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Abstract 

One major drawback of fuzzy logic controllers is the difficulty encountered in the construction of a 

rule- base that is suitable for the controlled process. In this paper we tackle this problem by proposing 

an algorithm that allows a designer to initially specify a possibly inaccurate rule-base, which is then 

made more and more accurate in the course of operation of the control system. The effectiveness of 

the proposed self-organizing procedure has been investigated by means of computer simulation. The 

results of the simulation studies indicate that the proposed algorithm is effective. 

1. Introduction
The greatest limitation of fuzzy logic control is 

the lack of a systematic methodology for 

developing fuzzy rules. The rule-base of a fuzzy 

logic controller (FLC) often needs to be 

manually adjusted on a trial-and-error basis in 

order for the control system to reach the desired 

level of performance. This tuning process could 

be quite complicated, and could be time 

consuming for a first-time FLC developer [1].  

 Apart from the initial tuning problem, there is 

this general problem in process control, namely, 

that changes in the operating conditions of a 

process plant are difficult to predict and adjust 

for. This means that a FLC needs to be 

continually tuned if it is to be practically 

relevant. The on-the-job tuning process is no 

less cumbersome than the initial tuning of the 

system. Hence it is desirable to develop a FLC 

that can adapt its response in relation to 

variations in the process dynamics. 

A lot of work has gone into the development of 

self-organizing FLCs. Procyk and Mamdani [2] 

proposed a self-organizing FLC in which the 

rules are deciphered from a predefined 

performance index table. Pedrycz [3] proposed a 

method of constructing the rule-base of a FLC 

in which it is viewed as a relational matrix that 

can be derived by solving pre-identified relation 

equations that govern the controlled process. 

Takagi and Sugeno [4] developed an approach 

for extracting control rules from skilled 

operators, and used the approach to identify 

rule-based process models from which the rule-

base of a FLC can be constructed. Today, none 

of these methods is popular, which is an 

indication that they have not b been satisfactory. 

 Recent researches into adaptive intelligent 

controllers have resorted to marriage of Fuzzy 

Logic with other methods of Soft Computing, 

principally Neural Networks and Genetic 

Algorithms. The general practice has been to 

import the ideas developed in Fuzzy Logic 

setting, with their attendant advantages, into 

these other technologies. The self-organizing 

FLC strategy we present in this paper operates 

in a purely fuzzy logic setting. The advantage of 

operating in a purely fuzzy logic setting is the 

ease of design and realization. Since this setting 

has exported a lot of ideas to other technologies, 

we want to bring back ideas from one of these 

technologies that have fuzzy logic orientation. 

In particular, ideas developed by D. A. Linkens 

and J. Nie in [5], [6] and [7] under neuro-fuzzy 

control setting are reshaped and fitted into fuzzy 

logic setting. 

 Linkens and Nie [6] proposed some self- 

learning fuzzy controller structures, with the 

assumption that neither control experts nor 

teacher signals are available for the control 

problem. Each of the fuzzy controller structures 

adopted an architecture similar to that used by 

traditional model reference adaptive control 

systems (MRAC), and is basically implemented 

as a neural network. They claimed that the 

advantages of the neural network 

implementation are computational efficiency 
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and trainable capability of the network 

paradigm. However, it is known that system 

modeling by neural networks does not resolve 

the dimensional problem, i.e., the number of 

required weights may be large [8].  

Careful study of the report given by Likens and 

Nie in [5] reveals that the utilization of the 

simplified fuzzy control algorithm (SFCA) 

which they developed, in a purely fuzzy logic 

setting, could make the rule-based paradigm to 

possess the computational efficiency and 

trainable capability that is usually associated 

with the network paradigm. In particular, it 

seems that the adoption of an architecture 

similar to that used by MRAC would enable a 

fuzzy controller based on the SFCA to self-learn 

its rule-base. In this paper, we want to formulate 

an adaptive FLC strategy based on these ideas. 

We want to modify the concepts developed in 

[5] for neuro-fuzzy controllers and fit them into 

traditional FLC.  

The paper is organised as follows. We define 

the research problem in section 2. The self- 

organising FLC algorithm is presented in 

section 3. Simulation studies of the self- 

organising FLC algorithm are described in 

section 4. Section 5 presents the results of the 

simulation studies and then discusses them. The 

paper ends with conclusive remarks. 

2.THE PROBLEM 

 Consider a FLC in which there are m error 

signals, and hence 2m inputs to the fuzzy 

reasoner. Assume also that each input is 

decomposed into n overlapping fuzzy regions, 

so that the fuzzification of the inputs      = 1, 2, 

... , 2m, can be expressed by 

    {  
    

       
 }    (1)                                 

Where   
   are the fuzzy subsets corresponding 

to the ith input. The premise of the rules is  

formed by the Cartesian product of the input 

fuzzy sets [the   
   of (1) above]. The 

conclusion of each rule is formed by the 

Cartesian product of the output fuzzy sets   . 

Consequently, each rule has the following form:  

   

 

(2) and (3) refer to the jth rule; there are p 

control outputs, and   
 

 is the output fuzzy 

subset corresponding to the i'th control output. 

There is no clearly defined way of tying the 

Cartesian products of the input fuzzy subsets to 

the Cartesian products of the output fuzzy 

subsets. This situation makes the design 

process a difficult task for an inexperienced 

designer, since a lot of heuristics is obviously 

involved. This is the main reason for requiring 

self-organising ability.  

3. THE SELF-ORGANISING FLC  

Fig. 1 shows the overall structure of the 

adaptive FLC. It consists of a conventional 

FLC plus a reference system and an adaptation 

mechanism. The fuzzy reasoner is given an a 

priori rule-base that may not be accurate, and 

a set of input and output fuzzy sets, at the 

design stage. The function of the adaptation 

mechanism is to tune the parameters of the 

fuzzy reasoner so as to attain the desired 

control objectives. The reference model 

represents the desired transient and steady-state 

performances; it provides a prototype for use 

by the adjustment mechanism.  
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3.1. Modified representation of the fuzzy 

system  

Let the membership functions for    (  ) in 

equation (2) be triangular with the apex existing 

at the middle (or modal point)   (  ) of the 

support set and width    (  ) being the distance 

from the modal point to either of the left and 

right edges. Consequently, the membership  

value at each point        is given by 

 

Only two items of data are required in order 

to store the fuzzy sets   (  ) in memory; 

  (  ) and    (  ). The rule represented by 

equation (2) can be expressed in the 

following form: 

 

In equation (6), the width of the fuzzy sets is 

not included in the rule because it can 

always be obtained by accessing the 

information stored in connection with the 

appropriate fuzzy set. The fuzzy sets can 

also be considered to be fuzzy numbers, so 

that all that need be included in the rule is 

the ideal or centre value of the fuzzy 

number. With these representations of the 

fuzzy system, it now remains to specify how 

the inference process should be 

implemented.  

The inference process begins with matching 

the fuzzified input patterns with the 

condition part of the rules in the rule-base. 

The truth value of the predicate of the rule is 

determined by means of the standard 

minimum rule for conjunction of fuzzy sets. 

The inferred output fuzzy sets are then 

correlated to the truth value of the predicate 

by means of either the correlation minimum 

method or any other means, such as the 

correlation product method [9]. The modified 

output fuzzy sets are then copied into the 

output variables' fuzzy sets. Where the 

output fuzzy sets overlap, or two or more 

rules infer the same fuzzy set for the same 

control output, the standard rule for 

disjunction of fuzzy sets will be applied to 

determine the surface of the output variables' 

fuzzy sets. In the adaptation strategy being 

proposed, the inference procedure will be 

modified, because a defuzzification 

technique that is not exactly the standard 

centroid method will be employed. Since the 

ultimate result of the fuzzy reasoning 

process is the defuzzified output, it is 

necessary first of all to choose a 

defuzzification method that is suitable to the 

proposed strategy.  

The weighted averaging method of 

defuzzification described in [5], which is 

similar to the centroid method, is 

particularly suitable. In this method, the jth 

control output is given by 

   (7) 

Ai (xi)      = 

j j 
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In equation (7), Q rules have been triggered 

in the inference process;    is the truth 

value of the predicate of the qth rule and  

  
 
 is the centre value of the consequent 

fuzzy set. 

Having selected a method of defuzzification, 

the issue of how to determine the surface of 

the control output's fuzzy set where the 

output fuzzy sets overlap, or if more than 

two rules infer the same fuzzy set, no longer 

arise, because the surface of the fuzzy set 

need not be known for the selected 

defuzzification method. 

3.2. The reference model  

The desired performance of the control 

system is designated by the reference model, 

which specifies what the process responses 

should be when it is subjected to the same 

command signal as the reference model [6]. 

The model should be as simple as possible 

so that its output can be readily determined 

by adjusting a few parameters in the model. 

The other requirement in selecting the model 

is that the desired performances should be 

achievable. For example, there is no sense in 

demanding an instant response for a 

dynamic process with pure time delay 

subject to a step command signal. For a 

single-input-single-output process, the 

following linear first-order and second-order 

models would normally be used. 

  (8) 

 (9) 

 

 

The models given above are linear, but do not 

suggest that the process itself must be linear. 

Yet they do suggest that some knowledge about 

the process should be available. With some prior 

knowledge of the process and well-known  

linear control theory, it is not difficult to 

determine the parameters in the above models 

by specifying the desired time domain indices or 

by allocating the pole positions in the s-plane 

[6].  

In equation (8), the term T is the time constant, 

an indication of how fast the system tends to 

reach the final value, and   is the delay time. In 

equation (9) the positive coefficient    is the 

undamped natural frequency, the coefficient   

is the damping ratio of the system and   is the 

delay time. 

Control systems are generally designed with 

damping less than one, that is, oscillatory step 

response [10]. This type of response is 

characterised by several performance indices 

one of which is the settling time. The settling 

time is most often defined as the time required 

for the response to a unit-step function input to 

reach and remain within a specified percentage 

(frequently 2 or 5 percent) of its final value 

[11]. It is a measure of speed of response of the 

control system. For a 2 percent tolerance band 

the settling time is given by the approximate 

relationship. 

    (10) 

  

 

3.3. Adaptation mechanism  

In normal operation of the adaptive FLC shown 

in Fig.1, the fuzzy reasoner infers the current 

control action every sampling instant. The 

reference model and the learning mechanism are 

activated only when there is a step change in 

error, of sufficient magnitude. Each activation 

forms an iteration of the adaptation mechanism. 

This assumes that both the process output and 

the reference model output were in steady state 

before the step change occurs. Both the closed-

loop control system and the reference model are 

given the same set point. During each sampling 

period k within an iteration, the adaptation 
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mechanism compares the process output yp and 

reference model output yr as follows  

 

where    is the learning error. If the process 

response does not exhibit any dead time, the 

adaptation mechanism also obtains from the 

fuzzy reasoner the rules triggered during the last 

sampling period. Since every rule in the rule- 

base is represented in the form of equation (6), 

the adaptation mechanism then calculates a new 

centroid for each rule that contributed to the 

learning error eL according to the following: 

 

where Mu(k) is the new centroid  , is the 

predicate truth value of the winner rule and p is 

the learning rate. 

 Suppose there is dead time in the process 

response, and the estimated delay time is λ 

sampling periods. In this case the adaptation 

mechanism stores an array of previously 

triggered rules obtained from the fuzzy reasoner 

with their associated predicate truth values. In 

each sampling period it recalculates the centroid 

for every rule that was triggered λ sampling 

periods before the present sampling period, but 

makes use of the current learning error. The 

updating of each rule's centroid can be 

expressed as follows:  

 

4. Simulation studies  

The objective of the simulation studies is to 

investigate the performance of the self- 

organising algorithm. Actually, the objective is 

to see how well the adaptive control strategy 

forces the control system to approximate the 

reference model. A simulation program that 

implements the algorithm was created for this 

purpose. The simulation program used a 

learning rate   = 0.05.  

4.1. The control system  

Here, we want to specify the control system 

being simulated. The specifications given here 

were incorporated in a computer simulation 

program.  

The Process:  

The controlled process is assumed to be 

described by the nonlinear differential equation   

 
 

 

 

where y(t) is the process output and u(t) is the 

control signal. The differential equation model 

of the process is solved numerically in the 

computer by means of the Runge-Kutta- 

Nystrom technique [12].  

Input Formation:  

The process represented by Eq. (14) is single- 

input-single-output (SISO). Therefore, there is 

only one input (error signal) to the controller. 

The control error is extended into two signals, 

error and change-in-error. The error signal is  

calculated in the following manner  

e(kT) = SP- y(kT)     (15) 

where SP(=1) is the set point for the control 

system and y(kT) is the numerical solution of 

equation (14) in the kth sampling period. The 

change –in-error signal is computed as follows. 

c(kT)= e(kT)-e((k-1)T)      (16) 

e(kT) and c(kT) serves as the inputs to the fuzzy 

reasoned. 
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Fuzzification: 

The universe of discourse for the two inputs, 

error and change-in-error, is normalised and 

decomposed into seven fuzzy regions namely, 

negative large (NL), negative medium (NM), 

negative small (NS) zero (ZR), positive small  

(PS), positive medium (PM) and positive large 

(PL). The normalization of an input or output 

variable involves multiplication with a suitable 

gain factor gi. The scale factors are fixed at 

constant values, as follows:  

       = 1 

             = 2 

       = 2 

The fuzzification of a crisp input value is done 

by means of Eq. (4). For the input linguistic 

variables, the centroid of the fuzzy regions and 

the span are as follows: 

  
 = {-1, -2/3,-  ⁄ , 0,  ⁄ , 2/3, 1}  

   = 1/3                                                            (18) 

 

Rule-base:  

Having specified the fuzzy sets, the next task in 

the FLC design process is to elicit the control 

rules. Since the fuzzy reasoner has only two 

inputs, each of which can fall into any of seven 

fuzzy regions, writing the rules simply involves  

deciding what the output fuzzy set should be for 

each possible input combination. From the 

interaction of the two inputs, a seven-by-seven 

matrix can be constructed showing the output 

for each input combination (Table 1). This  

matrix is the rule-base for the fuzzy controller.  

Definition of the initial rule-base makes use of 

Table 1. The rule-base is stored as in Table 1, 

but with the control output linguistic labels (NL, 

NM, NS, ZR, PS, PM, PL) replaced by the 

centroids of the implied fuzzy sets. For 

purposes of defining the initial rule-base, the 

control output is also decomposed into seven 

fuzzy regions, with centroids given as  

Mj =={-1, -2/3, -1/3, 0, 1/3, 2/3, 1}  (19)  

The initial rule-base is represented as follows. 

rulebase [7][7]= 

{-1, -1, -67, -67, -33, -33, 0}, 

{-1 -67 -67 -33 -33 0 0}, 

{-67 -33 -33 0 0 .33 .33}, 

{-.33 -.33 0 0 .33 .67 .67}, 

{-.33 0 0 .33 .33 .33 .67 .67}, 

{0 0 .33 .33 .67 .67  1}, 

{0 .33 .33 .67 .67 1 1} 

     (20) 

 

Defuzzification: The final step in the design 

process is the selection of a method of 

defuzzification. In the present case, the 

weighted averaging method [Eq.(7)] is 

employed. 

 

Reference model:  

Two sets of parameters were used for the 

reference model during the investigations, 

namely  

   == 2,  == 0.75.  

   == 3,  == 0.75.  

In selecting the sets of parameters, some care 

was taken to ensure that their values are such 

that the adaptation mechanism can force the 

control system to approach the reference model 

output. The settling times (about 2.67 s in the 

first set and 1.78 s in the second set) were put 

into consideration.  

 

4.2. Simulation procedure  

The simulation program was run for fifty 

cycles, so as to enable the learning process to 

possibly stabilize. By stabilization of the 

learning process is meant that there will not be 

any appreciable adjustment of the rule-base 

from cycle to cycle. In each cycle the control 

system is given a step input and the cycle time 

is such that the system settles to a steady state 

response. The cycle time used for the 

simulation study was 5 seconds, even though 

any time greater than the settling time could 
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have served equally well. (The simulation 

program was designed in such a way that the 

rule-base resulting from a cycle is available for 

use in the next cycle.) The response of the 

system was recorded after the first, twentieth 

and fiftieth cycles. The resulting rule-base after 

the first, twentieth and fiftieth cycles were also 

recorded, to find out how the  

adaptation mechanism modified the rule-base 

5. Results and discussion  

Fig. 2 shows the output responses of the 

process in comparison with the reference model 

after the first, twentieth and fiftieth cycles of 

the adaptation procedure, for the reference 

model parameters    == 2,  == 0.75. Table 2 

shows the adjustment of the rule-base after the 

first, tenth, twentieth and fiftieth cycles of the 

adaptation procedure for the reference model 

parameters,     == 2,  == 0.75. 

 Fig. 3 shows the output responses of the 

process in comparison with the reference model 

after the first, twentieth and fiftieth cycles of 

the adaptation procedure, for the reference 

model parameters   == 3,  == 0.75.  

In Fig. 2, it can be noticed that as the number of 

iterations increases, the output of the process 

approaches the reference model output. In fact, 

the curve for the fiftieth iteration indicates a 

system that is faster than the reference model in 

terms of the rise and settling times, even though 

the speed enhancement is accompanied by an 

increase in overshoot. The increase in 

overshoot, however,  is quite tolerable. 

Comparing the rise times of the curve for the 

fiftieth iteration with that of the reference 

model, it can be seen that whereas for the 

reference model    ̇1.4 s, the curve for the 

fiftieth iteration indicates that     ̇ 1.2 s. 

Comparing the settling times of the curve for 

the fiftieth iteration with that of the reference 

model, it can be seen that whereas for the 

reference model     ̇3s, the curve for the 

fiftieth iteration indicates that     ̇2.4s.  

 

In Fig. 3, it can also be noticed that as the 

number of iterations increases, the output of the 

process approaches the reference model output. 

However, the curve for the fiftieth iteration 

indicates that the system could not follow the  

reference model as well as did the responses in 

Fig. 2. Comparing the rise times of the curve for 

the fiftieth iteration with that of the reference 

model, it can be seen that whereas for the 

reference model    ̇0.9 s, the curve for the  

fiftieth iteration indicates that    ̇1s. 

Comparing the settling times of the curve for 

the fiftieth iteration with that of the reference 

model, it can be seen that whereas for the 

reference model    ̇ 2 s, the curve for the 

fiftieth iteration indicates that    ̇3.2s. This 

means that the choice of a reference model 

should be done realistically. The reference 

model should be such that the self-organizing 

controller could possibly force the process to 

follow it.  

 

In Table 2, it can be seen that the adaptation 

mechanism adjusts its rule-base in response to 

the learning error. Starting with the initial rule- 

base shown in Eq. (20), the adaptation 

mechanism continually adjusted the fired rules 

as control progressed. Rules that were not fired 

were not affected by the adaptation mechanism. 

Hence, the self-organizing controller was able 

to adjust itself in response to the prevailing 

conditions of the controlled process. 

 

 Taking a closer look at table 2, one can see 

which of the rules that were adjusted by the 

adaptation mechanism, and which were not. All 

the rules represented by the first and second 

columns of the rule-base matrix were not 

influenced by the adaptation mechanism. In the 

third column, only     and     were not 

adjusted. The adjustment of the rules in the third 

column started right from the first cycle, and 

considerable adjustment was done. In the fourth 

column, only     and     were not adjusted. 

Also, the adjustment of the rules in the fourth 
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column started right from the first cycle, and 

considerable adjustment was done. In the fifth 

column, three of the rules are adjusted, R53,     

and R55. There was no adjustment of the rules in the 

sixth column. In the seventh column, only     is 

adjusted, and by a significant amount.  

 

The adjustment pattern indicated in table 2 is not 

surprising, when one considers that a control 

system maintains the controlled variable mostly 

close to the set point. That is why columns three 

and four of the F AM experienced the greatest 

levels of adjustment. The fact that     is 

adjusted might look as a surprise, but the 

surprise goes when one remembers that     is 

activated when the system begins from an inert 

(zero) initial conditions. In this state the system 

is not really within control. The adjustment 

mechanism increased the value of       in such a 

way as to quickly bring the system under 

control. Overall, one can say that 14 out of the 

49 rules were adjusted. This implies that only 

about 29 percent of the rules really participated 

in the control process. This is why in systems 

with large number of inputs to the fuzzy 

reasoner, due to unwieldy number of rules that 

would be implied, the self-organising controller 

may be given the ability to determine which of 

the rules to retain in memory.  

 

CONCLUSION  

A self-organising fuzzy logic control algorithm 

has been proposed. The algorithm utilizes a 

modification of the standard fuzzy logic 

controller structure. The performance of the 

proposed self- organising procedure has been 

investigated by means of computer simulation. 

The results obtained from the simulation studies 

indicate that the algorithm achieves the desired 

objective. However, care must be taken when 

selecting the parameters of the reference model, 

since the self- organising FLC can only force 

the system to approximate a realistic model.  

The great advantage of the proposed self- 

organizing FLC is that the designer does not 

have to worry so much about the accuracy of the 

initial (untuned) rule-base. The control system 

can start up with a rule-base that may be quite  

unsuitable for the controlled process. Self- 

adaptation can then be used to tune it up to a 

good level of performance.  
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