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ABSTRACT  

In the present work, a new formulation for lateral buckling of beams comprising bi-

symmetric sections has been proposed. The formulation employs a coupled lateral buckling 

functional to investigate the lateral buckling behaviour of a class of beams comprising bi-

symmetric sections. While retaining the coupled modes of displacements at buckling, the 

formulation focuses attention on the need to reduce the number of degrees of freedom per 

element so that the solution process can be carried out on small microcomputers. This effort 

will be of interest to design offices, which have investments in microcomputers to ease their 

routine designs. The results obtained from the present formulation compare well with those 

published in the literature. There is also a gain in the fact that the formulation can be 

programmed either in basic or FORTRAN and with efficient programming, a saving in 

computer time can be made.  

 

1.0 INTRODUCTION  

Lateral buckling of beams has been 

found to pose many engineering challenges 

both to the researchers and the design 

engineer. However, following the pioneering 

analytical works of Michell [1] and Prandtl 

[2], each working independently of the other 

and each working on the stability of long 

beams under transverse forces, there 

followed numerous analytical contributions 

to the theory of lateral buckling of beams in 

the literature (e.g. see refs [3-6]).  

However, with the development in 

computer technology (cheaper and more 

efficient computers are now available), 

emphasis has shifted from both analytical 

and experimental to the numerical solution 

of the lateral buckling problem. In this 

direction names that quickly come to mind 

are: Powell and Klingner [7] have reported 

their findings on lateral buckling analysis of 

steel I-section beams. They employed a two 

equilibrium state and sate formulation in 

which warping element displacement was 

included. In the present work, it is assumed 

that warping is restrained. This is done so as 

to reduce the size of the problem so that 

microcomputers can be used. Further more, 

uncoupled formulation is that employed to 

test the accuracy of the two equilibrium 

states formulation first proposed by Powell 

and Klingner [7],Jiki [9] and Jiki [10]. With 

this reduction, any method well-written and 

portable (micro) computer program for 

lateral buckling analysis such as the one 

reported by Jiki [8] can be employed to 

extract the eigenvalues of interest. Nethercot 

and Rockey [11] have also reported their 

findings on the finite element solutions for 

buckling of columns and beams in which 

they investigated the effect of lateral 

restraint and partial yielding of the beam 

section. The present effort employs elastic 

analysis and focuses attention on lateral 

buckling displacements and angles of twist 

of the beam.  
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One of the most recent works on lateral 

buckling of beams by the finite element 

method has been reported by Attard [12] in 

which he investigated the behaviour of a 

general thin-walled section in the derivation 

of his stability matrices. However, such 

stability matrices need not be used directly 

to solve bi-symmetric problems because 

both monosymmetric and asymmetric 

parameters have already been included in the 

integration of elements of the matrices. 

Another recent work on lateral buckling of 

beams employing the use of the finite 

element method has come from Kitipornchai 

and Chan [13]. However, they too have 

employed mono symmetric and asymmetric 

parameters to derive elements of their 

stability matrices. Therefore use of their 

stability matrices directly to solve bi-

symmetric problems would introduce errors 

due to inclusion of above-mentioned 

parameters.  

It can be seen from the above review that 

although bi-symmetric beams are among the 

most widely used beams in Engineering 

construction, stability matrices employing 

the finite element method and the concept of 

two equilibrium states to study the behaviour 

of such beams using micro-computers are 

lacking. Thus the purpose of the present 

effort is to provide such matrices 

 

2.0 ASSUMPTIONS  

The following assumptions are made 

in the present effort  

1  The beams used for the present work 

are prismatic  

2  Loads are applied at the vertical axis 

plane and at the top flange of the 

beam element only.  

3  Effect of load height on lateral 

buckling is not considered.  

4  Only beams of bi-symmetric sections 

are considered.  

5  Uniform torsion of the beam element 

has been assumed.  

6  Uniform bending of beams and 

cantilevers is assumed.  

 

3.0 TOTAL POTENTIAL ENERGY 

FUNCTIONAL  

The total potential Energy of a bi- symmetric 

thin-walled element shown in fig. 1 is given 

as: WUe                           (1)  

In which U is the strain energy of the 

element and W is the work done by the 

loads. For a thin-walled beam element 

considered herein, the strain energy is given 

as:  
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In which E and G= Youngs modulus 

and shear modulus respectively, Ix and IY 

=.The second moments of area about the 

principal X and Y axes. J is St. Venant 

torsion constant. Equation (2) gives rise to 

element elastic stiffness matrix [14].  

The work done W by the applied loads 

during deformation of the element is given 

as: 21 WWW                                   (3)  

In which WI is due to linear nodal 

deformations and W2 is the nonlinear part 

arising from changes of geometry.  

For the present work, there is no axial 

effect and loads are applied in the y-z 

plane only (assumptions: Loads and shears 

are applied in the y-z plane only, prismatic 

sections are used and we assume that 

warping torsion is zero i.e. EIW = 0). 

Therefore the product of applied loads 

gives W1 with their respective 

displacements as:  
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In which F, M, are shears and 

moments and u,  are lateral displacements 

and rotations respectively at the end nodes. 

The subscripts 1 and 2 refer to the near and 

far nodes. M, is torsional moment and the 
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angle of twist  is equal toz2 - z1·  

 

The geometric stiffness matrix  

The usual expression for geometric 

stiffness matrix for a continuum beam 

element is given as:  


vol

ijij dvW 2                       (5) 

In which ij and ij are the stress and 

quadratic strain tensor respectively. For the 

present work it is sufficient to employ only 

direct stress zz and yz (assumption 2) such 

that W2 is given as:  

  
vol

yzyzzzzz dvlW  22                 (6) 

For any arbitrary applied. loads in the yz 

plane the stresses c and t are given as:  
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In which M, is twisting moment along 

the element. My is moment causing 

lateral (out of plane) bending, F is 

shear force and A is area of section. 

Also for a bi-symmetric section, X and 

Yare distances from the extreme fibres 

to the centroidal axes of the section.  

The corresponding quadratic strain 

tensor is given as:  
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In which vi and ui= the displacement of an 

arbitrary point on the cross section in the y 

and x directions respectively Substitution of 

equations (7),(8),(9) and (10) into equation 

(6), the continuum work done by W2 in 

deforming the element is given 
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The moments Mz and My can be expressed in 

their nodal values by assuming linear 

variation as:  

2211  zzz MMM                             (12) 

2211  xxy MMM             (13) 

 

In which  is angle of twist (i. e. z1-z2) 

L
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The shear force in the horizontal plane Fy is 

obtained by simple statics 

 

Consider the deformations to be small 

and finite; we have vi and ui in terms of 

angle of twist z as:  

XvV zi                      (16) 

yuu zi                        (17) 

Substitution of equations (12)-(17) into 

equation (11) and simplifying gives:  
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A set of displacement functions id 

now proposed as: 
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The displacement functions in equations 

(19)are usually transformed to element nodal 

variables r. Therefore in terms of the nodal 

displacement variables, W2 is written as: 

 rKrW G

T

2

1
2                 (20) 

In which [KG]=element geometric stiffness 

matrix, r is nodal displacement vector and is 
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given here as:  

 T

yzyz
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In which the components of the vector r
T
 

corresponding to {V1 qxI v2 qX2}. As shown 

in figure 1 have been suppressed from 

equation (21) to focus attention on lateral 

buckling behaviour only [9, 10]. The element 

geometric stiffness matrix kG is presented in 

appendix A of the present work.  

 

4.0  EXAMPLES ON BIFURCATION 

ANALYSIS  

The validity of the present formulation 

is tested against three examples employing 

bifurcation analysis. The software code used 

for the stability calculation is that reported 

by Jiki [8].The first of the three examples is 

a simply supported beam of I -section, The 

beam is loaded with a constant moment M at 

both ends. A known closed form solution for 

this type of problem exists and can be found 

in Attard [12] and is given here as:  

  2/1
GJEI

L
M ycr


                                 (22) 

A finite element solution of the beam in 

question has been carried out employing the 

present formulation and bifurcation analysis 

for which a convergence study is presented 

in fig.2 and compares well with results of 

studies by Jiki [10] and Attard [12]. The 

comparison is good. Convergence has been 

achieved with only 4 elements.  

The second example employs a 

cantilever beam of rectangular cross- section 

and a bifurcation analysis to test the validity 

of the proposed formulation is presented in 

fig.3. Again the software code developed by 

Jiki [8] has been used in the bifurcation 

calculations. It can be seen that even after 16 

elements convergence has not been 

achieved. However, the comparison with 

known solutions by Jiki [10] and 

Kitipornchai and Chan [13] is good. Infact 

the present formulation has produced better 

results with fewer elements and tends to 

stabilize as the number of elements 

increases. A closed form solution for the 

problem can be found in Kitipomchai and 

Chan [13] and is given as:  

  2/1013.4
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L
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The third and last of the examples 

considered for validation of the proposed 

theory employs a simply supported beam of 

rectangular cross-section. The beam is 

loaded with constant moments Mo at the 

supports. Once more a bifurcation analysis 

has produced a set of results, which is 

presented in Fig.4.The results compare well 

with known solutions by Jiki [10] and 

Kitipornchai and Chan [13]. Convergence 

for the present formulation was achieved 

with 8 elements while Kitipornchai and Chan 

[13] achieved convergence with only 6 

elements and Jiki [10] has achieved 

convergence will 12 elements employing the 

sane software tool reported by Jiki [8]. A 

closed form solution employing the classical 

Rayleigh-Ritz method was carried out by Jiki 

[9] and is reproduced here as:  

  2/146.3
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L
M yocr          (24) 

It can be seen from the three examples 

considered here that the present theory is 

valid for beams of bi-symmetric sections in 

which uniform (warping torsion is not 

considered

.  
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5.0 CONCLUSION  

The present formulation, which has 

paid particular attention to a general 

behaviour of a flexural torsional buckling of 

bi-symmetric thin-walled beams in the 

absence of uniform torsion, has produced 

results, which lead to the following 

conclusions.  

(1)  The use of stiffness matrices derived 

from bi-symmetric sections will produce 

better results over the use of stiffness 

matrices derived using asymmetric 
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sections to solve bi- symmetric 

problems.  

(2)  For some problems omission of uniform 

torsion may not introduce large errors in 

the solution. Therefore for preliminary 

analysis (for design) warping may be 

omitted for bi-symmetric sections.  

(3)  The use of two-stage equilibrium 

formulation reduces a number of degrees 

of freedom and saves computer costs and 

it has been shown here by convergence 

studies in figures 2,3 and 4 that accuracy 

of the solution is well within the 

requirement of design offices.  
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