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Abstract  

A modified form of the Hall - Perch equation, where the average grain diameter is replaced by the 

surface to volume ratio of internal boundaries (Sv), is considered. Working with this model, a flow 

stress – Sv relationship dominated by geometrically necessary dislocations (GNDs) is derived for the 

low strain region.  

At higher strains, a more complicated relationship between the flow stress and Sv is anticipated. The 

role of statically stored dislocations (SSDs) in the high strain region is emphasized. The Stacking 

fault energy (SFE), through the density of the SSDs may coetrol the character of the Hall - Petch 

slope Ky with increasing strain. 

 

1. Introduction  

A new generalized form of the Hall – Petch 

relationship which takes into account the 

specific surface area (surface to volume ratio) of 

grain boundaries has recently been put forward 

[1] and is given as: 

          
 

    (1) 

In equation (1)    is the flow stress,   is the 

friction stress, m is a constant, Ky is the Hall - 

Petch slope and Sv is the surface to volume ratio 

of the grams.  

Previous attempts [2,3], at the explanation of the 

flow stress - grain size dependence are based on 

the concept of grain boundaries acting as 

obstacles to dislocations. The recent approaches 

to the flow stress - grain size dependence 

employ the arguments of Ashby (4) for the 

generation of Statistically stored and 

Geometrically necessary dislocations (SSD 

&GND). The role of grain boundary regions as 

areas of high density of GND therefore, 

becomes substantial. With the above in mind, 

the surface to volume ratio of the grains Sv, 

which may be considered as a parameter for 

assessing the grain size, assumes an important 

physical meaning. The advantages in the 

adoption of Sv, as a parameter for the 

characterization of the grain size [5] instead of 

the grain diameter has been elaborated by other 

workers [6 – 8]. In the case of dual phase 

materials, the surface to volume ratio has even a 

wider application, since the work hardening of 

the material will reflect the geometrical 

arrangement of the phases. 

 

2. The Ashby Model (4) of Work Hardening.  

The classical Hall - Petch relationship relates 

the yield stress to the inverse square root of the 

grain diameter [2,3]:  

         
       (2) 

where    is the yield stress, d is the grain 

diameter, and Ky and    are constants. The 

applicability of this equation to the flow stress 

has been well demonstrated (9). When eqn. (2) 

is applied to the flow stress,    and Ky are 

functions of strain. Hall - Petch type relationship 

is obeyed by FCC metals (10), dual materials 

(11), ordered phases (12) as well, as lamellar 

structures [13]. The universality of equation (2) 

in the above form or the interpretation  

of its original conception has been questioned 

[14, 15]. Due to the fact that the Hall - Petch 

model was a description of statistical 

observation, physical basis for its formulation 

has been constantly sought and alternative 

models proposed (for review see ref. 5].  

One of such models is the work hardening 

model [16 – 18]. The fundamental formulation 

of the work hardening model is the dependence 

of the flow stress on the square root of the 

dislocation density; expressed as follows:  

                 (3) 

Where           have their usual meanings, α 

is a constant, b is the Burger’s vector, and  is 

the dislocation density. Ashbys [4] modification 

of the work hardening model lies in the concept 

of the GNDs and SSDs. The GNDs are essential 

for the compatibiilty requirement deformation. 
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The grain size dependent part of the flow stress 

originates from the density of the GNDs, g. The 

geometrically necessary dislocation are largely 

confined to the grain boundary regions [1, 19]. 

Ashby [4] has predicted that the density of the 

GNDs will be directly proportional to the 

inverse of the grain diameter. This prediction 

has been disputed by Thompson, Baskes & 

“Flanagan [20] on the grounds of texture 

formation. Dollar & Gorezyca[1] have also 

argued against a direct inverse proportionality 

between g and grain diameter. The latter post 

that the average dislocation density may be 

related to the grain size but not the local 

dislocation density. 

On the other hand, the density of the SSDs, s 

should not be related to the compatibility 

conditions that liad to the generation of the 

GNDs but to the amount of deformation. Also, 

the lattice forces and the stacking fault energy 

(SFE) will play a role on the magnitude of s. 

Local order may equally contribute to the 

density of the SSDs. In another way, it could be 

said that s will surely depend on how easily 

recovery processes are proceeding. Interactions 

between the SSDs and the GNDs or an 

interrelationship between s and g may be 

anticipated since the GNDs generated earlier 

may act as obstacles to the generation and 

movement of later generated dislocations. 

Bearing in mind the number of factors involved 

and that the accumulation of SSDs is a result of 

chance encounters [4], a simple prediction of the 

density of the SSDs, s , will be impossible. 

 

3. Modificaion of the Hall – Petch 

Equation  

(A) Low Strain region  

At low strains, the SSDs and GNDs are largely 

stored in different region of the grain. The total 

dislocation density may therefore be given as: 

t = s + g    (4) 

Following Thompson et al [20], the volume 

fraction occupied by the GNDs will be 

determined by the factor s/d, where s is the 

statistical slip distance and d is the grain 

diameter. Ashby [4] suggested that s  is a 

function strain and grain size, i. e. our opinion, 

s   will not be a function of grain size provided 

that s is smaller than the grain diameter; thus 

providing a limiting case to the Ashby model. 

This is in agreement with Thompson et al [20], 

whose statistical slip distance is an 

undetermined function of strain and grain 

diameter in the sense that the grain diameter is 

the upper limit for s. The total dislocation 

density may therefore be written as: 

t = s(1 - s/d) + g s/d  (5) 

On the assumption that the sum of the volume 

fractions of the SSDs and GNDs is equal to 

unity, equation (3) then becomes; 

                                  

(6) 

For s  d, a case in the low strain region, 

equation (6) may be simplified to: 

             
      (7) 

Dollar & Gorcryca [1] have given the density of 

the GNDs as: 

            (8) 

Where  is strain and   is a constant. 

Substituting (8) in (7), we have; 

               
     

or 

               
      (9) 

Note that           

Equation (9) is a Hall – petch type equation. 

Recall that Sv  1.73/d. An important point to 

note is that the equation predicts a strain 

dependent Hall – petch slope at low strains. 

Also, the contribution of the dislocation density 

to the flow stress is the determined solely by the 

density of the GNDs – a point predicted by 

Ashby [4]. It could be said that a strong 

influence of the SFE on the flow stress grain 

size dependence I the micro yield region (note 

that the GNDs are characteristic of the 

microstructure only) may not be expected. 

Irvine, Gladman & Pickering [21] have 

considered the parameters affecting the flow 

stress of austenitic rat steels. The FFE which 

controls the work hardening rate has little or no 

influence at low strains. Meyers & Ashworth 

[22] have also concluded that the micro yields 

region is marked by the accommodation of 

GNDs. 

 

(B) High strain region 

Let us now consider the high strain region. 

Contrary to the low strain situation, both the 

GNDs and SSDs will be expected to play 

substantial roles. At not-too-low strain, the 

density of the GNDs will be swamped by that of 

the SSDs (i.e. s  g), (see ref.[18]) and the 

square root of the total dislocation density by be 
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approximate as:  

      
      

               
     

  

  
      

      (10) 

Neglecting terms of order higher than two and 

substituting in equation (3), we arrive at:  

            
             

  
     

           (11) 

or 

         
           

        
   

    

                  (12) 

Where o A = αGb, A” = αGb/2, A” = αGb/8. 

The density of the SSDs may be approximated 

thus [23]: 

s = o + Cn
    (13) 

Where o is the initial dislocation density ,  is 

strain, C & n are constants. 

Substituting in equation (12) equations (8) and 

(13) , 

                              

         

                      (14) 

For s > > o which corresponds to the 2
nd

 

stage in the deformation of monocrystals, eqn 

(14) becomes: 

                                 

         
             (15) 

On further simplification we may write  

         
       

        

    
          

 
    (16) 

Where  

A1 = αGbC
0.5

, A2 = αGb/2C
0.5  

and A3” = αGb/2C
1.5 

For friction stress i o + A1
n/2

 where A1
n/2

 is 

a grain size independent increase in the lattice 

friction stress, equation. (16) may be written as:  

         
       

      
          

 
  

     (17) 

Equation (17) is a Hall – petch type equation. 

The 3rd term on the right hand side of equation 

(17) may be neglected. For the large grain sizes, 

the contribution of Sv2 will be negligible when 

compared to that of Sv. When the grain size 

decreases, the Meyers and Ashworth [22], using 

the Ashby concept, have derived an equation 

similar to equation (17). They gave a flow stress 

– grain size relationship that includes both d
-1

 

and d
-2

 terms. 

On the assumption that the Sv
2
 term is 

unimportant, that Hall – Petch slope as 

determined from equation (15) is  

Ky = α(T
1-n/2

)/2C
0.5  

(18) 

In this case, n is a measure of the work 

hardening one may suggest that the value of n 

will be high for low SFE materials and lower 

with increasing SFE. 
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The strain hardening exponent of Cr - Ni 

suggests that the Hall -Petch slope Kv, is related 

to the SFE through the initial value of n. 

Johnston & Feltner [25]have summarized the 

results of other workers on the influence of the 

SFE on the Hall - Petch slope (see figure 1). The 

ratio of the Hall - Petch slopes (Kalloy/Kcu is 

the ratio of the Hall - Petch slope of Cu alloy to 

that of pure Cu whereas e/a is the electron to 

atom ratio) is seen to increase with increasing 

electron to atom ratio or decreasing SFE. For 

low SFE materials, one can predict an initial 

high value of Ky from equation (16) with 

increasing deformation, the value of Ky will tend 

to derease. There is apparent agreement between 

this and the results. Presented by Dollar and 

Gorczyca [26] (figure 2a; Note that A, B, C 

refer to three austenitic steels of low, high, and 

medium SFE respectively and Ki refers to the 

Hall – Petch slope). The initial high value of Ky 

in a Cu – Zn alloy [6] which is a low SFE alloy, 

has been attributed to the blocking of slip (slip 

hardening). Rapid increase in the density of 

SSDs [27] for a high value of n may account for 

the normally observed Ky values for low SFe 

material. Equation (17) also predicts a non – 

dependence of KY on strain, on the assumption 

that n = 2. This is the case for medium SFE 

metals. Hansen [28] has  published results for a 

strain - independent Hall - Petch slope or K() 

(figure 2b)for Cu. In the case of high SFE 

materials, the Hall - Petch slope is an increasing 

function of strain. One can reach that conclusion 

for values of n <2. For 1020 steel and Fe, Hahn 

[23] has given the values of n as between 0.7 - 

1.5. 

Equation (17) may be cricticized on the grounds 

that the value of n > 2 assumed for low SFE 

materials has not been observed experimentally 

[29]. Explanation for this apparent discrepancy 

may lie with the constants  and C. Both 

constants may not be independent of strain. The 

accumulation of SSDs will strongly depend on 

the value of n since the density of the SSD is 

expected to dominate [4, 20, 22] over that of the 

GND. The assumption of a strain dependent n is 

in agreement with the generally acknowledged 

fact of dislocation saturation after high 

deformation. Equation (13) predicts-an 

increasing density of SSDs, s with increasing 

strain. As has been discussed earlier, the density 

of the SSDs, will depend on how easily recovery 

processes are proceeding. The occurrence of 

recovery processes, such as annihilation, 

remobilisation and cross slip which moderate 

the increase in s with strain [30] may lower the 

value of n. It is therefore plausible to suggest, 

that with increasing deformation, the value of n 

will decrease. The rate of decrease may be 

sensitive to temperature and strain rate.  

 

4. Conclusions  

The model discussed above predicts a Hall -

Petch type equation at low strains. In this region, 

the GNDs dominate. At higher strains, flow 

stress will depend on both Sv and Sv
2
. The 

contribution of Sv
2 

will be significant mainly at 

very small grain sizes. It is also concluded that 

the SFE will affect the Hall- Petch slope through 

the value of the parameter.  
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