
Nigerian Journal of Technology, Vol. 22, No. 1, March 2003 Bakpo 15

SOFTWARE DESIGN MODELLING WITH FUNCTIONAL PETRI

NETS

F.S. Bakpo

Department of Computer Science,

University of Nigeria, Nsukka

fbakpo@yahoo.com

ABSTRACT

Petri Nets use two basic primitives: events and conditions to view or model a system. Events are

the actions that take place in the system. The occurrence of events is controlled by the "state" of

the system, which can be described as a set of conditions. An immediate application of such a

model is in the control structures of conventional programming languages. Control structures

are the backbone of every programming language. In this paper, an equivalent functional Petri

Net (FPN) model is developed for each of the three constructs of structured programs and a

FPN Software prototype proposed for the conventional programming construct: if-then-else

statement. The motivating idea is essentially to show that FPNs could be used as an alternative

approach for program design.

1. INTRODUCTION

The concept of Petri Nets has its origin in

Carl Adam Petri's dissertation

“Kommunikation mit Automaton”,

submitted in 1962 to the Faculty of

Mathematics and Physics at the Technische

Universitat Darmstadt, Germany [9]. Since

then the use and study of Petri nets have

increased considerably. For a review of the

history of Petri nets and an extensive

bibliography the reader is referred to [1, 6,

8, 12, 14]. A Petri net has been described in

[2] and [3] as a convenient graphical and

mathematical modeling tool allowing for

easy representation of concurrency,

synchronization and conflict among parts

of the modeled system. Other areas of

immediate applications include distributed

data base system, communication

protocols, system programs, computer

hardware systems, workflow management

and performance study of complex

processes [1,10,13,14]. A Petri Net has

been defined as a quadruple N = (P, T, F,

W) where: P is the set of places

(graphically represented as circles) with /P/

= n and P. T is the set of transitions

(graphically represented as bars\) with /T/ =

m and T,TP = .F  (P x T) U (T x

P) the flow relation of N. W: F N\ {0}

attaches a weight to each arc of the net.

Figure 1 depicts an example of a Petri net.

It consists of places (circle), transitions

(bar) and directed arcs (flow relations) that

mailto:o@yahoo.com

Nigerian Journal of Technology, Vol. 22, No. 1, March 2003 Bakpo 16

connect them. Input arcs connect places

with transitions, while output arcs start at a

transition and end at a place. A place may

contain zero or more marking also called

weights or tokens. The current state of a

modeled system (the marking) is given by

the number (and type) of tokens in each

place. Transitions are active components

and are used in modeling activities (events)

which can occur (the transition fires), thus

changing the state of the system (the

marking of the Petri net). Transitions may

fire only if they are enabled, which means

that all the preconditions for the activity (or

events) must be fulfilled. Usually, this

happens if here are enough tokens available

in the input places. When the transition

fires, it removes tokens from its input

places and adds some at its entire output

place. The number of tokens

removed/added depends on the cardinality

of each arc. In figure 1, places PI, P2

initially hold one marker each, as follows:

The Petri net in figure 1 may be used to

model a program, which compares two

(sorted) arrays to determine whether they

have the same set of elements. As we all

know, one of the capabilities that make

computers so useful is their ability to make

conditional decisions and to execute

different instructions based on the values of

data being processed. These decisions are

.usually built into language control

structures and constitute the program logic.

Consequently, Petri nets could be used to

model and verify the correct behavior of

programs.

2. OVERVIEW OF PROGRAMMING

LANGUAGE CONSTRUCTS

In developing computer software, computer

scientists and engineers study various

methods and techniques of software design.

One of such techniques is called structured

programming. Structured programming

refers to the process of designing

algorithms in terms of "structured

flowcharts". A flowchart is a directed

network having three kinds of vertices-

function vertex, predicate vertex and

collecting vertex, which are illustrated in

figure 2.

Nigerian Journal of Technology, Vol. 22, No. 1, March 2003 Bakpo 17

A function vertex is used to represent a

function F: X
®

 y. A predicate vertex is

used to represent a function (or predicate)

P: X {T, F} that is, a Boolean

expression, which passes control along one

of two branches. A collecting vertex

represents the passage of control from

either of the two incoming branches to one

outgoing branch.

A structured flowchart is therefore a

flowchart, which is composed of the three

primitive flowcharts shown in figure 3.

(a) do SI; S2 od (b) if B then Sl else S2 fi (c)

While B do SI od

These primitives are known respectively as

Sequence, Selection, and Iteration.

Virtually all computer programs that are of

some practical interest can be represented

by flowcharts. It has also been shown by

[4] and [10] that any flowchart can in turn

be represented by a structured flowchart.

An immediate corollary of this result is that

the three primitive flowcharts of figure 3

are sufficient to design any algorithm. The

flowcharts of figure 3(a) - (c) are referred

to as program control structures. The

purpose of a structured flowchart is two-

fold:

(i) To enable the programmer to arrive at

an acceptable structure for a

program by identifying its

component modules and their

mutual interaction. This is aptly the

main purpose.

 (ii)To generate semi-automatically the

program algorithm by implementing

in Pseudocode the control structures

indicated in the structured

flowchart. This is a by- product

Software designers must limit the number

of features included in a program so that it

will not require more memory than the

system for which it is designed.

3 THE CONCEPTS OF

FUNCTIONAL PETRI NETS AND

LANGUAGE CONSTRUCTS

A Complex Process (CP) is an ordered 5 -

tuple = (S, K, D, Mo, I), where S -

Functional Petri Net (FPN); K - set of

constructions in the CP; D -set of labels

associated with entry points; Mo -initial

states or markings of the CP; I - system's

Interpreter [2,7,11].

Definition1 A functional Petri net (FPN)

has been defined in [2] as a 5 – tuple S =

(P,T,F, μ0, C),where P =PO UPv UPC U Pe -

places designated respectively for

operators, variables (operands), constants

and conditions; Po= P of UPoe UPoi - that is,

an operator place may in turn be functional,

logical or iteration; T = Ti, U To - input and

output transitions; F - incidence matrix or

function of the net; μ0 -initial marking

(start) of the net. C = {C1}, i = 1, n - a set of

colors, where C1 -is the set of marking

colors in the ith place (Pi) and n - is the

number of places in the net. Consequently,

Nigerian Journal of Technology, Vol. 22, No. 1, March 2003 Bakpo 18

a FPN has been introduced as an extension

of the classical Petri net obtained as a union

of E-net [2,7] and colors Petri nets [5]. A

FPN must satisfy the following conditions

FPN conditions Explanations

i. F(p) ≤2p{Pv U Pc};

ii. F(P) ≤1PP;

iii. F(t) ≤1tTi;

iv. F(P) ≤ 1PPo;

v. F(t) 1tT1;

vi. F(t) tTo;

Input places into a constituent module of

FPN must be equal to or less than 2

The output place must be less or equal to.1

The output from transition must be less or

equal to 1

The output into elementary constructs

F(P)must be equal or less than 1

The input to transition must be greater or

equal to 1.

The output from elementary constructs

F(t) must be greater or equal to 1.

4. MAPPING SOFTWARE DESIGN

CONCEPTS ONTO FUNCTIONAL

PETRI NETS

Definition 2 In a CP, construction is

defined as K = {Ke, Kc,}, where Ke -

elementary (or primitive) constructs and Kc

- constituent modules (or subgraphs) of the

net. Thus, a CP consists of modules, where

each module in turn consists of elementary

constructs. This is similar in concepts to the

Top down design methodology. There are

three types of elementary constructs in

FPN, depending on the type of operation.

Thus, we have Ke = {Kef, Kel, Kei,}, where

Kef KeI, Kei, - are elementary functional,

logical and iteration constructs,

respectively. Figure 4 shows these three

elementary constructs. A functional

construct may have n+ I input variables

(operands) of which one may be constant

and m output variables. The net functions

by processing the variables in sequence.

That is, Pvi is processed to yield Pv(n+l)

before Pv2 is processed. The syntax is:

<FUNC>. [<N>] (<INPl>, [<INP2>])

(<OUTl>,[<OUT2>]), where N is a Petri

net label.

Nigerian Journal of Technology, Vol. 22, No. 1, March 2003 Bakpo 19

The syntax of a logical construct is as

follows:

<N> = COND.<L> (<INPl>, <INP2>) (T =

<OUT THEN>, E = <OUT ELSE>) <N>

=T. <EXP> (<INP1 = OUT THEN>

<INPl> ... <INPn>) (<OUTI> ...

<OUTm>);<N> = E. <EXP> (<INP2 =

OUT ELSE>,<INP1> ... <INPn>)

(<OUT1> ... <OUTm>);

Notice in figure 4(b) that the logical

construct is the key to determining which

way the flow will go. It consists of not

more than two input variables (places) at a

time and two possible outcomes of the

logical - true or false. The execution of a

statement decreases values of variables

corresponding to its input places by 1

(provided they are all positive) and

increases values of variables corresponding

to its output places by 1, in one multiple

assignment.

The iteration construct is adirect

consequence of the logical construct. Here,

if the condition stated in the logical

construct is true, the subnet on the left-hand

part will fire, otherwise, execution follows

the right- hand part.

Similarly, a composite module Kc = {Kcf;

KcI}, where Kcf - is functional construct; and

Kc1, -is a logical construct.

Definition 3 A composite module Kc, = (Pc,

Nigerian Journal of Technology, Vol. 22, No. 1, March 2003 Bakpo 20

Tc, Fc μoc Cc) is a sub graph of FPN in

which each place p  Pc, Fc – denotes

incidence function, μoc - initial marking of

the net for p Pc, In a FPN, places are

designated as input and output whereas

transitions are also designated as input and

output. These definitions are as follows:

(i) An input transition of a composite

module or sub graph may be

defined as: Tic= {t\t Tib   p 

{p/P F (t)}  p  Pb}; where Tib -

is subsets of input transitions in the

composite module and Pb - a set of

places in the composite module;

(ii) An output transition of a composite

module is also defined as: Toc= {t\ t

 Tob, p  Pn, p {p \ t F (p) }}.

(iii) An output (variable) place in the

composite module may be defined as Pvc=

{p\ P  Pb}.

Figure 5 illustrates a FPN model of the

conventional programming language

construct: If A = B then FN2 else FN3.

 An if-then-else block permits one of

two different groups of executable

statements to be executed, depending on

the outcome of a logical test. If the logical

expression is true, then the first group of

executable statements FN2 will be

executed. Otherwise, the second group of

executed statements FN3 will be executed.

Figure 5 (a) depicts the model of such

computation using the three primitive

constructs

Definition 4 A set of labels D associated

with entry points D = {dov; dbv, dlv}, where

dov, dbv and dlv, are labels of operand,

Boolean, and linked variables, respectively.

Labels of operand variables are obtained as

output of a functional construct while

labels of Boolean variables are obtained as

output of logical construct where decisions

are taken based on the logical values of

True or False. Labels of linked variables

are obtained during compilation and refer

to the various modules that will be linked

together before execution.

Definition 5 In a CP, the system's

interpreter is defined as:

I: μo X μ(Pv) = Mo X D, where Mo- denotes

initial marking, and D - set of labels. The

system's interpreter is discussed in more

detail in [2].

5.SOFTWARE PROTOTYPE USING

FUNCTIONAL PETRI NETS.

The classical Petri net allows for the

modeling of states, events, conditions,

synchronization, parallelism, choice, and

iteration. However, Petri nets describing

real processes tend to be complex and

extremely large. Moreover, the classical

Petri net does not allow for the modeling of

data and time. To solve these problems in

[4] and [14] three different extensions of

the basic Petri net were proposed. These

are:

(1) the extension with color to model

data;

(2) the extension with time and

(3) the extension with hierarchy to

structure large models.

In this section, the extension with hierarchy

is employed. A hierarchy or elementary

construct or subnet is an aggregate of a

number of places, transitions, and

subsystems.

If the dotted portion in figure 5 (a) is

replaced by the logical construct (subnet) of

FPN, then it is possible to modify figure 5

(a) without changing its hierarchical

structure. The equivalent model is depicted

in figure 5 (b).

Nigerian Journal of Technology, Vol. 22, No. 1, March 2003 Bakpo 21

Figure 5 (b) shows the conventional IF -

THEN- ELSE programming statement

composed using subnets of FPN. A Petri

net extended with these properties may be

called a high-level Petri Net. The

corresponding software prototype follows:

<ddv> START/* Presence of tokens or

variables */

<ddv> INP (<INP1>, <INP2>)

<ddv> IF <L> (<INPl>, <INP2>) (T <OUT

- THEN>, E = <OUT-ELSE>);

<ddv> T.<FUNC> (<INPl = OUT-T H

E N >, ,<INP1>, ... ,<INPn>)

(<OUT1, ... <OU Tm>);

<ddv> E.<FUNC>(<INP2 =OUT - ELSE>,

<INPI>,... ,<INPn>) (<OUT1>), ...

,<OUTm>);

<duv> OUT (<INPl>, <INP2>)

(<OUTl>,[<OUT2>]);

<ddv> END/ * Absence of token or

variables */

Where ddv denotes FPN labels.

6 ANALYSIS OF CORRECTNESS OF

A COMPLEX PROCESS.

Basically, there are three types of analysis

that one may examine in the design of a

new system, namely:

(i) Validation, i.e., testing whether the

system behaves as expected,

(ii) Verification, i.e., establishing the

correctness of a system, and

(iii) Performance analysis, i.e., evaluating

the ability to meet requirements with

respect to throughput times, service levels,

and resource utilization. As in the classical

Petri nets, all formal proofs are also

advocated in this paper. For a detailed

review of this analysis the reader is

referred to [3, 6, 8, 11]. To meet the needs

of this paper, which is mapping of one

component onto another, let us examine a

property known as identity of

computational modules.

Definition 6 A Complex Process that is

modeled with FPN whose initial and final

markings are

 respectively, is

called identical and deadlock-free if there

exist a sequence of executed transitions

τ, that

 and each transitions t

 T is contained in τ at least once. It is

believed that similar computational

modules operating at different speed and

sequence of execution will produce

independent solutions that are identical.

This property is also referred to as

identity of solutions.

Nigerian Journal of Technology, Vol. 22, No. 1, March 2003 Bakpo 22

7. CONCLUSION

Software design is an application

domain, which could benefit from the

features of functional Petri nets. For this

reason, we have presented in this paper

an equivalent FPN Software prototype

for the conventional language control

structures. The concepts discussed in this

paper, if properly harnessed will

revitalize the existing structured

programming method for the following

reasons:

 * FPN provides formal semantics despite

its graphical nature,

 * FPN models the occurrence of events

by the state,

* FPN provides an abundance of

analysis techniques.

REFERENCES

[1] Agerwala, T “Putting Petri Nets to

work" Computer 12 (12), 1979.

[2] Bakpo, F.S "Elaboration of an Interpreter

for Functional Petri Nets' language in a

Dataflow computational system". M Eng

thesis (in Russian), Dept. of

Electronic/Computer Engineering,

Kazakh National Technical University,

Almaty, 1994.

[3] Economopoulos, P "Petri Nets: A model

for the analysis of the behavior and

performance of concurrent systems".

Office and Database Systems Research

'87, PP. 99 - 132,Toronto, 1987.

[4] Hauschildt, D; Verbeek, H M W and

Ven der Aalst, W M P " WOFLAN: a

Petri-net- based Workflow Analyzer".

Computing Science Reports 97/12,

Eindhoven University of Technology,

Eindhoven, 1997.

[5] Jensen, K "Coloured Petri Nets: Basic

concepts, analysis methods and

practical use", EATCS monographs

on Theoretical Computer Science.

Springer-Verlag, Berlin, 1996.

[6] Muler,R. E "A comparison of some

theoretical models of parallel

computation", IEEE Trans.

Computers, 710, 1973.

[7] Noe, J. D and Nutt,G. J "Macro E-Nets

for Representation of Parallel Systems",

IEEE Trans. Computers. Vol. C-22: PP

718-727, 1973.

[8] Peterson, J "Petri Nets Theory and the

Modeling of Systems", Prentice Hall,

1981.

[9] Petri, C. A "Kommunikation mit

Automaten". Ph D thesis, Institut fur

instrumentelle Mathematik, Bonn, 1962.

[10] Plax, T. P "Synthesis of parallel

programs on computational models",

Programming, No 1, PP. 55 - 63, 1977.

[11] Sifakis, J "Structural properties of Petri

Nets", Mathematical Foundations of

Compo Sci, 64, PP. 474 - 483, Springer-

Verlag, Berlin, 1978.

[12] van der Aalst, W. M. P " Putting Petri

nets to Work in Industry". computers ill

Industry, 25: 45-54, 1994.

[13] van der Aalst, W. M. P "Petri-net-

based Workflow Management

Software", Computing Science Reports

2003, Eindhoven University of

Technology, Eindhoven, 2003.

[14] van der Aa1st, W. M. P "The

Application of Petri Nets to Workflow

Management", Computing Science

Reports 2002, Eindhoven University of

Nigerian Journal of Technology, Vol. 22, No. 1, March 2003 Bakpo 23

Technology, Eindhoven, 2002.

