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ABSTRACT  

This paper focuses on the use of Spline functions in modelling the critical stress - strain 

responses of polyester matrix GRP Composites. Spline functions were established on the 

assumption of three intervals and fitting of quadratic and cubic splines to critical stress-strain 

responses data. Quadratic and Cubic spline models for three intervals of data points 0.024  

x 0.036, 0.036   x  0.061and 0.061  x  O. 12 were established. The optimization of 

quadratic and cubic models by gradient search optimization gave the critical strain as 0.024, 

which resulted to strength of approximately 26 MPa. Strain hardening was observed to occurr 

within a strain range of 0.03 to 0.12 leading to strength of about 62 MPa predicted by Cubic 

spline. Splines were found to accurately predict the functional values at subinterval, 0.024  x 

 0.036 of data points. Spline model is therefore recommended as it evaluates the function at 

subintervals, eliminating the error associated with wide range interpolation. 
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1. INTRODUCTION  

The strength of any material used in any 

design is very important in order to evaluate 

the performance index of a particular project. 

Plastics are polymers that are viscoelastic in 

nature, show time dependence response to 

applied stress (Creep), [1]. GRP mechanical 

properties are therefore affected by creep 

parameters. Budiansky and Fleck [2], Chung 

and Weitsmann [3]and Hsu et al [4] all 

Working on compressive failure of GRP 

composites reported the compressive kinking 

failure of GRP composites, which usually 

occurs within the materials elastic limit. 

Ihueze [5] reported the buckling response of 

GRP composites due to random material 

properties of GRP composites resulting from 

geometric inhomogeneity. This resulted to the 

nonlinear models of the study. Above all 

plastics have high strength to weight ratio 

when compared to the conventional metal 

material, Wood [6] and Foye [7]. This is why 

plastics or plastic composites are used in 

lightweight structures as found in aircraft, 

aeroplane, modern automobiles, boats, ships, 

etc. Classical reports on the strength of plastic 

composites show that buckling is a limiting 

factor in the selection of plastics as a design 

material, Eneteanya and Ihueze [8], reported 

that the compressive strength of plastic 

composite could be  

lower than 50% of its tensile strength. This 

article focuses on the development of line 

models that predict the limiting stresses of the 

commonly used polyester matrix GRP 

composites made by hand lay-up. 

 

2 THEORETICAL ANALYSIS 

(REVIEW)  

2.1  Existing Model on Aligned Polymer 

Composite Strength. Compressive failure of 

GRP composites manifests as kinking failure. 

Kink bands are formed which are bounded by 

fiber breaks resulting from deformations 
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immediately following the attainment of the 

largest compressive load. This can limit the 

compressive strength of a composite material 

to a very low fraction of its tensile strength; a 

review of the studies on compressive kinking 

failures in aligned GRP mechanical 

composites is presented below.  

 

a).  Rosen's Overestimation Of 

Compression Strength.  

The critical kinking strength Sc is given as  

GSC     (1) 

G = Shear modulus in the longitudinal 

direction  

Rosen's equation has been shown by recent 

investigations to overestimate the actual 

polymer matrix compression strength Sc by a 

factor of about four. Argon [9] combined the 

nonlinear plastic behavior (viscoelastic) of the 

composite material with the effects of fiber 

misalignment in his approximate equation for 

the kinking strength Sc as  

/syC SS     (2) 

Ssy = Shear yield strength  

f = The initial maximum misalignment of the 

fibres, in radian  

Equation (2) Suggests that the yield strengths 

in shear, S , in combination Ssy in combination 

with initial fiber misalignments f are the most 

critical parameters affecting the compressive 

kinking strength of aligned FRP composites.  

 

 

 
(b) Ihueze [5] Regression Model  

Ihueze [5] established a regression model to 

predict the critical stress-strain response 

polyester matrix GRP as  
245.1618459.187314.61 xxycr   

  (3) 

Where xcr = critical strain, ycr = critical stress  

This model is a second order polynomial 

model that fits the whole range of data. There 

may be danger of over approximation of 

function as seen in fig. 2. Spline model that 

fits a lower order polynomial to subset of data 

points is expected to improve the predictions. 

  

2.2 Polynomial Interpolation  

Polynomial regression is used to fit data 

points of experimental results. The general 

interpolating polynomial is expressed as:  

n
iii

xaxaxaxaaxp
nion

 32
321

)(
 

  (4) 

Where  

a0- an = polynomial coefficients or 

constants  

Xi = independent variables.  

n = polynomial order.  

Pn(x) = dependent variable(parameter) 

Interpolation with higher order polynomial is 

supposed to improve the accuracy of results 

but this is not always true. The accuracy of 

higher order polynomial fit may be low 

because of numerical errors associated with 
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many computations associated and overshoot 

of polynomials around data points. 

Meandering of polynomials around data  

is a characteristic of higher order polynomial 

fit. Numerical instability is therefore 

associated with higher order polynomial fit.  

Kreys Zig [10] reported the work of 

Schoenberg who presented the idea of fitting 

lower order polynomials (splines) to 

subintervals of data point. The idea of spline is 

that instead of fitting a higher order 

polynomial to data points, fitting is done at 

subintervals. The lower order polynomials for 

the subintervals are called splines or spline 

functions. There are linear, quadratic and 

cubic splines. Cubic spline is classically 

recommended. The cubic polynomial to fit the 

subinterval of data points is expressed by 

Canale and Chapra [11] as  

iiiii dXcXbXaXf  23)(  (5) 

Where fi ((x) = parameter.  

 

2.2.1 Derivation of Cubic Spline Equation.  

The basic assumptions to be used are:  

1. The value of the functions must be equal 

at the interior knots (nodes).  

2. The first and last functions must pass 

through the end nodes.  

3. The first derivations of the functions at 

the interior knots (nodes) must be equal.  

4. The second derivations at the interior 

knots must be equal.  

5. The second derivatives at the end knots 

must equal zero.  

We therefore have five spline conditions to 

exploit. Fig. 2 is now used with the above five 

conditions as:  

 

 
Fig. 2. Notation for the derivation of cubic spline (notice that there are n intervals and n+1 data 

points). 

 

Employing the five conditions above we 

have the following equations:  

Using the first condition, fig.2 and interior 

knots:  

)( 1111

2

11

3

11 XfdXcXbXa   (6) 

)( 1212

2

12

3

12 XfdXcXbXa    (7) 

)( 2222

2

22

3

22 XfdXcXbXa    (8) 

)( 2323

2

23

3

23 XfdXcXbXa    (9) 

Using the second condition, fig.2 and end 
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knots:  

)( 0101

2

01

3

01 XfdXcXbXa    (10) 

)( 3333

2

33

3

33 XfdXcXbXa    (11) 

Using the third condition, fig.2 and interior 

knots:  

02323 212

2

12111

2

11  cXbXacXbXa

     (12) 

02323 323

2

23222

2

22  cXbXacXbXa

   (13)  

Using the fourth condition, fig.2 and interior 

knots:  

02626 212111  bXabXa   (14) 

02626 323222  bXabXa   (15) 

Using the fifth condition, fig.2 and interior 

knots:  

026 101  bXa    (16) 

026 333  bXa    (17) 

The associated polynomial constants to be 

estimated are the a's, b's, c's and d's which are 

twelve in number which require twelve 

equations that are satisfied by Eq. (6) - (17). 

By putting Eq. (6) - (17) in matrix form, 

 

 

 
 

Before the above system is solved, it is 

important to rearrange the equations to avoid 

zero elements in the leading diagonal of the 

matrix. This guarantees the success of division 

with zero when applying Gauss-Jordan 

elimination method with pivoting.  

 

2.2.2 Derivation of Quadratic Spline  

The objective of quadratic spline is to fit 

second order polynomials to data points within 

intervals as specified in Fig. 3. The quadratic 

interpolation polynomial can be expressed as:  

iiii cXbXaXf  2)(   (18) 

From fig.3, values at the knots within the 

interval X0  x 0 with subintervals: X0  x  

XI" Xl  x  X2,, X2  x  X3. Eq (18) gives 

three unknowns for each interval and therefore 

nine unknowns for the three intervals. 

Therefore for quadratic spline constants, 3n 

equations for the 3n unknowns are required, 

where n stands for number of intervals. The 

conditions that lead to nine equations are:  

1. The value of the functions must be equal 

at the interior knots (nodes).  
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2. The first and last functions must pass 

through the end nodes.  

3. The first derivatives of the functions at 

the interior knots (nodes) must be equal.  

4 The second derivative of the function 

at the first point is zero because of natural 

spline conditions that suggests that the spline 

is linear at the first and endpoints. 

 

 
 

Now employing the four conditions above, the 

following system of equations results.  

 Using the first condition: - 

)( 1111

2

11 XfcXbXa    (19) 

)( 2212

2

12 XfcXbXa    (20) 

)( 2222

2

22 XfcXbXa    (21) 

)( 2323

2

23 XfcXbXa    (22) 

Using the second condition: - 

)( 0101

2

01 XfcXbXa    (23) 

)( 3333

2

33 XfcXbXa    (24) 

Using the third condition: - 

212111 22 bXabXa    (25) 

323222 22 bXabXa    (26) 

Using the fourth condition:  

0,02 11  aa    (27) 

Putting the value al = 0 in the above 

equations,  

)( 1111 XfcXb     (28) 

)( 1212

2

12 XfcXbXa    (29) 

)( 2222

2

22 XfcXbXa    (30) 

)( 2323

2

23 XfcXbXa    (31) 

)( 0101 XfcXb     (32) 

)( 3333

2

33 XfcXbXa    (33) 

02 2121  bXab    (34) 

022 323222  bXabXa  (35) 

The above system of equations is put in 

matrix form as:  
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The above system must be rearranged to 

avoid the presence of zero elements in 

leading diagonals. This avoids division by 

zero, when applying Gauss-Jordan method 

 

2.3 Why Spline Modeling is Favoured: The 

responses of experimental results and 

viscoelastic materials are usually nonlinear as 

well as responses of viscoelestic materials. 

Therefore, a higher order polynomial is always 

expected of viscoelestic materials responses. 

A scatter plot of Ihueze [5] revealed nonlinear 

responses and a higher order polynomial fit. 

The critical stress - strain responses is shown 

in table 3 and fig. 3. Ihueze [5] used 

polynomial regression method to obtain a 

second order polynomial for a range of data of 

table 3. The standard error associated with this 

fit is 3.3469 while the correlation coefficient 

and coefficient of determination are 0.9828 

and 0.9659 respectively. Spline functions are 

contemplated because splines fit a subset of 

data points thereby reducing the error 

associated with interpolation within a wide 

range of data. The conventional interpolation 

fitting suggests that nth order polynomial fits 

n+ 1 data points. This suggests that the second 

order polynomial fitting of Ihueze [5] could be 

erroneous because he could have used 25
th

 

order polynomial for the 24 data points 

considered. This error is confirmed by the 

standard error of about 3 computed. 25
th

 order 

fit will capture all the meandering suggested 

by the 24 points. However, this will lead to 

erroneous results because of round - off error 

and over shoot, Canale and Chapra [11]. An 

alternative approach is to apply lower - order 

polynomials to subsets of data points. Such 

connecting polynomials are called spline 

functions. To avoid the computational efforts 

of higher order splines, cubic spline is 

classically recommended, Kreys Zig [10] and 

Canale and Chapra [11].  
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Table 3 analysis of spline 

Interval X Y(MPa) Fi(x):Quad spline Fi(x):Cub spline 

 

0.024 x 0.036 

0.024 25.71 25.709992 25.8057 

0.035 12.86 14.581655 14.5942 

 0.036 13.57 13.569988 13.5727 

 

0.036 x 0.061 

0.036 13.57 13.56999 -1.1987 

0.048 8.46 5.5568 -11.88768 

 0.061 6.19 6.18999 -23.9177 

0.061 6.19 6.1900 -11.7807 

0.061  x 0.12 0.095 29.25 17.868078 -44.7553 

 0.11 53.83 21.33844 -53.8313 

 0.12 23.08 23.08 -61.7365 

 

 

 

 

 

3 METHODOLOGY  

Experimental and analytical methods were 

used.  

 

3.1 Experimentation And Materials.  

Hand Lay-up was used to form composites of 

F, G and H of approximately 4.8mm thick, 

3.2mm thick and 3.1mm thick respectively as 

found in Ihueze [5]. The thickness of 

replicated samples of F, G and H are 

measured with micrometer screw gauge and 

85 percentile was used to determine where 

about 85% of the measured thicknesses would 

fall. For F, G and H 85 percentile gave 

4.8mm, 3.2 and 4.3 mm respectively. 

Replicated samples of A, B, C, D and E were 

subjected to axial compression in a Hounds 

field tensometer, and the Force  deformation 

plot of the autographic recorder of the 

tensometer interpolated and recorded, the 

stress-strain response are also recorded in 

Ihueze [5].  

 

3.2 Finite Element Method.  

In the finite element method computer 

subroutines were developed in visual basic to 

compute,  

(a) Nodes and assembly stiffness matrixes  

(b) Nodes thermal load and assembly thermal 

load vectors.  

(c) The nodal degree of freedom or 

displacements at temperature range of 20 °C - 

120°C. The minimum displacement or degree 

of freedom of nodes at the different 

temperatures computed from the assembly 

system of equations are used to predict the 

static strength of the composite sample from 

the data generated from experimental method 

i.e. using the compression force deformation 

and compression stress - strain responses of 

the experimental method. The predicted static 

stress - strain response of FEM is presented in 

table 1.  

 

Table 1 Critical stress-strain at various 

temperatures 

Critical strain X  
Critical stress, Y  

(MPa)  

0.024  25.71  

0.024  22.14  
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0.036  25.71  

0.024  25.71  

0.036  13.57  

0.035  12.86  
0.036  13.57  

0.036  13.57  

0.061  6.19  

0.048  8.46  

0.061  6.19  

0.061  6.19  

0.11  53.85  

0.095  29.29  

0.11  50  

0.11  50  

0.12  23.08  

0.11  50  

0.12  23.08  

0.12  23.08  

0.12  23.08  

0.12  23;08  
0.12  23.08  
0.12  23.08  

Source: Ihueze [5] page 204 

Table 1 is the stress strain response at 

temperature range of 20°C - 120°C at various 

moduli of composite samples. The flowchart 

that led to the programmes for the 

computation of FE results is shown in fig. 3 

while the subroutine programmes are listed in 

appendix A of Ihueze [5].  

It is the static stress - strain responses of FEM 

that is modeled by quadratic and cubic spline 

functions. 

 
 

 

3.3 Modeling GRP Critical stress-strain 

Response  

The methodology of this research work also 

involves the simulation of the system of 

equations developed by fitting cubic and 

quadratic polynomials to subset of data points, 

so that interpolation functions can be 

established for the limiting stresses of GRP 

composites working in the temperature range 

of 20 - 120°C. Subintervals are established for 

a range of data points as: Xo  x   X1, X1  x 

. X2, X2  x  X3 so that we have three 

interpolating functions as f1(x), f2(x), and f3(x) 

for the three intervals. 3.1 Estimation of 

Cubic Spline Coefficients and Modelling  

Ihueze [5] measured the critical stress strain 

response, of polyester matrix for GRP 

composites working in the temperature range 

of 20 - 120
o
C, using finite element method to 

generate numerical data. The critical stress-

strain data is presented in table 1.Employing 

the intervals of data points,  

Xo   x  Xl, Xl  x   X2, X2.  x  x3= 0.024 

  x   0.036, 0.036  x   0.061,0.061  x . 

0.12. Putting the interval values in Eq. (5) 

through Eq. (6)-(17) and solving by Gauss-

Jordan elimination:  

a1= -7943.563, b1 = 571.9365,c1 = -

1031.997,d1 = 50.35401,a2 = -31596.85,  

b2 =3126.491,c2 = -984.1226, d2 = 

31.65196,a3 =-16617.66,b3 = 5982.358,  

 c3 = -1506.746,d3 = 61.64238.  

Putting these in Eq. (2)  
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f1(x) = -7943.563 x
3
 +571.9365x

2
 -1031.997x + 50.35401  (36)  

f2(x) = -31596.85 x
3
 + 3126.491x

2
 - 984.1226x + 31.65196  (37)  

f3(X) = -16617.66x
3
 + 5982.358x

2
 -1506.746x + 61.64238  (38)  

Where, x = Critical Strain, f1(x), f2(x), f3(x) = Critical stresses.  

 

3.2  Estimation of Quadratic Spline.  

Putting values in Eq. (16) and following similar procedures as in cubic spline:  

a1  = 0,b1 = -1011.667,c1 = 49.99,a2 = 28658.67,b2 = -3075.091,  

c2  = 87.13163,a3 = -2288.059,b3 = 700.4099,c3 = -28.02113  

The spline equations for the three intervals are therefore expressed as:  

f1(x) = -1011.667x + 49.99  (39)  

f2(x) = 28658.67x
2
 - 3075.091x + 87.13163  (40)  

f3(x) = -2288.059x
2
 + 700.4099x - 28.02113  (41)  

 

4  RESULTS AND DISCUSSION WITH SPLINES  

4.1 Prediction with Splines  

By putting the values of x in the spline Eqs. (1) to (6) Table 3.l is obtained. Both x and y values of 

table 2 were extracted from table 1.  

 

 

4.2  Optimization of Spline Models  

Gradient search method was used to optimize the Spline functions to predict the critical parameters 

of stress and strain.  

 

 

4.2.1 Optimization of cubic splines  

The first and second derivatives of the cubic splines of Eqs. (36 to 38) gave the following equations. 

'  

f1
1
(x) = -23830.689x

2
+ 1143.873 x -1031.997  (42)  

f1
11

 (x) = -47661.378x + 1143.873    (43)  

f2
1
 (x) = -94790.55x

2
+ 6252.982x - 984.1226  (44)  

f2
11

 (x) = -189581.1x + 6252.982    (45)  

f3
1
 (x) = -49852.98x

2
 + 11964.716x -1506.746.746 (46)  

f3
11

 (x) = -99705.96x + 11964.716    (47)  

By equating Eq. (42), Eq. (43) and Eq. (44) to zero respectively the critical strains for the intervals 

were evaluated as 0.024,0.03 and 0.12.These are used to calculate the critical stresses of the intervals 

as 25.81MPa, 4.1MPa and 61.74MPa,by putting the values of the critical strains computed back to 

Eqs. (36) - (3S).  
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4.2.2 Optimization of Quadratic Spline  

The first and second derivatives of Eq. (39) - (41) gave the following equations  

fl
l
(X) =-1011.667    (47)  

fl
11

(X) = 0     (4S)  

f2
1
 (x) = 57317.34x-3075.075.091 (49)  

f2
11

 (x) = 57317.34    (50)  

f3
1
 (x) = -4576.11Sx + 700.4099  (51)  

f3
11

 (x) = -4576.118    (52)  

Following the procedures of section 4.2.1, the critical strains and stresses of the intervals are 

evaluated as 0.024, 0.054, and25.71MPa, 4.65MPa, and 25.56MPa respectively. The sign of the 

value of the second derivative of a function establishes whether the function is a maxima or a 

minima, if sign of f(x)
11

 is positive, then, f(x) is a minima and if negative f(x) is a maxima.  

 

 

4.3 Discussion of Results  

The graphics of fig. 5 and results of Eqs. (36)- (37) show that, limit stress decreases with strain 

increase at elevated temperatures before the commencement of strain hardening effects.  

For the cubic spline, Eq. (42) predicted the critical strain for the cubic spline within the first 

interval as 0.024 and with Eq. (36) gives the limit or critical stress as 25.81MPa. Eq. (43) gives - 

0.000072 with x = 0.024. This means that the critical stress, 25.81MPa within the first interval is a 

maximum Eq. (44) predicted the critical strain for the cubic spline within the second interval, 0.036 

< x < 0.06 as 0.033 and with Eq. (37) gives 4.1MPa as limit stress. Eq. (45) with x = 0.03 gives -

3.1943. This suggests a maxima. Eq. (46) predicted the critical strain for third interval as 0.12 and 

using this in equation (41), 61.74MPa is obtained. Eq. (47) with x = 0.12 gives 0.0008. This suggests 

a minima meaning that the functional value is maximum and decreases thereafter as the strain is 

increased.  
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For the quadratic spline, fig. 5 gives the 

critical strain within the first interval as 0.024 

and with this in equation (39) the critical 

stress is evaluated as 25.71MPa. Eq. (50) 

gives the sign of the second derivative of the 

function as positive; the value 25.71MPa 

predicted within the fist interval by quadratic 

spline is therefore a minimum. Eq. (49) gives 

the critical strain for second interval as 0.054 

and with equation (46) gives (4.65MPa) as the 

critical stress. The Sign of the value of Eq. 

(50) is positive. This suggests a minimum. Eq. 

(51) gives the value of the critical strain for 

the third interval as 0.15 and with this in 

equation (41) gives. 25.56MPa. The sign of 

the second derivative of the function is 

negative this suggests a maxima.  

Minima and maxima describe the 

minimum and maximum values of a function 

within an interval respectively. Therefore the 

minimum and maximum values of the 

function as predicted by cubic and quadratic 

splines depend greatly on strain.  

Cubic spline analysis shows that after the 

lower critical strain of 0.024, the critical 

stress decreases until a strain of 0.033 when 

strain hardening picked to 0.12 giving critical 

stress of 61.74MPa. Strain hardening is 

therefore a strengthening process. The 

material exceeded the lower strength of 

25.81MPa predicted by cubic spline within 

the third interval.  

Quadratic spline analysis shows that 

after the lower critical strain of 0.024 the 

critical stress decreased until a strain of 

0.054 when stress decreased to 4.65MPa 
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after which strain hardening picked at 0.15 

with critical stress of 25.56MPa, which is a 

maxima.  

 

 

 

5  CONCLUSION  

26MPa is a limit stress predicted of first 

interval of splines, the models to be used for 

the prediction of stresses for strain range of 

0.024-0.036 is therefore recommended as 

follows:  

f1(x) = -7943.563x
3
 + 571.9365x

2
 -1031.997x  

+  50.334  

f1(x) = -10l1.667x + 49.99  

The optimum critical stress of this 

study is therefore in the range of 25.71MPa - 

61. 74MPa. The predictions of this work are 

considered correct when compared with a 

previous report for a typical stress - strain 

graph of plastics with 70°C operation. It is 

found that after a strain of 0.03 the strength 

decreases from 30MPa.  
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