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ABSTRACT  

Confined seepage problems below hydraulic structures using finite 

element method are investigated. The foundations are assumed to be infinite 

with homogeneous and isotropic conditions. Three different types of elements 

with varying mesh sizes are used for comparing the finite element results 

with those of exact solutions for simple boundary configurations. Iso-

parametric quadrilateral elements which are best suited for inclined 

boundaries are used for solving the seepage problem beneath practical 

profiles of complicated boundary forms. The numerical results obtained are 

compared with those from experimental and other methods.  

 

1. INTRODUCTION  

The study of flow through porous 

media has a wide range of 

applications in many facets of water 

resources management. The problem of 

confined seepage below river 

diversion and control structures 

resting on permeable foundations is 

one of the major problems of 

practical importance in this regard. 

Seepage of water below such 

structures has an important bearing 

on the stability of structures. 

Consequently the design of control 

structures founded on porous media 

necessitates an accurate prediction 

of the effect of seepage on the 

stability of the structures.  

The analysis of the problem must 

satisfy the dual criteria of keeping 

the residual pressures and the exit 

gradient within reasonable limits and 

at the same time effecting overall 

economy. The solution of confined 

seepage becomes involved in cases of 

complex profiles of the structure or 

where the permeable foundation is 

non-homogeneous or anisotropic. Hence 

the above problem has been the 

subject of several investigations in 

the past by experimental, empirical, 

analytical and approximate methods.  

In many practical problems the 

degree of heterogeneity, the nature 

of anisotropy and the complexity of 

boundary form encountered are such 

that the traditional analytical 

methods are extremely difficult to 

apply unless certain simplifying and 

unrealistic assumptions are made. 

These difficulties have lead to the 

development of numerical methods such 

as relaxation method, finite 

difference method and finite element 

method which are capable of taking 

into account all complexities 

generally observed in the solution of 

boundary value problems. Out of the 

two important numerical methods, i.e. 

finite difference and finite element 

method finite element is preferred to 

finite difference method because of 

latter's ineffectiveness in treating 

non-homogeneous material properties 

and complicated boundary conditions 

including irregular shapes.  

The present study therefore 

envisages the use of finite element 

technique for solving two-dimensional 

problems of confined seepage, below 

hydraulic structures with particular 

reference to media and complecity of 

boundary form of the structure. 

Optimum number of constant grade 

triangular elements, four mode 

rectangular elements and four node is 

oparametric elements are used for 

obtaining accurate results and 

compared with the exact or analytical 

solutions, wherever available. 

The investigations conducted are done 

in parts. Firstly to verify the 

accuracy of this method, finite 



NIJOTECH VOL. 9 NO. 1 SEPTEMBER 1985 RAO 56 

 
element results obtained, are 

compared with those results obtained 

by exact solutions for the case of 

standard profiles like, horizontal 

floor with a central pile and floor 

with two piles. Finally using the 

optimum number of elements thus 

evolved, complicated boundary forms 

of hydraulic structures are 

considered for the solution of 

confined seepage below the 

structures. The results are based on 

the computer programs especially 

developed, using three different type 

of elements with any boundary farm 

and material properties for practical 

profiles of the hydraulic structures.  

 

2. REVIEW OF APPLICATION OF FINITE 

ELEMENT METHOD TO SEEPAGE PROBLEMS  

 

Zienkiewicz and Cheaung [1] 

presented a numerical procedure for 

dealing with boundary value field 

problems based on their paper 

presented at British theoretical 

mechanics conference, Leeds, 1965. 

The method, based on finite element 

procedure adopts minimisation of an 

appropriate functional for solution 

of field problems like seepage, heat 

conduction and torsion with the help 

of a general computer program. This 

investigation demonstrated the field 

of applicability of finite element 

procedure to areas other than 

structural mechanics and has become a 

general numerical method of wide' 

applicability to problems of 

engineering and physical science.  

Zienkiewicz et al [2] have 

presented through the finite element 

method a numerical solution to the 

governing equations of seepage flow 

in non-homogeneous anisotropic media. 

The formulation is developed in a two 

dimensional situation using 

triangular elements of arbitrary 

shape. The solution thus obtained was 

tested with the available results 

from the exact solution and the 

accuracy obtained was excellent. Even 

though the investigation clearly 

brought forward the versatile nature 

of finite element method to deal with 

arbitrary anisotropic problems, the 

other type of element and complex 

boundary forms are worthy of being 

investigated.  

 

Many other investigators using 

the finite element procedure studied 

the conditions of seepage flow under 

free surface flow [3, 4, 5] and 

unconfined flow situations [6]. It 

may be seen from the above discussion 

and references, the studies are 

limited and generally pertain to 

rather simple situations either in 

terms of boundary forms or foundation 

conditions. Further the different 

types of element configurations have 

not been studied in detail for 

confined seepage problems.  

 

3  BASIC EQUATIONS 

The basic equation for flow 

through porous media, combining 

Darcy's law of seepage and the 

continuity equation can be written as 

follows:  
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where kx ky kz are values of 

coefficient of permeabilities in 

three mutually perpendicular 

directions and (  ) being the 

piezometric head. For the case of two 

dimensional flow in homogeneous 

isotropic medium the eqn (1) is 

further reduced to  

   

   
  

   

  
 

         
             

 

It is evident from the above that the 

problem of confined seepage boils 

down to one of solving Inq the 

Lapitace’s equation (2) by numerical 

formulation using finite element 

technique.  

Applying Euler's equations of 

variation for the two dimensional 

problem under consideration, the 

variational formulation for case of 

non-homogeneous steady confined flow 

can given by:  
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4.  FINITE ELEMENT FORMULATION  

The continuum is divided into an 



NIJOTECH VOL. 9 NO. 1 SEPTEMBER 1985 RAO 57 

 
equivalent system of finite for any 

regular geometrical shape i.e. 

triangle, rectangle quadrilateral 

etc. as shown in Fig. 1 to 3 to suit 

the boundary shape. The elements are 

fixed in shape and do not change in 

size or shape while the fluid seeps 

through them. As triangular or 

rectangular element cannot represent 

truly the curvilinear boundaries of 

the continua, iso-parametric 

quadrilateral element is considered 

in such cases as shown in Fig. 3. The 

field variable model selected to 

represent the variation of the 

unknown over each element is of 

polynomial form e. g.  

                            
After selecting typical finite 

element and the field variable model, 

the derivation of the inite element 

equations can be achieved by 

variational methods. The solution of 

the governing equation for two 

dimensional seepage is mathematically 

equivalent to finding a function 

I( ), minimising the functional in 

equation (3). Taken over the whole 

region. The resulting property matrix 

consisting of potential   and the 

permeability of the medium  

K and the coordinates of the element 

under consideration generally known 

as seepage matrix is given by  

   
   

   ]{  }          

Where [S] is element seepage matrix  

Once the individual seepage matrix is 

found the contribution from all the 

elements of the region are added 

together to form overall seepage 

matrix of the form 

  ]{  }             
where [K] is the overall seepage 

matrix and                 represent 

potentials (percent of head acting) 

at the individual nodal points. After 

overall seepage matrix is formed 

rest.  of the procedure is simple 

following the typical solution of 

equations after substituting the 

necessary boundary conditions.  

 

5. IDEALISATION FOR FINITE ELEMENT 

MESH  

In numerical, experimental and 

anolog techniques it is very 

essential to simulate reservoir 

boundaries and the depth of the 

continuum (7, 8] such that the errors 

in the unknowns will be as small as 

possible when compared with the exact 

solutions. The above factors are 

directly involved in the 

consideration of the finite element 

mesh. Hence the model length and 

depth are kept such that the error in 

the seepage discharge is as small  

as possib1e (1 percent) as the other 

values (residual head, exit gradient) 

are not much effected due to 

variation in the idealised length of 

the boundaries.  

Therefore to kept the errors 

within the above limits, the total 

length of the reservoir boundary 

should not be less than 2.SB on 

either side of the floor and the 

depth of the foundations should not 

be less than 2.5B or 3S (whichever is 

more) where B is the breadth of the 

hydraulic structure and S is the 

maximum pile depth. Finite depth 

conditions can be incorporated easily 

from the above. Based on the above 

factors, a mesh size of BB x 3B is  

adopted as shown in Figs. 4 to 6.  

Different mesh sizes are adopted 

for each type of element i.e. 

triangular, rectangular and is 

operametric guadrilateral element 

adopting in each case a finer mesh in 

the region where rapid variation is 

expected. The results in each case 

are compared with the exact solution 

to identify the optimum conditions of 

the mesh idealisation for maximum 

accuracy. 

As already emphasised non-

homogeneous and anisotropic 

conditions of the continuum can be 

readily accounted with ease in the 

finite element approach and such 

cases are treated in detail elsewhere 

[9]  

 

6. RESULTS AND CONCLUSIONS:  

The accuracy of the finite 

element method is demonstrated by 

considering a typical profile with a 

central pile vide 
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FIG I C. IDEALISAION IN STRATIFIED MEDIA 
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FIG. 2 c DETAILS SHOWING NODAL CONNNECTIONS AND INCLINAION OF SEEPAG AXIS  
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FIG 3 b ORIENTATION AND COORDINATES OF ISOPARAMETRIC QUADRILATERAL ELEMENT  



NIJOTECH VOL. 9 NO. 1 SEPTEMBER 1985 RAO 61 

 

 



NIJOTECH VOL. 9 NO. 1 SEPTEMBER 1985 RAO 62 

 

 



NIJOTECH VOL. 9 NO. 1 SEPTEMBER 1985 RAO 63 

 

 
 

Fig. 4. The mesh size and the 

idealisation are provided simulating 

the boundaries for isotropic media of 

infinite depth. Table 1 gives element 

wise residual pressures obtained at 

key points along the floor for 

different mesh idealisations. Table 2 

gives the effect of change of element 

configuration for the given mesh 

idealisation. All the above numerical 
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results are compared with the 

corresponding values of the exact 

solutions and the following 

conclusions can be arrived at.  

For a particular type of element 

as the mesh size is improved from 259 

nodes to 449 nodes, there is marked 

improvement in the result. In the case 

of triangular element the error 

decreases for 4.7 to 3.9 percent, 

whereas it decreases from 2.33 to 2.00 

percent in the case of rectangular 

iso-parameteric quadrilateral element. 

Also in the second case when the mesh 

idealisation is kept constant and 

element configuration is changed the 

results obtained by rectangular or iso 

-parametric quadrilateral element are 

definitely superior, closely 

approaching the values of the exact 

solution, thereby indicating 

superiority over the triangular 

element. It can be concluded that 

rectangular or iso-parametric 

quadrilatera element is well suited 

even for floors with piles within 

reasonable accuracy.  

Practical profile of hydraulic 

sutures normally adopted in the field 

are entirely different from the 

elementary profiles discussed in the 

previous sections. Even though a 

practical profile does consist of all 

the elementary profiles individually, 

the behaviour of the combined unit is 

very much different. Hence the various 

approximate methods consider each part 

separately for calculating the 

residual pressures and suitable 

corrections are applied to achieve the 

representation of the combined unit. 

These methods have their own 

limitation and only experimental and 

electrical anolog models consider the 

profile as a single unit. Hence the 

finite element results, which also 

take into account the profile as a 

single unit are compared with those of 

experimental values obtained by 

Palnifar [10] and those of Khosla by 

approxima methods [11].  

 

Table 1: Effect of Course And Fine Mesh Idealisation or Residual Pressures for 

Floor With Central Pile (Fig 4 (a)) 

 Location  Exact   Triangular Element  Rectangular Element  Iso-parametric  

 Along  Solut.ion      quadrilateral Element  

S/No  Base  (  )    (NODES)  (NODES)  (NODES)   

 (x/b)    (259)  (449)  (259)  (449)  (259)  (449)  

1  0.16  72 .80  77 .49  76.77  75.13  74.54  75.13  74.54  

2  0.33  67.00  65.91  65.39  65.77  65.44  65.77  65.; 44  

3  0.67  32.80  34.08  34.61  34.23  34.55  34.23  34.55  

4  0.84  26.60  22.51  23.23  24.86  25.45  24.86  25.45  

 

Table 2: Effect of Element on the residual pressures for floor with central pile 

(Fig. 4a) 

 

Location  
along  
base  
(x/b)  

          

S/N  
Exact  
Solution 
 
 
 
  

  259 Nodes     449 Nodes   

          

 (1)   (2)  (3)   ( 1 )  (2 )  (3)  

           
1  0.16  72 .80  77 .49  75.13  75.13   76.77  74.54  75.54  

2  0.33  67.00  65.91  65.77  65.77   65.39  65.44  65.44  

3  0.67  32.80  34.08  34.23  34.23   34.61  34.55  34.55  

4  0.84  26.60  22.51  24.86  24.86   23.23  25.45  25.54  

(1)Triangular Element (2) Rectangular Element (3) Iso-parametric quadrilateral 

Element 



NIJOTECH VOL. 9 NO. 1 SEPTEMBER 1985 RAO 65 

 
Table3.  Comparison of FEM Results with experimental and Khosla's Results 

For Isotropic media for Complex Profile (Fig. 5, U/S Slope 1:1 and D/S Slope 

1: 5)  

S/N  Location  

SID  =15 and  SI

VVV

VVV

VV  

V = 12  SID  =  10  and  SlV  12  

         

FEM    EXP   Khosla  FEM  EXP   Khosla   

1  DIU  67.62  66.70   66.43  64.29  64.29  36.20   

2  C1  65.09  62.10   65.87  53.90  55.00  54.59   

3  E2  56.54  57.00   55.27  46.94  48.90  47.18   

4  DID  42.38  42.70   41. 57  39.32  43.00  40.14   

 

The practical profile of the 

hydraulic structure as demonstrated 

in Fig. 5 is assumed to be of base 

width of 60 units with constant 

upstream and downstream piles of 60 

units each. The downstream 

intermediate pile is varied (0-15) 

units for each value of upstream 

intermediate pile (0-12) units with 

downstream floor for slope of 1: 5. 

The foundation of the structure is 

assumed to be homogeneous and 

isotropic of large depth and the 

simulation of finite element mesh is 

done accordingly. The residual 

pressures obtained at various 

locations for two typical cases are 

tabulated in Table 3 for comparison.  

The variation of residual 

pressures when compared with the 

experimental results is of the order 

of about 2.5 percent for most of the 

cases. The above results clearly 

conclude that the finite element 

method can be effectively employed 

for complicated practical profiles 

with sufficient accuracy. Also, the 

residual pressures at all key points 

and the distribution along the floor 

can be instantly determined without 

resorting to corrections etc.  

Finally the residual pressures 

obtained at the key points for the 

profile whom in Fig. 6 are given 

below to show how intricate 

construction details also can be 

taken into account for analysis of 

practical profiles by the finite 

element method.  

 

 

 

7. COMPUTER PROGRAM  

The finite element method has 

come into usage due to the advent of 

high-speed digital computers for the 

last two decades and it is very 

obvious that the finite element 

procedure will be of no use if 

computers were not available to solve 

the large number of simultaneous 

equations obtained during the 

process. The program is coded in 

fort-ran language and has been used 

with CDC-3600 computer which may be 

easily understood with some knowledge 

of Fortran-IV. More details of the 

program listing can be found 

elsewhere [9].  

The program as shown in the flow 

chart in Fig. 7 consists of series or 

modules called subroutines. Data 

input, element seepage matrix, 

equation solving procedures are some 

typical subroutines. The main program 

is very simple whose only function is 

calling the various subroutines in a 

suitable order. The program can 

consider different structural 

configurations, boundary details, and 

various non-homogeneous and 

anisotropic conditions of the 

materials. The program is oriented 

for practical profiles consisting 

horizontal, vertical and inclined 

floors, and is capable of generating 

finite element mesh (i.e. nodal 

coordinates and elemental connection) 

from the data of initial and final 

values, which is done in the 

subroutine G-DATA 1. The existing 

finite element programs for 

structural design have been consulted 

in writing this program. 
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START 

LOOP ON NUMBER OF PROBLEMS 

READ DETAILS OF PROBLEMS IDEALISATION – NP, NE, NB, NCN, NMT, NPROS ETC 

READ NODAL COORDINATES AND INTERPOLATE MISSING DATA 

READ ELEMENT CONNECTION DETAILS AND INTERPOLATE MISSING DATA 

CALL GDATA I – ASSIGNS MATERIAL PROPERTIES AND CALCULATES BAND WIDTH 

ETC 

READ BOUNDARY DETAISL 

CALL FORMK – ASSEMBLES GLOBAL SEEPAGE MATRIX AND INSERTS BOUNDARY 

CONDITIONS 

 

CALL SOLVE – SOLVES FOR NODAL POTENTIAL HEADS  

CALL FLOV 1/2/3 – COMPUTES NODAL AVERAGE HYDRAULIC GRADIENTS, 

VELOCITIES AND DISCHARGES 

END ON LOOP ON PROBLEMS 

OUTPUT RESULTS 

STOP  

END  
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Table 4: Residual Pressures at Key Points (Fig. 6)  

Location Du C EI DIV EI E2 EID C2 E DD Exit 
Gradient 

Residual 
Pressure  

 
76.99 

 
70.05 

 
69.99 

 
68.08 

 
49.87 

 
44.56 

 
38.05 

 
31.16 

 
23.67 

 
18.26 

 
0.1346 
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