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ABSTRACT  

In this paper, Lyapunov's method for determining the stability of non-linear systems under dynamic 

states is presented. The paper highlights a practical application of the method to investigate the 

stability of crude oil/natural gas separation process. Mathematical state models for the separation 

process, used in the application, are developed and presented in the paper. From the results 

obtained, some guidelines are recommended for a safe and efficient practice of separation of oil + 

water from oil + water + gas mixture in a crude oil process separator without getting into process 

instability. The recommended guidelines will be found useful in the oil and gas industry for safe 

and efficient oil and gas production business.  
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1  Introduction  

One of the ways of assessing the usability of 

a system (linear or non-linear) is to evaluate 

its dynamic stability. For non-linear systems, 

several methods have already been developed 

for this purpose. They are Nyquist's, Popov's 

and Lyapunov's methods 
[1]. 

Among those 

methods, Lyapunov's method (second 

method) is recorded to be the most general 

and powerful 
[1]

.  Its definition is presented in 

this paper.  

Even though the method is recorded to be 

powerful, it has a major drawback, which 

seriously limits its practical applications. This 

drawback is the difficulty often associated 

with the determination of a function V(x), 

known as the Lyapunov function, that is 

required by the method and the development 

of a state model for a physical process 
[2]. 

It is 

so difficult that in most cases, the function 

V(x) is chosen arbitrarily and no guidelines 

are used in making this choice [1]. An 

unlucky and wrong choice of V(x) can give a 

wrong conclusion about the stability of a 

system.  

It is based on these facts that Brogan, W. L., 

in his book, Modem Control Theory, wrote: 

"Unfortunately, the Lyapunov theorems give 

no indication of how a Lyapunov function 

V(x) might be found. There is no universally 

best method of searching for Lyapunov 

functions. The function V(x) can be assumed 

either by a pure guess or by intuition" [3].  

This difficulty also made Ogata, K., to state 

in his book, Discrete Time Control Systems, 

that:  

"Although the second method of Lyapunov is 

applicable in the stability analysis of any non-

linear system, obtaining successful results 

may not be an easy task. Experience and 

imagination may be necessary in the 

application of Lyapunov theorems in stability 

analysis of most non-linear systems" [4]. 

The problem now is how to determine the 

Lyapunov function V(x), which presently is 

always assumed arbitrarily or chosen 

intuitively.  
Fair enough, Barnett, S. [2], presented a 
procedure for determining the Lyapunov 
function, V(x), which is based extensively on 

variable gradient. Making use of that 

procedure, a practical application of the 

method (Lyapunov's second method) is 

illustrated in the paper. Before getting into the 

practical application of the method, it is 

necessary to give its complete scope, 

including the definition. 
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2  Lyapunov's Second Method and 

Non-linear Systems Stability  

Lyapunov's second or direct method, as it is 

sometimes referred to, plays an important role 

in the stability analysis of both linear and 

non- linear systems. The concepts of this 

method are presented below 

Lyapunov's second method is based on the 

generalization of the following fact:  

"If a system is in an asymptotic stable 

equilibrium state, then the stored energy of 

the system displaced within the domain of 

attraction decays with increasing time, t, 

until it finally assumes minimum value at the 

equilibrium state" [4].  

Lyapunov, in his applied mathematics work, 

introduced a function V(x), known as a 

Lyapunov function, and used it to evaluate 

the stability at equilibrium state mentioned 

above for both linear and non-linear systems.  

He defined the function V(x) as  

 ( )       ………………………………. 

(1)
[4]

 

where, x is a state vector (an n-dimensional 

vector), and P is a symmetric, positive-

definite matrix expressed in an expanded and 

generalized form as  

 ( )  

[       ] [

            
            
                       
            

] [

  
  
 
  

]     ( )             

 

Lyapunov then used the following conditions 

to investigate the stability of systems  

(i)  V(x)  0  x  0  

(ii)  V(x)  0  x  0  

 (iii)  V(x) = 0, for x = 0  

They generally provide sufficient conditions 

for the stability of systems. The method 

adopted by Lyapunov, as presented above, is 

known as Lyapunov's second method 
[4]

.The 

function V(x) is however difficult to 

determine
 [4]

. However, as earlier mentioned, 

Barnett, S.,
 [2]

 presented a method for 

determining it. The method is stated, without 

proof, in eqn. (3a):  

 ( )  
[  ( )]  …………………………(3a)

[2]
 

        ( )  

[
 
 
 
 
 
  (  )

   
   (  )

  (  )

   
   (  )

                        
  (  )

   
   (  )]

 
 
 
 
 

     (3b) 

From which V(x) is given by 

 ( )  ∫
 
 
[  ( )]   ………….. (4) 

A general form of V(x) is given by: 

  ( )  [

  (  )

  (  )
 

  (  )

]  

[

                   
                   
                                                   
                   

]……(5) 

Eqns. (3a) and (4) can hence be used to 

determine V(x) and V(x) respectively for any 

non-linear system 

It is pertinent at this point to mention that 

Lyapunov's first method, found in some 

mathematics texts, has no engineering or 

practical applications. In recent times, it is not 

much emphasized and is almost forgotten 
[5]

. 

It should be noted that the aij's are completely 

undetermined quantities and could be 

constants or functions of state variables x, 

and time, t. Also, it should be noted that the 

size of the matrix in eqn. (5) is determined 

by the order of the state model of a given 

system whose stability is to be investigated. 

An example below will demonstrate this 

point.  

 

The models for V(x) and V(x) presented 

above have to be tested theoretically on a 

non- linear system in order to verify its 

validity.  

 

2.1  An illustration 

Given a system 

       
X2 = - X2 - (X1) 

3
, the requirement is to 

discuss the stability of the system, making 

use of Lyapunov's direct method 
[6].

  

The models for V(x) and V(x) from 

eqns. (3a) and (4) respectively, will now be 

used to solve this problem. Now, with 
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reference to eqn. (5), though the given 

system is a third order type, the entire system 

is in the second state order. A 2 x 2 matrix 

for V(x) and V(x) will hence result.  

Hence  

  ( )  [
           
           

]……………… (6) 

  ( )  

[
           
           

]…………………. (7) 

recalling eqn.(3a) 

 ̇( )  [  ( )  ̇]  
Substituting the state models for the given 

system in eqn. (3a),  

 ( )  

[
           
           

]……………………..(8) 

Substituting the values of X1 and X2 from 

the state models for the given system in 

eqn. 8,  

 

[
 ̇ ( )

  ( )
]  [

           
           

] [
            

 (  )
    

]  

      ( )       (  
 )       ( )

      (  
 )     (  )

              (  )
      (  ) 

        
           

         
              

       
  

       
       

                 
      

       
  

Let the aij’s =1…………………….. (9)
[2]

 

  ̇( )    ( )   ̇ ( )      
       

       
    

   

 ̇( )   ̇ ( )   ̇ ( )  
    

                              

 ̇( )      
 …………………. (10) 

                for x10 

It can be seen that eqn. (10) is negative-

definite, hence satisfies one of Lyapunov's 

conditions for asymptotic stability; that V(x) 

must be negative- definite 
[4]

 

 

Now, solving for V(x), and recalling eqn. (4) 

where  

 ( )∫ [  ( )]   
 

 
  

Substituting for [V(x) 
T
 from eqn. (7),  

 ( )∫ [                  
 

 

     ]    
Since the aij’s =1, recall eqn. (9) 

  ( )  ∫ [       ]  
 

 
  

 (   ∫        ∫      
  

 

  

 
)  

 ( )    
    

  …………… (11a) 

For xi’s 0 

It can be seen that eqn. (11a) is positive-

definite, hence satisfies one of Lyapunov's 

conditions for asymptotic stability; that V(x) 

must be positive- definite
 [ 4]

  

Also, from eqn. (11a), for Xi's = 0,  

 ( )   ………………………...... (11b) 

 

This satisfies another Lyapunov's condition 

for asymptotic stability 
[4]. 

The given system 

is therefore asymptotically stable in-the-

large since it satisfies all the Lyapunov's 

conditions for asymptotic stability.  

 

 3. A Practical Application  

As earlier mentioned, among several existing 

methods, Lyapunov's method had been 

found to be the most powerful on the 

evaluation of the stability on non-linear 

systems. To demonstrate the practical 

application of the method, it is applied to the 

following real-life dynamic control 

engineering process in order to determine its 

stability.  

The data recorded in table 1 represent the 

flow of a 3-phase crude oil into a separator 

(shown diagrammatically in fig. 1) and the 

separation of natural gas from the crude oil at 

Mobil Qua Iboe oil production flow station, 

Eket, Akwa Thorn State, Nigeria. It is desired 

to derive state equations governing the 

process and to determine (with justifications), 

whether the process is linear or non-linear. 

(For such a process to run smoothly, there 

should be no carry-over of the separated 

crude into the gas line. Such carry- over 

would signify instability). Also, it is desired 

to use Lyapunov's method to determine the 

stability of the process. (Valves "A" and "B" 

shown in fig. 1 are assumed to be open to 

some percentages to allow for the recorded 

data). Note: 3-phase crude oil, in the oil & 

gas industry, is a mixture of crude oil, water 
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and natural gas; mixed in any proportion. 

Also, in the industry, uptill now, the unit of 

measurement is still in imperial, not metric. 

Hence, in the recorded data, and in other 

places in the paper, the units are in imperial.  

On the date that the data were recorded, the 

temperature of the crude in the separator was 

98° F while the separator pressure was at 

atmospheric, 14.7 Pounds per Square Inch 

(PSI), through the flare line. The practice now 

is that the valves 'A' and 'B' are opened to 

some percentages and the flare observed. The 

valves are continuously manipulated until a 

smokeless, or fairly smokeless, flare is 

obtained. This practice is not the best as it is 

unprecise, hence the need to carry out further 

research into the separation process.  
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Table 1: Production data from Mobil Qua Iboe Oil Production flow station, Eket, Akwa Thorn 

State,Nigeria, taken March 9-29, 1999 [7]  

 

 
3-Phase Crude 

Inlet  

Oil + Water 

Produces 

(MMCFF/D) (Q2) 

Gas Produces 

(MMCFF/D) (Q2) 

 

 
            (     )

                     (     ) 
 

9/3/99  715119  4.012  6503.48  42.30  616.95 

10/3/99  724392  4.06  6527.21  40.05  622.01 

11/3/99  748512  4.20  6602.82  41.32  636.09 

12/3/99  741935  4.16  6522.02  43.11  637.84 

13/3/99  731568  4.10  6498.44  46.32  630.92 

14/3/99  740442  4.15  6501.44  42.28  638.32 

15/3/99  722107  4.05  6500.81  44.81  62300 

16/3/99  707725  3.97  6602.11  39.87  601.32 

17/3/99  716701  4.02  6502.84  40.12  618.19 

18/3/99  724499  4.06  6509.82  45.08  623.67 

19/3/99  721859  4.05  6614.30  41.06  612.31 

20/3/99  726291  4.07  6520.77  42.66  624.16 

21/3/99  691546  3.88  6504.20  39.92  596.53 

22/3/99  640155  3.60  6499.82  38.99  553.86 

23/3/99  695654  3.90  6514.14  39.06  598.70 

24/3/99  706868  3.96  6511.14  40.22  608.19 

25/3/99  696010  3.90  6520.20  42.06  598.14 

26/3/99  706868  3.97  6515.14  39.67  609.35 

27/3/99  698633  3.92  6502.12  40.02  602.88 

28/3/99  690438  3.87  6620.15  41.53  584.58 

29/3/99  694634  3.90  6497.06  40.77  600.27 

 

Note:  BBls/D = Barrels per Day  

MMCF/D = Millions Cubic Feet per ay  

Ft
3
/D = Cubic Feet Per Day  

Ft/D = Feet Per Day 
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In order to apply the method, state equations 

governing the process must be developed.  . 

To develop state equations, first, equation of 

flow is derived as follows:  

Q = AV                                          (12) 
[8]

  

Where  

Q = Quantity of oil + water + gas mixture 

flowing into the separator in ft
3
/d.  

A = Cross - sectional area of pipe in square 

inches.  

V = The velocity of in-coming crude in feet 

per second (ft/sec.)  

 

From eqn. (12),  

   
  

  
   ̇  

 ̇       Q a (velocity of inlet crude into 

the separator) 

 

Where a = 
 

 
 

 ̇       =………….                     (13a)  

 

The 3 - phase fluid is separated to oil + water 

mixture and natural gas.  

Let the volume of the separated fluid be 

characterized by X2 in ft
3
.  

A time-derivative of X2 gives the flow rate of 

separated Oil + Water and liberated gas.  

Hence,  

  ̇  (         )    )    ……(l3b)  

In Eqn. (l3b),  

- abx2 represents separated oil + water 

in ft
3
,  

- ax2 represents flow line losses in ft
3
, 

while x3 represents the liberated gas 

also in ft
3
.  

The factor a (= 1/ A) is as defined above 

while b is as defined in Table 1. The 

coefficients of X2 and x, in eqn. (l3b) both 

have negative senses because they are fluid 

flowing out of the separator. The quantity (-

abx - aX2) approximates to - abx, because the 

flow line losses, - ax2, is by far less than the 

separated fluid, - abx. That is, since - ax2<< - 

abx2, eqn. (l3b) approximates to:  

 ̀  (        )     ……….. (13c) 

The rate ofc flow line losses is given by  

 ̀            …………… (13d) 

Where x1 = Volume of oil + water losses in 

ft
3
. 

It should be noted that he dimension, ft.d, in 

this case, is volumetric flow rate. That is, so 

much volume is “displaced, in feet,” in so 

much “time, in day.” 

Now, looking at the recorded data in table 1, 

and taking a typical oil + water quantity and a 

corresponding quantity of gas produced, (that 

of 9/3/99) the following approach is used to 

determine the relation between the produced 

oil + water and gas.  

 

Given: 

Q1 = 6,503.48 ft
3
/d (Produced Oil + Water) 

Q2 = 42,300,000 ft
3
/d (Produced Gas) 

 

To establish a relationship between oil + 

water and gas produced, the following 

equation is postulated: 

(6503.48)
n
= 42,300,000……………(15) 

Log10 (6503.48)
n
   =  Log10 

42,300,000  

n Log10 6503.48 = Log10 42,300,000  

n(3.813145809) = 7.626340367 

n  = 2.000012785 

Other crude oil inlet readings from table 1, 

with their corresponding gas figures, gave the 

values of n to be between 1989 and 2014. 

From here, it is established that the 

volumetric flow rate of gas out of the 

separator (illustrated in fig. 1) is 

approximately a square function of that of oil 

+ water flowing out of the separator. 

42,300.000    (6503.48)
2
ft

3
/d …… (16)  

Eqn. (16) implies that  

x3 = x2
2…

 …….(17) 

Hence equation (l3c) becomes  

   ̀          
          …… (18) 

or            , (since x2
2
 = x3, from 

eqn. (17)) 

Now, the liberated gas x3 comprises natural 

gas such as methane (CH4), ethane (C2H6), 

propane (C)Hg), butane (C4H 10), etc, but 

cannot be separated to these components by 

the separator since it is a liquid/gas separator 

and not a gas fractionating column [9], 

hence, the flow rate of the separated 

products is zero.  

That is,  ̀        . 

  ̀        ……………………….. (19)  

The state equations governing the process are 
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hence given by eqns. (l3a), (13d), (18) and 

(19):  

  ̀    
  ......... (Rate of flow line losses in 

ft/d)  

 ̀      
   

  ...... …(Rate of flow of 

separated oil + water and gas in ft/d)  

 ̀    ..... (Rate of flow of separated natural 

gas in ft/d).  

 

Now, since one of the state equations 

representing the process contains an 

exponent  

higher than unity, (recall:  ̀          
  

, eqn. (18) ), then the process is non-linear.  

The value of X1 (flow line losses, in ft
3 

is 

obtained by integrating eqn. (13d) with 

respect to the time of flow as follows:  

 ̀       

      ∫         
           

    (20a) 

 

where t is time in days.  

Since a = 
 

 
, (from eqn. (13) ), for a 24 inch 

pipeline, (which is the diameter, d, of the 

pipeline in this application),  

  
 

(   )  
 

 

     (  ) 
          

 

Hence for a time of 1 day 

X1 = 0.00221 (X2) (1) = 0.00221 (X2) ft
3
..... 

(20b)  

Since the state model representing the 

process is in the third state order, that is the 

highest state order being X3, the system 

equation, from eqn. (5), (for this application) 

has to be a 3 x 3 matrix. Therefore to 

determine the stability of the process, eqn. 

(5) is recalled as follows:  

  ( )  [

                 
                 
                 

]  

For which  

  ( )  [

                 
                 
                 

]   (21) 

By eqn. (3a),  

 ̇( )  [  ( )]  ̇       (22) 

Substituting for xn(s) from eqns. (l3c), (13d) 

and (19), eqn. (22) becomes:  

 ̇( )    ( )  

[

                 
                 
                 

] [
              

             
                         

]  

 ̇( )       ( )       ( )       ( )  
     ( )  

      ( )       ( )  
     ( )       ( )  
                (     )  
     ( )          

      (     )       ( )  
              (     )  

      ( )       ( )  
     (   )       ( )  
      ( )        (   )  
     ( )       ( )  
      (   )       ( ).   

 ̇( )                          
                      

 

 (          )          
  

(        
 )     

          (          )    
(        )  
     (        )      
(        

 )   . 

  ̇( )                           
  

                           
             

  ……………. (23) 

The aij’s = are constant greater than zero 
[2] 

Let the aij’s = 1, (recoall eqn. (9)), hence eqn. 

(23) becomes  

 ̇( )                  
       

                   
   

     (    )    
 (    )    (  

  )              
   

 ̇( )  (    )(       
      )  

  (     )    
   ………. (24) 

Now, the factor "ab" in eqn. (24) must be 

greater than "a" (the coefficient of X2) for 

the following reason: The separated fluid, 

abx2, is heavier than the in-coming 3 - phase 

crude represented by Q. This is largely 

because its gas content x2
2
 (which made it 

lighter), has been liberated. To reflect this 

increase in weight, the factor "ab" in eqn. 

(24) has to be higher than "a".  

From that perspective, ab > a  

    b > 1  

From here, it can be seen that the equation 
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 ̇( )  (    )(       
      )  

  (     )    
   ………. (24) 

for Xi's   0,  

will always be negative, that is negative - 

definite, hence satisfying one of Lyapunov's 

conditions for stability. will always be 

negative, that is negative - definite, hence 

satisfying one of Lyapunov's conditions for 

stability. 

The more negative the number for Vex) is, 

the more stable the process will be. To 

demonstrate this, one of the readings from 

table 1 is substituted below in eqn. (24), for 

verification of the result. The reading from 

table 1 that was taken on 9th March 1999 

will be used.  

Recalling eqn. (20b), X1 = 0.00221 (X2)  

on that date, X1 = 0.00221(6503.48) = 

14.373  

 X2 = 6503.48  and  

 X3 = x2
2
 = 42,300,000 

Substituting these values in eqn. (24),  

  ̇( )  (      ) [(      )(       )  
(       )   (       )(          )]   
            (                )  
 (        )    

  (      )[             ]        
                         

 (      )(             ]  
            
 (a - ab)(2.7513 X 10"]-1.790xl  

Since a = 0.00221, and on that date, b = 

616.95 

 ̇( )  (             )(       
    )              

 ̇( )                       
             

  ̇( )              which is a 

negative number, hence satisfies one of 

Lyapunov’s conditions for stability. Since 

eqn. (24) one of Lyapunov's conditions for 

stability process under examination is a 

stable one number, hence satisfies one of 

Lyapunov's conditions for stability. Since 

eqn. (24) one of Lyapunov's conditions for 

stability process under examination is a 

stable one.  

To determine the positive-definiteness for 

another Lyapunov’s condition eqn. (14) is 

recalled as follows: 

 

 ( )  ∫ [  ( )]   
 

 
  (25) 

From eqn. (21),  

  ( )  [

                 
                 
                 

] (26) 

Since the aij's = 1, recall eqn. (9),  

  ( )  [
   
   
   

]   (27) 

  ( )                (28) 

  ( )  ∫ [           ]
 

 
  (29) 

  ∫   
  

 
     ∫   

  

 
     ∫   

  

 
     

      
       

       
   

 ( )(      
       

       
 ) (30) 

    for xi’s  0 

Eqn. (30) will always be positive, that is 

positive-definite, hence satisfying another 

Lyapunov's condition for stability. Also, 

from eqn. (30), for for xi's = 0, V(x) = 0 , 

thus satisfying another Lyapunov's condition 

for stability (4) .  

Substituting values for X1 X2 and X3, V(x) 

becomes  

 ( )        [(      ) )   (       )  
 (          ) ]  

      [                      
              ]   

V(x) = 2.6839 X 10
15

, which is a positive 

number, hence confirming the positive 

definiteness for Vex) , another Lyapunov's 

condition for stability. Similarly, the more 

positive the number for Vex) is, the more 

stable the process will be. Since both eqns. 

(24) and (30) satisfy Lyapunov's conditions 

for stability, the process under investigation 

is a stable one.  

 

 4  Discussion From the practical 

application of the Lyapunov's method just 

illustrated, it can be established that for the 

process in which the data are recorded in 

table 1, to run smoothly, within stability 

limits, the following conditions must hold:  

 (i)  0 < a << 1          (31)  

(ii) 1+    b  x2        (32) 

If condition (i) (eqn. (31) is violated, this 

would imply that the cross sectional area (A) 
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of the inlet and outlet flow pipes are very 

small which would further imply that crude 

oil production will be very low. If production 

is that low, then the business will not worth 

the trouble; not a good business practice: 

With reference to table 1, if condition (ii) 

(eqn(32)) is violated, say b = 0, this would 

mean that there is no crude oil inlet to the 

separator, that is, no production is going on . 

If b < 1, this would imply that more oil + 

water is produced than the inlet flow into the 

separator, which is not possible. Hence the 

region b  1, can be classified as a forbidden 

region. If b = 1, this would mean that the 

crude that is getting into the separator is what 

is getting out as oil + water produced; that is, 

no gas is produced, implying that x3 = 0 

(which cannot be true). If b = 1
+ 

,this would 

imply that oil + water and gas separations are 

beginning to take place; oil + water is going 

out through valve 'B' (fig. 1) and gas is going 

out-through the gas line to flare. The 

meaning of this is that the process is running 

smoothly. For   

b = x2
+
,this would imply that part of the oil + 

water is beginning to get into the gas line 

(beginning of instability). For b > x2, this 

would mean that more oil + water is getting 

into the gas line which would be a clear case 

of process instability. What these analyses 

tell us is that to operate efficiently within safe 

and comfortable stability limits, some 

conditions have to be met relative to the 

factor "b" and produced quantity of oil + 

water mixture, X2.  

A graphical illustration in fig. 2 provides a 

guide for selecting the factor "b" relative to 

the quantity of oil + water (X2) to be 

produced in order to stay within production 

stability limits. This will ensure that the 

model for V(x) (eqn. (24), remains negative 

thus satisfying Lyapunov's condition for 

stability. The conditions that allow for safe 

production, within stability limits, are 

expressed graphically in fig. 2 .  

 

 

Physical interpretation of the graph is that 

one should choose the quantity of oil + water 

to be produced, X2, ( in ft
3
 ) in a day. 

Thereafter, the person should select a factor 

for "b" slightly greater than I but not more 

than X2 then get to eqn. (24) and carry out 

necessary substitutions to solve for V(x), 

which should give a negative number, 

signifying process stability.  

The factor "a" (= 
 

 
 in eqn. (13)) is 

determined by the cross sectional area (A) of 

the inlet and outlet pipes.  

The diameter, d, of the pipes should not be 

less than 4 inches, otherwise the production 
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rate of oil + water would be too low which 

would not be a good business practice. What 

this implies is that the factor "a" should be 

greater than "0" but less than 
 

 
, where  

      
 

 
( ) 

      

 
         

                        

and    
 

 
 

 

      
 

 a = 0.0796 

 a  0.08 

Hence eqn. (31) can be modified to read 0 < 

a   0.08 ………….(33)  

The pipe size for this application is 24 inches 

in diameter hence,  

a = 1/( (24)
2
/4) = 4/(3.142) (24)

2
 = 0.00221. 

With those limits for "a" and "b", the 

production will remain stable for the process 

in which the data are recorded in Table 1.  

 

 

 5  Conclusion  

In the paper, Lyapunov's second method has 

been applied to a real-life oil production 

process to determine safe production limits 

for process stability. The data for the process 

(shown in table 1), were recorded at Mobil 

Oil Production flow station, Eket, Akwa 

Thorn State, Nigeria, where one of the 

authors (U. T. Itaketo) is working as an 

instrumentation engineer. It has been 

mentioned that the major factors that usually 

hinder the practical application of the method 

are the development of mathematical state 

models for the physical process under 

stability study and the determination of a 

Lyapunov function for the process. Practical 

guidelines have been offered on how to apply 

the Lyapunov method to a real-life process; 

an oil production process, in order to operate 

safely within stability limits.  

Oil industry engineers and operators will 

generally find the recommended guidelines 

useful in their oil production business.  
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