
NIJOTECH VOL. 7. NO. 1 SEPTEMBER 1983    SEBASTIN 60 

 

THREE DIMENSIONAL PHOTOELASTIC INVESTIGATIONS  

ON THICK RECTANGULAR PLATES 
 

by 

 

V.K. Sebastian 

 

Civil Engineering Department  

University of Nigeria, Nsukka. 

(Manuscript received October 1980) 

 

ABSTRACT 

Thick rectangular plates are investigated by means of three-dimensional 

photoelasticity using the stress-freezing technique. Plate with two 

opposite edges simply supported and the other two edges free subjected to 

a central line load is studied as a specific example. Three different 

thicknesses to include the range of thin to moderately thick to thick 

plates are considered and it is shown that by employing a judicious 

slicing pattern stress variation at the critical sections of the plate 

can be obtained. Numerical results obtained are compared with those from 

a thin plate theory and a higher order thick plate theory.  

 

1. INTRODUCTION  

It is well known that the photo-elastic method is a powerful experimental 

tool since it is possible by this method to obtain a complete stress 

field even for problems with irregular boundaries. A variety of two-

dimensional problems has been solved using this technique. However, in 

practice many stress analysis problems exist which are strictly three-

dimensional in character and cannot be effectively approached by 

employing two dimensional photo-elastic techniques. In recent years many 

investigators
l-6
 have turned their attention to three-dimensional 

photoelasticity and consequently many methods and materials are available 

now. However, applications to only few problems exist. Hence the present 

investigation aims mainly at illustrating the applicability of this 

method to thick plates. Square plate models of three different 

thicknesses were cast, machined to final dimensions and stress-frozen. In 

the example considered, the two opposite edges of the plate are simply 

supported and the remaining edges are free, the plate being subjected to 

a central band load. The stress-frozen model is then sliced to remove 

planes of interest which are then analysed to obtain stress distribution 

at critical sections. The results obtained from this are compared with 

those from Reissner and a higher order theory
7
.  

 

2. MODEL PREPARATION  

Models were cast in galvanised iron moulds. Galvanised iron has been 

found particularly suited for moulds as castings made in these moulds 

showed negligible initial stresses due to shrinkage compared to those 

made out of steel or aluminium mouIds
8
. The materials used are a resin, 

Araldite CY230, 100 parts by weight and a hardner, pthalic anhlydride, 30 

parts by weight. These materials have been used by many investigators and 

have been found to be ideal for large casting
8, 9

.  

 

In order to obtain large castings free of residual stresses, it is almost 

imperative to prepare the material under closely controlled conditions. 

The procedure adopted is summarised below.  
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The resin is first heated to a temperature of about 110
0
C and has been 

kept stirring during heating using a mechanical stirrer. The hardner, 

which is in the form of white flakes is slowly added to the heated resin 

and the mixture thoroughly mixed, the temperature always being kept 

between l00
0
C and 110

0
C. The resin hardner mixture is properly filtered 

and transferred into moulds which were priorly coated with a releasing 

agent and kept at about 95
0
C in a temperature controlled oven. The 

temperature is kept constant at 90
0
C for about 24 hours during which the 

resin sets and reaches a rubbery state. It is then slowly cooled at the 

rate of l
0
C/hour to room temperature. The moulds are then stripped off and 

the observed in the polariscope for any possible shrinkage stresses. The 

models at this ,stage are usually soft and are then subjected to curing 

cycles by slowly heating up to 110
0
C and cooling as above. After the 

models have been significantly hardened they are machined to the required 

dimensions and stress frozen. 

  

Table 1 gives the model dimensions used and the load applied.  

 

Table 1. Model dimensions and load applied  

Model 
Dimensions in mm 

  
 

Concentrated load 

applied in N  Model 
2a =2b 2h 2c a/h  

1 200 22.2 25 9 69.22 

2 200 33.3 25 6 140.43 

3 200 67.0 25 3 229.50 

 

3. STRESS-FREEZING AND CALIBRATION  

The model is set up inside the temperature controllable oven. The load is 

applied by a lever arrangement, top lever ratio of the loading frame used 

being four. The concentrated load coming from the loading frame will be 

distributed uniformly over a central band of 25 mm wide. Suitable packing 

of cork sheet has been placed between the model and the loading block to 

give a uniform loading. The loading arrangement is schematically shown in 

fig.1.  

The model is heated relatively rapidly to about 120
0
C and the required 

load is applied. The temperature is kept fairly constant for about four 

hours to make it uniform throughout the model. The model is then cooled 

very slowly at a rate of 
2

1
0
 per hour upto about 75

0
C and then at 1

0
 per 

hour to room temperature. The model is removed and sliced for further 

analysis.  

A circular ring and disc made out of the same material as the model and 

loaded along the diametral plane has also been placed in the oven along 

with the model to undergo the same cycle of heating and cooling. Values 

of E and  of the material and material fringe value f are then 

calculated from the data obtained from the ring and the disc using the 

method suggested, by Durelli and Ferrer
lO
. The calculated f, E and  

values for the three model are given in table 2.  

 
4. ANALYSIS  

If the stress pattern frozen into a three-dimensional photoelastic model 
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Table 2. Material fringe value (f), modulus of elasticity (E) and 

Poisson’s ratio () 

 f E 
 
 

Model Pa-m psi-in KPa Psi at 120
0
C 

1 332.65 1.90 12479.95 1810 0.45 

2 346.66 1.98 13472.83 1954 0.46 

3 336.15 1.92 13721.85 1990 0.45 

 
is observed in a polariscope, the resulting fringe pattern cannot, in 

general be interpreted. The conditioned light passing through the 

thickness of the model integrates the secondary principal stress 

difference (1 - 2) over the length of the path of the light so that 
little can be concluded regarding the state of stress at any point.  

To circumvent this difficulty the three-dimensional model is sliced to 

remove planes of interest which are then examined individually to 

determine the state of stress existing in that particular plane or slice. 

In studies of this type the slices should be sufficiently thin in 

relation to the size of the model so that stresses do not change either 

in magnitude or direction through the thickness of the slice. A slice 

thickness of 6. 3mm 








4

"1
is used here.  
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As whole field analysis is not intended only three slices, one along the 

x-axis called centre slice, a second at the free edge called edge slice 

(parallel to the x-axis) and a third one at the middle (parallel to the 

Y-axis) called transverse slice, as shown in fig.2, have been used. 

Stresses at critical points on the plate are calculated from the data 

obtained from these slices as follows. Some typical dark and light field 

isochromatic patterns obtained are shown in fig 3.  

It is well-known that when a two-dimensional model is examined in a 

polariscope the resulting isochromatic fringe pattern can be interpreted 

to give
9
  

 

1 - 2 = N f/t …………………… (1) 

Where 1 - 2 are principal stresses in the plane of the model, N is the 
fringe order and t is the thickness of the model.  

Thus considering the centre slice which is in the xz plane, the resulting 

fringe pattern can be interpreted to give  

 1 - 2 = Ny f/t …………………… (2) 

and because of the symmetry in location of the centre slice, equation (2) 

for the top and bottom layers namely z = ±h, is written as  

x - z = N f/t …………………… (3) 

 

z values on z = ±h are known to be equal to the applied load if any. The 
isochromatic fringe order Ny on z = ±h  

are also measured by observing the slice in the polariscope and surface 

values of x on z = ±h along the centre slice are then calculated using 
eq.(2) These variations for the three different models are shown in figs. 

4(b),5(b) and 6 (b).  

The x variations at the top and bottom faces of the free edge can also be 
determined in a similar manner.  

The state of stress at interior points in the model can be determined by 

using the shear difference method
9
 which is based on the numerical 

integration of the appropriate stress equation of equilibrium. Thus to 

obtained the variation of transverse normal stress z,, the equilibrium 
equation in the z direction, namely  
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Fig. 3a: Typical isochromatic patterns of centre and edge slices of model 

no. 1 (a/h = 9) 
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Fig. 3b: Typical isochromatic patterns of centre and edge slices of model 

no. 2 (a/h = 6) 
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Fig. 4 Variation of x and z for the plate with a/h = 9 (model no. 1) 
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Fig5 Variation of x and z for the plate with a/h = 6 (model no.2) 
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Fig. 6 Variation of x and z for the plate with a/h = 3 (model no.3) 
 

(4).....................o

z
δ

σz
δ

y
δ

yz
δτ

x
δ

zx
δτ

  
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When x = z equation  (5) 
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By continuing this integration in a stepwise procedure it is possible to 

write 

)7(................
2xz

Δτ
2xz

Δτ
z

z
σ

zz
σ 2121

1
2

zzzz 



  

sAnd so on whch for any z can be written as  

(8)

o
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The shear stresses xz and yz  are calculated using  
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where the fringe orders Nx and Ny are obtained from transverse and centre 

slices respectively. Having obtained the shear stress differences xz  and 

yz  at various points ᴥ from the  

above, the integration represented in eq. (8) is carried out from a point 

where (z)o is known, in this problem the bottom of the plate where z = 

o. The z variations so calculated at the centre of the plate are shown in 
fig. 4(c) and 5(c) for models 1 and 2 respectively. Similar analysis 

performed for the centre of the edge slice yielded z variations as shown 
in figs. 4(d) and 5(d).  

Variation of normal stress at centre across the thickness is x obtained 
from the equation

9
.  

x  = z – (’1 - ’2) cos 2y 

(11)....................................
y

2θCos
t

σ
f

y
N

z
σ   

and the results for the three models are presented in figs. 4(a) , 5(a) 

and  6(a) respectively.  

 

5·NUMERICAL RESULTS AND DISCUSSION  

From the dimensions of the model shown in table 1 it can be seen that the 

thicknesses were so chosen to include examples on a thin (a/h = 9),a 

moderately thick (a/h = 6) and a thick (a/h = 3) plate. It has been found 

that the load applied should be sufficiently large to produce enough 

number of fringes lest the accuracy of the results will be considerably 

affected. It was noticed that the load applied for models 2 and 3 should 

have been higher. In figs. 4 ,5 and 6 in addition to the present 

experimental results, those obtained from a 14th Order MIF theory 7 and 

Reissner or classical theory results are also shown for comparison.  

In figs. 2 and 3 it can be seen that the isochromatic patterns for the 

centre and edge slices are nearly identical which can be expected as the 

plate is in cylindrical bending. The x variation predicted by experiment 
agrees very well with the higher order theory especially near the centre 

of the plate (figs. 4a, 5a and 6a). The deviation between the two near 

the supports (figs. 4b, 5b and 6b) may be due to the difference in edge 

conditions; the plate in the photoelastic experiment was supported on 

knife edges while In the theoretical analysis a 'friction clamped’ edge 

defined by boundary conditions w = x = v = o has been used. Transverse 
normal stress, Oz obtained from experiment compares very well with MIF 

theory (igs. 4c, 4d, 5c and 5d) and it can be seen that Reissner theory 

prediction of z at the free edge is quite different from the actual 

distribution but agrees very well at the centre.  

 

6. CONCLUSION  

A method for investigating thick plates using the stress freezing 

technique of three dimensional photo-elasticity and the shear difference 

method, has been presented. The applicability of this method has been 

illustrated by considering three rectangular plate models and it has been 

shown that by employing a judicious slicing pattern stresses at critical 

sections of the plate can be determined with the help of few slices 

Comparison of experimental result with those obtained from theory leads 
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to the conclusion that sufficiently accurate result can be obtained by 

this method. The experimental procedure presented will be quite useful in 

determination of stresses in thick plates of irregular shapes and 

subjected to non-typical loading for which theoretical solutions rarely 

exist. 
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