"IMPROVED REAL-POWER LOSS MINIMISATION"

Ву

A.O. EKWUE School of Engineering and Engineering Technology Federal University of Technology, P.M.B. 1526, Owerri.

(Manuscript received December, 1984)

ABSTRACT:

The problem of the reactive control of a power system is formulated as a static optimisation technique to ensure the minimisation of the realpower system losses by controlling the switchable reactive power sources, generator terminal voltages, transformer tap ratios and phase shiftet's. The objective function as well as the constraints are established using the linearized sensitivity relationships of power system state and control variables and standard linear programming routines are used to determine the optimum operating condition; the fast-decoupled load flow technique is employed because it is fast, simple and has less computer storage. Results of the application of this development to the IEEE 14 bus system is presented.

NOTATION

a_i, b_j, c_k, d_m sensitivity relationship between the power loss and switchable reactive power sources, terminal generator voltages, transformer tap ratios and phase-shifting anglesrespectively

LΡ linear programming NG number of generators including the slack number of nodes NN number of phase-shifting NΡ transformers number NR of Switchable reactive sources NT number of transformers t_{ii} transformer tap positions ij t_{ij} max, t_{ij}min maximum and minimum transformer tap ratio V_i load bus voltage V^t generator terminal voltages Vt max, Vt min maximum and minimum generator terminal voltages changes in switchable 0 reactive sources changes in the system power P_{T.} loss Х state variables θ_{i} voltage angle at bus i Ø phase-shifting angle

EKWUE

1. INTRODUCTION

The advantage of reactive power dispatching has been presented by Aldrich et al [1] to include:

- (i) Improved utilisation of reactive power sources, hence reduction in reactive power flows and real losses of the system.
- (ii) Unloading of the system and equipment as a result of reactive flow reduction. The power factors of generation are improved as well as the system security enhanced.
- (iii) Reduced voltage gradients and somewhat higher voltages result across the system from improved operation.

Therefore, the problem of reactive power dispatch has been studied widely reported in the and literature. Non-linear programming based approaches have been formulated [2-7) and a linear programming technique for been constraint dispatch has described in (8) and (9) with a consequent reduction in real power

losses. Static optimisation of reactive power sources by the use of sensitivity parameters was described in [10] whereas Shoults and Chen [11] determined the changes in transformer taps and generator terminal voltages required to reduce the reactive power in lines and load bus voltages. This was extended in [12] to include reactive power injections using least-squares minimisation techniques. Other considerations for optimal reactive planning and VAR allocation has been described in [13 - 17]. The long range optimum VAR planning has been considered and the optimum amount and location of network reactive compensation so as to maintain the system voltage within the desired limitations while operating under normal and various insecurity states have also been determined by several techniques. Reichert in (18) reviewed the equipment currently available for reactive power control while outlining the modelling and simulation principles so involved. Mescua and Fischl in [19) developed a technique for determining the most secure voltage profile for an electric power system. In this paper, reactive power control of power systems is formulated as a static optimisation technique by minimising real power losses through the proper control of switchable reactive P_{o} power sources, generator terminal voltages, transformer tap ratios and phase- shifters. The problem is static because a system design is required for a given set of conditions. The objective function described by sensitivity is analysis in terms of the control variables as well as in the constraint matrix, The approach described here is the same in

$$minimise \Delta P_L = \sum_{i=1}^{NR} a_i \Delta X_i \sum_{j=1}^{NG} b_j \Delta X_j + i = 1$$

$$NK \qquad NP$$

$$\sum_{i=1}^{NK} c_k \Delta X_k + \sum_{m=1}^{NG} d_m \Delta X_{jm} \dots \quad (3)$$

EKWUE

principle as that of [9] but offers the following improvements:

- (i) The use of the fast-decoupled load flow method as against the Newton-Raphson technique. The fast-decoupled approach is very fast, simple to implement and has considerable savings in computer storage [20],
- (ii) The use of phase-shifters to reschedule real power flows, hence a consequent reduction in real power losses. The relationship between the real power losses and phaseshifting angles is incorporated in the objective function whereas the phaseshifters are constrained between limits and so defined in the constraint matrix.

The improved technique is demonstrated using the IEEE 14 bus system, (21) which is slightly modified by incorporating a phaseshifter.

2 MATHEMATICAL FORMULATION

The objective is to minimize the real power losses subject to limits on

(i)	load bus vo	load bus voltages	
(ii)	generator	terminal	
	voltages		
(iii)	switchable	reactive	
	power sour	ces	
(iv)	transforme	r tap ratios	
(v)	phase-shift	ting	
transformer angles			
ne LP s	static optimis	ation problem	

The LP static optimisation problem becomes

$$\Delta \mathbf{P}_{\mathbf{L}} = \sum \mathbf{f} \Delta \mathbf{X} \tag{1}$$

Subject to [A] $[\Delta X] \leq [b]$ (2)

f is the cost function which incorporates the sensitivity relationships between the real power loss and the control variables. Expanding eqn. (1) Since ΔX (the set of switchable reactive sources, changes in generator terminal voltages, transformer tap ratios and phase- shifting angles) can be positive, zero or negative, define

 $\begin{array}{l} \Delta X = \Delta X^{+} - \Delta X^{-} \mbox{ where } \Delta X^{+} > 0 \ \dots (4) \\ \mbox{Eqn, (1) becomes} \\ \mbox{minimise } \Delta P_{L} = \sum f \left(\Delta X = \Delta X^{+} - \Delta X^{-} \right) \ \ (5) \\ \mbox{subject to Type equation here.} \\ \mbox{[A - A] } \begin{bmatrix} \Delta X^{+} \\ \Delta X^{-} \end{bmatrix} \leq \ \ \mbox{[b] } \dots \dots (6) \end{array}$

Eqns. (5) and (6) can now be solved using the revised simplex NAG (Numerical Algorithms Group) linear programming routine.

The flowchart of the program is described *in* Figure 1. It should be noted that the problem variables are reduced considerably by using only the rows corresponding to abnormal system voltages and columns having switchable reactive injection in eqn. (6). This should equally be reflected in the objective function in eqn. (5).

3. CASE STUDY

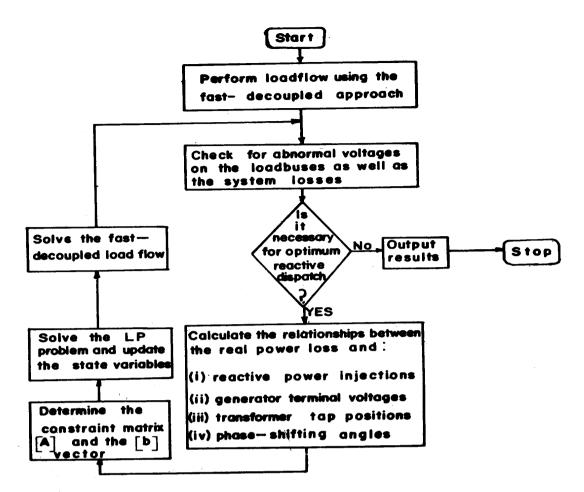
The IEEE 14-bus system [21] (see Fig. 2) was modified to include a phaseshifter on line 4-5 with an initial angle of 0 degrees. The following constraints were enforced:

(i) for the load buses: $0.95 \leq V^{i} \leq 1.05$ (ii) for the phase-shifter - $5^{\circ} \leq \Delta \emptyset \leq 5^{\circ}$ (iii) transformer tap ratios: $(1.0\pm 0.05)t_{ij}$ (iv) reactive power injections: maximum of MVAr (capacitive) and 24 MVAr (reactive) (v) generator terminal voltages: $1.045 \leq V^{t} \leq 1.07$ The detailed LP formulation in given in section 3.1 below and the voltages before and after the dispatch are given in Table 1 below. It will be seen that the only violated load bus voltages is that on bus 12 with a value of 1.0519 p.u. which is corrected to 1.0436 p.u

The system losses are reduced from 13.82 MW to 13.44 MW at the first iteration of the algorithm with all the constraints completely satisfied. The corrective actions are given in Table 2 below.

3.1 The LP Formulation and solution of the Case Study

Let X_1 = reactive power injection at bus 12


 $X_2, X_3 =$ generator terminal voltage changes on buses 2 and the slack, 14

 $X_2, X_5, X_6 =$ changes on the transformer taps $X_7 =$ changes on the phase-shifting angle

The LP problem becomes

Minimize $\Delta P_{L}=19X_{1}+233.8X_{2}-191.9X3 - 15.4X_{4} - 6.05X_{5} - 40.7X6 + 0.74X_{7}$

Subject to -0.06 $\leq X_1 \leq 0.24$ 0.29 $X_1 \leq 0.00189$ EKWUE

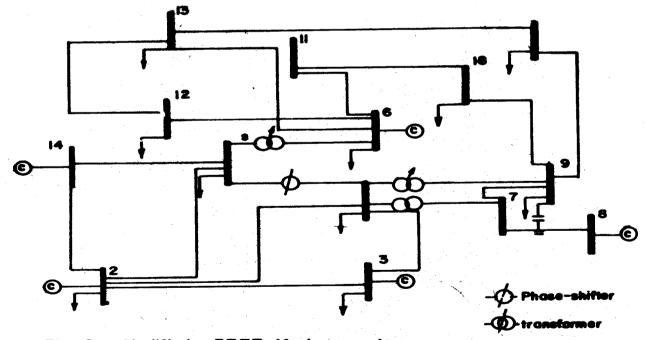


Fig. 2. Modified IEEE 14-bus system.

EKWUE

ł

5

Bus No	Bus voltages before reactive Dispatch	Bus voltages after reactive dispatch
1	1.0078	1.0065
2	1.0450	1 .045
3	1.0100	1.010
4	1.0118	1.0166
5	1.0158	1.0153
6	1.0700	1.070
7	1.0399	1.0399
8	1.090	1.090
9	1.0126	1.0125
10	1.0161	1.0162
11	1.0391	1.0392
12	1.0519	1.0436
13	1.044	1.0436
14	1.0600	1.0700

Table 1 Bus Voltages

Table 2: Corrective actions

L

```
(i) changes in generation terminal voltages \Delta V_2 = 0.0

\Delta V_{14} = .01 (slack)

(ii) reactive injection of 6 MVAr at bus 12
```

- (iii) changes of phase-shifting angle by 5°
- (iv) changes of transformer taps by

 $\Delta^{t}_{4-9} = 0.0048$

 $\Delta^{t}_{4-7} = .00484$

 $\Delta t_{5-6} = 0.00466$

These values are used to update the control variables and obtain another load-flow run as given in Table 1.

4 CONCLUSION

The real power loss minimisation approach developed by Mamandur and Chenoweth in [9] has been improved to include:

(i) the use of the fastdecoupled load- flow technique and(ii) the incorporation of phase-shifters for loss minimisation[22].

The algorithm will ensure that the voltage profiles are acceptable with a consequent reduction in system loss. It should be mentioned, however, that the changes in reactive power injections, phase-shifting angles and transformer tap ratios are continuous; in practice they are discrete and should be so reflected in future investigations. Also the sensitivities are valid over a small range [9].

It is hoped that the development described here can be implemented on-line since by using the fast decoupled loadflow method as opposed to the Newton-Raphson savings in computational time and computer accrue. Considerable reduction in computing time used to obtain the sensitivity relations can be attained by using the factors of the [B'] and [B''] matrices as well as for the admittance matrix stored using sparsity techniques. The initial network state can be determined by solving the base case loadflow (as in this paper) or from state estimates before the application of the technique described above.

ACKNOWLEDGEMENT

The author is grateful to Dr. R.N. Adams of Queen Mary College (University of London) for providing the facilities for the work.

REFERENCES

- 1. Aldrich,J.F., Happ,H.H., Fernandes, R.A. Wirgau, K.A. and Vicks, L.W., Benefits of voltage scheduling in pdwer systems, IEEE Trans. on Power Apparatus and Systems, Vol. PAS-99, Sept./oct.1980, pp. 1701-1712
- 2. Peschon, J., Piercy, D.S. Tinney, W.F., Tveit, O.J. and Cuenod ,M., Optimum control of reactive power flow, IEEE Trans. on Power Apparatus and Systems, Vol.PAS-87,.No. 1, January 1968, pp.40-48.
- 3. Dopazo, J .F., Klitin, O.A., Stagg, G.W. and Watson, M., An optimisation technique for real and reactive power allocation, Proc. IEEE,1967, pp. 1877-1885
- 4. Hano, I., Tamura, Y., Narita, S. and Matsumoto, K, Real-time control of system voltage and reactive power, IEEE Trans. on Power Apparatus and Systems, Vol. PAS-88 No. 10, October 1969, pp.1544 1559.
- 5. Peschon, J., Piercy, D.S, Tinney, W.F and Tveit, O.J., Sensitivity in power systems, IEEE 'Trans. on Power Apparatus and Systems, Vol. PAS-87, No.8, August 1968 pp. 1687-1696.
- 6. Dommel, H.W and Tinney, W.F., Optimal power flow solution IEE Trans. On PAS. Vol. 87,1968, pp. 1866– 1876.
- 7. Savulescu, S.C., Qualitative indices for the system voltage and reactive control, IEEE Trans. on PAS, Vol. 95,1976, pp. 1413-1421.

- 8. Hobson, E., Network constrained reactive power control using linear programming, IEEE Trans on PAS, Vol. PAS-99, No.3, May/June 1980, pp. 868-877
- 9. Mamandur, K.R.C. and Chenoweth, R.D. Optimal control of reactive power flow for improvement in voltage profiles and for real power loss minimisation, IEEE Trans. On PAS Vol. PAS-100, ,No. 9 July 1981 pp. 3185-3194
- 10. Kishore, A. and Hill, E. F ., Static optimisation of reactive power sources by use of sensitivity parameters, IEEE Trans. on PAS Vol. PAS-90. 1971, pp.1166-1173
- 11. Shoults, R.R. and Chen, Mo-Shing, Reactive power control by least squares minimisation, IEEE Trans. on PAS, Vol. PAS-95, No.1, January/February 1976, pp. 325-334.
- 12. Ekwue, A.O. and Short, M.J., Interactive security evaluation in power system operation, Proc. IEE Part C, Vol. 130, No.2, March 1983, pp. 61-70.
- 13. Kohli, N .O.P., Sharma, J. and Ray, L .M., Optimal reactive power allocation, 1975, PICA Conference, pp. 216-222,
- 14. Heydt, G.T. and Grady, W.M., A matrix method for optimal VAr siting, IEEE Trans. on PAS, Vol. PAS-94, No.4, July/August 1975, pp. 1214-1221.
- 15. Young, J.B., m Optimal static capacitor allocation by discrete rogramming: development of theory, IEEE Trans. on PAS, Vol. 89,

No.7, Sept./Oct. 1970, pp. 1499-1503.

- 16. Sachdeva, S.S. and Billinton, R., Optimum network VAr planning by nonlinear programming, IEEE Trans. on PAS, Vol. PAS-92, July/August 1973, pp. 1217-1225
- 17. Hughes, A., Jee, Hsiang, P., Shoults, R.R. and Chen, M.S., Optimal reactive power planning, IEEE Trans. on PAS Vol. 100, No.5, May 1981, pp. 2189-2196.
- 18. Reichert, K., Controllable reactive compensation, Proc. of the International Journal of Electrical Power and Energy Systems, Vol. 4, No.1, January 1982 pp. 51-61.
- 19. Mescua, J. and Fischl, R., On the determination of a secure voltage profile for an electric Power system, IEEE International Symposium on Circuits and Systems, Systems, Houston, Texas, pp. 59-62.
- 20. Stott, B. and Alsac, o., Fast decoupled loadflow., IEEE Trans. PAS, Vol. PAS-93, May/June 1974, pp. 859-869.
- 21. Freris, L. L. and Sasson, A.M, Investigation of the Load flow problem, Proc. lEE, Vol. 115, No. 10, October 1968, pp. 1459-1470.
- 22. Han, Z. X., Phaseshifter and power flow control, IEEE Trans. on Power Apparatus and Systems, Vol. PAS-101. No. 10, October 1982, pp. 3790-3795.