1.0 
All the parameters above are 

measurable in any flow section of 

interest. It was initially 

difficult to estimatek2• where, 

however, dye dispersion profile 

over the flow regime is available, 

k2 is approximated from  

pp

mppp

C

CCD
k

)(
2


    (33) 

 

Where  Cmp. = measured peak 

concentration of the dye profile 

  CPP = predicted peak 

concentration of dye profie  

  D = mean depth of flow 

 

A typical dispersion result is 

shown in fig.3 for suspension 

polystreme of diameter passing 

sieve No.52 and retained in sieve 

No.72. The model data were 

collected from Ouseburn Stream 

test series.  
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Fig.2 Typical dispersed flow corves fig. 3. Modified Model, Measured 

       and theoretical profile compared. 

 


