A COMPARATIVE ANALYSIS OF THE EFFECTIVE ELASTIC CONSTANTS OF LAMINATED COMPOSITE PLATES OBTAINED BY VARIOUS CLOSED-FORM AND SERIES SOLUTIONS

S. O. Edelugo
Department of Mechanical Engineering, University of Nigeria, Nsukka, Nigeria, West Africa. E-mail: mcedeson@yahoo.com Phone: 2348037463298

Abstract

: Results of various finite element and closed form models developed in the attempt to evaluate and establish accurate values of the Young's modulus, E; the shear modulus G; and the Poisson's ratio, < for laminated composite plates having soft matrix and high fibre volume fraction are discussed in this paper. Their merits and limitations highlighted. The Finite Element Energy Method (FEEM) as a tool for the prediction of effective elastic constants for Flexible Matrix composites is proffered here as a model having no better alternative yet.

Keywords: Flexible-matrix-composites Effective-elastic-constants; Finite-element-energymethod

INTRODUCTION:

There are several closed form solutions that exist for the determination of effective elastic constants of a uniaxial composite layer. The works of Hashin, chamis and sendecky, [1,2] discuss several such solutions. However, it has been discovered that different methods give different results
for some of the elastic constants. Apart from the two elastic constants, E_{L} and v_{TL} which seem to agree for all methods, experimental results grossly indicate that the rest of the elastic constants hardly ever agree as obtained from any one method with another, hence the need to develop a reliable closed form solution for this purpose [3].

Table 1: Effective elastic constants by different methods

Method	$\begin{aligned} & \hline \mathrm{E}_{\mathrm{L}} \\ & \mathrm{~N} / \mathrm{mm}^{2} \\ & \left(\mathrm{x} 10^{4}\right) \end{aligned}$	E_{T} $\mathrm{N} / \mathrm{mm}^{2}$	$\mathrm{v}_{\text {TL }}$	$\mathrm{V}_{\text {TT }}$	$\begin{aligned} & \mathrm{G}_{\mathrm{LT}} \\ & \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$	$\begin{aligned} & \mathrm{G}_{\mathrm{TT}} \\ & \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$
Rule of mixtures	10.35	138.0	0.39722	----	46.15	----
Halpin-Tsai	10.35	275.9	0.39722	----	69.20	----
Ekvall	10.35	195.2	0.39722	----	63.47	----
Greszezuk	10.35	293.2	0.39722	----	1759.0	----
Whitney and	10.35	1021.0	0.39668	0.87210*	69.20	----
Riley		63.7		0.92016*		
	10.35	1690.0	0.39722	0.63900	72.92	----
Foye	10.35	270.4	0.39722	----	69.20	68.70
Hahn	10.35	270.4	0.39668	0.87210	69.20	68.70
Hashin (LB)	10.37	1093.0	0.39668	0.99657	26560.0	275.3

Notes: $\{1\}^{*}$ Assumed V_{TT} For which E_{T} are given
$\{2\}$ LB $=$ Lower Bound, UB $=$ Upper Bound

Symbols/Notations:

C	$=$ elastic stiffness of the composite
e	$=$ modified strains
E_{f}	$=$ Young's modulus of the fibre
material	

The tendency for disparities to appear in the results of these methods become even more prominent in composites consisting of very stiff fibre with very soft matrix such as urethane. Here, the fibre volume fraction is usually very high. Such a composite material is usually employed in the manufacture of
shear moduli of the composite
$\mathrm{U} \quad=\quad$ Strain energy of the model
$\mathrm{u} \quad=$ applied displacements
$\mathrm{V}_{\mathrm{f}} \quad=$ fibre volume fraction
V_{TL} and $\mathrm{V}_{\mathrm{TT}}=$ Longitudinal and transverse
Poisson's ratios
$\mathrm{v}_{\mathrm{f}} \quad=$ fibre Poisson's ratio
$\mathrm{v}_{\mathrm{m}} \quad=$ matrix Poisson"s ratio
, $\quad=$ strains
($\quad=$ engineering shear strains.
bearingless rotor systems and drive shafts [4,5]

Table 1 shows the results of elastic constants obtained from some existing closed form solutions working with flexible matrix composites.

Table 2: Effective elastic constants by different methods

$$
\mathrm{E}_{\mathrm{f}}=2.075 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}, \mathrm{E}_{\mathrm{m}}=7.6 \mathrm{~N} / \mathrm{mm}^{2}, \mathrm{v}_{\mathrm{f}}=0.3, \mathrm{v}_{\mathrm{m}}=0.49908, \mathrm{~V}_{\mathrm{f}}=0.74
$$

Method	E_{L} $\mathrm{N} / \mathrm{mm}^{2}$ (x104)	E_{T} $\mathrm{N} / \mathrm{mm}^{2}$	$\mathrm{v}_{\text {TL }}$	$\mathrm{V}_{\text {TT }}$	$\begin{aligned} & \mathrm{G}_{\mathrm{LT}} \\ & \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$	$\begin{aligned} & \mathrm{G}_{\mathrm{TT}} \\ & \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$
Rule of mixtures	15.31	29.18	0.3518	-----	9.73	----
Halpin-Tsai	15.31	72.36	0.3518	----	16.97	----
Ekvall	15.31	72.78	0.3518	----	43.74	----
Greszezuk	15.31	227.40	0.3518	----	6623.0	----
Whitney and Riley	15.31	1518.0	0.3517	0.8580*	16.97	----
Foye	15.31	1725.0	0.3518	0.4811	38.98	----
Hahn	15.31	67.41	0.3518	----	16.94	16.90
Hashin (LB)	15.31	67.41	0.3516	0.8577	16.94	16.90
Hashin (UB)	15.31	1559.0	0.3517	0.9995	46700.0	391.50

Notes: $\{1\}^{*}$ Assumed V_{TT} For which E_{T} are given
$\{2\} \mathrm{LB}=$ Lower Bound, UB $=$ Upper Bound
We note here, as we stated before, that all the methods give the same values for E_{L} and v_{TL}, indicating that even the Rule of Mixtures is quite appropriate for these properties. However, on the contrary, the shear moduli, G_{LT} and the transverse properties G_{TT} differ quite significantly.

For a composite made of much softer matrix and much higher fibre volume fraction, comparative results (see table 2
please) show that the differences in the values obtained by the different methods are much higher than those given in table 1 . We also note the large difference between the Hashin lower and upper bounds of $\mathrm{G}_{\mathrm{LT}}, \mathrm{G}_{\mathrm{TT}}$ and E_{T}.

In their various methods, Halpin Tsai $[6,7]$ used some empirical factors for E_{T} and G_{LT} just as did Ekvall $[8,9]$. Greszczuk [10] modified the matrix moduli by assuming that the matrix is under plane
stress in one of the transverse directions for its elastic modulus and that it is restrained in both the transverse directions for its shear modulus. Riley and Whitney [11] assumed values for V_{TT} in their work to obtain E_{T} whereas Hashin [12] developed equations for these constants by employing minimum potential energy, giving upper bounds and minimum complimentary energy giving low bounds on a model consisting of a cylindrical fibre enclosed by a cylindrical matrix $\{$ fig1\}. He proposed that for stiff fibre the upper bounds of E_{T} and G_{TT} can be used but for fibre much stiffer than the matrix [13], the lower bounds should be used. In his investigations, Hahn [14] employed Hashins lower bounds to obtain his values whereas Foye [15] used, instead, a finite element method and obtained stresses for applied strains, which, in turn were used with the other orthotropic stressstrain relations to determine the elastic constants. Next, he compared his results with the existing solutions and selected Whitney and Riley solutions for E_{T}. The big limitation in his approach is that the stress distribution on a finite element model would be found non-uniform for composites made of very stiff fibres and very soft matrix if they possess very high fibre volume fraction.

Fig 1: Minimum
Potential and minimum complimentary energy approach

So far, we see the great difficulty involved in trying to select one single method to predict the properties of soft matrix composites.

Purpose of the work:

The purpose of this work is to obtain by the interaction of the works of Hashin and Rosen; Iwona, Lee and Middya et al [16-20] and also those of Gupta [21], a single model that would effectively predict, to a very reasonable extent, all the elastic constants in a composite with very soft matrix. This model is found in the Finite Element Energy Method (FEEM).

THE FINITE ELEMENT ENERGY METHOD (FEEM)

Hashin and Rosen in the development of their equations employed a cylindrical fibre enclosed by a cylindrical matrix (see fig 1) and by applying the minimum potential and minimum complimentary energy approaches arrived at the values of the elastic constants found in tables 1 and 2, Gupta, improving on the works of Hashin and Rosen suggested the introduction of one Representative Volume Element (RVE) for this analysis. He applied to it boundary conditions subjected to controlled displacements (see fig 2).

By employing Nine Representative Volume Element, instead, (Fig 3) as a cross-check to the results of one Representative Volume Element given, the strain energy of the model is obtained as follows:

$$
\begin{equation*}
\mathrm{U}=\frac{1}{2} \mathrm{C}_{\mathrm{ijkl}} \varepsilon_{\mathrm{ij}} \varepsilon_{\mathrm{kl}}, \tag{1}
\end{equation*}
$$

with boundary conditions:

$$
\begin{equation*}
\mathrm{U}_{\mathrm{i}}=\varepsilon_{\mathrm{ij}} \mathrm{X}_{\mathrm{j}} \tag{2}
\end{equation*}
$$

Equation (2) produces the following strain relations:

$$
\begin{align*}
\varepsilon_{11} & =\breve{\mathrm{u}}_{\mathrm{I}} / \mathrm{X}_{\mathrm{I}}, \varepsilon_{22}=\breve{\mathrm{u}}_{2} / \mathrm{X}_{2}, \\
\text { and } \quad \varepsilon_{33} & =\breve{\mathrm{u}}_{3} / \mathrm{X}_{3} \tag{3}
\end{align*}
$$

when only normal strains are expected to exist and,

$$
\begin{equation*}
\Upsilon_{12}=\breve{\mathrm{u}}_{\mathrm{I}} / \mathrm{X}_{2}, \breve{\mathrm{u}}_{2}=0, \text { etc } \tag{4}
\end{equation*}
$$

when only one shear strain is to exist.

STRAIN-STIFFNESS-ENERGY RELATIONS:

Equation (1) can be re-written in a more convenient form:

$$
\begin{equation*}
U=\frac{1}{2} \mathrm{C}_{\mathrm{ij}} \varepsilon_{\mathrm{i}} \varepsilon_{\mathrm{j}}, \mathrm{I}, \mathrm{j}=1,2, \ldots, 6 \tag{5}
\end{equation*}
$$

Here $\varepsilon_{1}, \varepsilon_{2}$, and ε_{3} are normal strains and $\varepsilon_{4}, \varepsilon_{5}$ and ε_{6} are shear strains.

Normal Stiffness: For all shear strains equal to zero, we get by expanding equation (5),

$$
\begin{align*}
& \mathrm{U}=\frac{1}{2} \mathrm{C}_{11} \varepsilon_{1}^{2}+\mathrm{C}_{22} \varepsilon_{2}^{2}+\mathrm{C}_{33} \\
& \varepsilon_{3}^{2}+2 \mathrm{C}_{12} \varepsilon_{1} \varepsilon_{2}+2 \mathrm{C}_{13} \varepsilon_{1} \varepsilon_{3}+2 \mathrm{C}_{23} \varepsilon_{2} \varepsilon_{3} \tag{6}
\end{align*}
$$

Let us further simplify the notations by denoting,

$$
\begin{align*}
& \frac{1}{2} \mathrm{C}_{\mathrm{II}}=\mathrm{C}_{\mathrm{I}}, \quad \frac{1}{2} \mathrm{C}_{22}=\mathrm{C}_{2}, \quad \frac{1}{2} \mathrm{C}_{33}=\mathrm{C}_{3}, \\
& \mathrm{C}_{12}=\mathrm{C}_{4}, \mathrm{C}_{13}=\mathrm{C}_{5}, \mathrm{C}_{23}=\mathrm{C}_{6}, \text { and } \\
& \varepsilon_{1}^{2}=\mathbf{e}_{1}, \varepsilon_{2}^{2}=\mathbf{e}_{2}, \varepsilon_{3}^{2}=\mathbf{e}_{3}, \varepsilon_{1} \varepsilon_{2}=\mathbf{e}_{4}, \\
& \varepsilon_{1} \varepsilon_{3}=\mathbf{e}_{5}, \varepsilon_{2} \varepsilon_{3}=\mathbf{e}_{6} \tag{7}
\end{align*}
$$

Equation (6) then becomes,

$$
\begin{equation*}
U=C_{i} \quad e_{i}, i=1,2, \ldots, 6 \tag{8}
\end{equation*}
$$

Here e_{i} are applied modified strains, U is the resulting strain energy, and C_{i} are to be determined.
If we denote $\mathrm{e}_{\mathrm{pi}}=$ Prescribed modified strains for the displacement boundary condition, p, where $p=1,2, \ldots, 6$, and $\mathrm{U}_{\mathrm{p}}=$ resulting strain energy due to $\mathrm{e}_{\text {pi., }}$, equation (8) then becomes:

$$
\begin{equation*}
\mathrm{U}_{\mathrm{p}}=\mathrm{e}_{\mathrm{pi}} \quad \mathrm{C}_{\mathrm{i}} \tag{9}
\end{equation*}
$$

The following six sets of displacements boundary conditions to produce desired normal strains and energies are prescribed $\left(\varepsilon_{1}=\varepsilon_{\mathrm{x}}, \varepsilon_{2}=\varepsilon_{\mathrm{y}} \quad \varepsilon_{3}=\varepsilon_{\mathrm{z}}\right)$:
$p=1: \mathbf{e}_{1}=\mathbf{e}_{\mathrm{x}}, \mathbf{\epsilon}_{2}=\mathbf{e}_{3}=0$, giving $\mathbf{e}_{\mathrm{II}}=\mathbf{e}_{\mathrm{x}}^{2}$,
and all other $\mathrm{e}_{\mathrm{Ii}}=0$,
$p=2: \mathbf{\epsilon}_{2}=\mathbf{e}_{\mathrm{y},} \mathbf{\epsilon}_{3}=\mathbf{e}_{1}=0$, giving $\mathbf{e}_{22}=\mathbf{\epsilon}^{2}{ }_{\mathrm{y}}$,
and all other $\mathrm{e}_{2 \mathrm{i}}=0$,
$p=3: \mathbf{\epsilon}_{3}=\mathbf{e}_{\mathrm{z},} \mathbf{\epsilon}_{1}=\mathbf{\epsilon}_{2}=0$, giving $\mathbf{e}_{33}=\mathbf{e}_{\mathrm{z},}^{2}$,
and all other $\mathrm{e}_{3 \mathrm{i}}=0$,
$p=4: \mathbf{\epsilon}_{1}=\mathbf{e}_{\mathbf{x}, \mathbf{e}_{2}}=\mathbf{\epsilon}_{\mathbf{y}}, \mathbf{e}_{3}=0$, giving $\mathbf{e}_{41}=\mathbf{e}_{\mathbf{x}, \text {, }}^{2}$

$$
\mathbf{e}_{42}=\mathrm{e}_{\mathrm{y}}^{2}, \mathbf{e}_{44}=\overline{\mathbf{e}_{\mathrm{x}}} \overline{\mathrm{e}_{\mathrm{y}}}, \text { and all other } \mathrm{e}_{4 \mathrm{i}}=0,
$$

$p=5: \mathrm{e}_{1}=\mathrm{e}_{\mathrm{x},} \mathrm{\epsilon}_{2}=0, \mathrm{e}_{3}=\mathrm{e}_{\mathrm{Z}}$, giving $\mathrm{e}_{51}=\mathrm{e}^{2}{ }_{\mathrm{x}}$,
$\mathbf{e}_{53}=\mathrm{e}^{2}{ }_{\mathrm{Z},}, \mathrm{e}_{55}=\overline{\epsilon_{\mathrm{x}}}{\overline{\epsilon_{\mathrm{Z}}}}$, and all other $\mathrm{e}_{5 \mathrm{i}}=0$, and
 $\mathrm{e}_{63}=\mathrm{e}_{\mathrm{z},,}^{2} \mathrm{e}_{66}=\overline{\epsilon_{\mathrm{y}}} \overline{\epsilon_{\mathrm{z}}}$, and all other $\mathrm{e}_{6 \mathrm{i}}=0$.
When these strains are substituted, equation (9) becomes.

$$
\left\{\begin{array}{l}
\mathrm{U}_{1} \\
\mathrm{U}_{2} \\
\mathrm{U}_{3} \\
\mathrm{U}_{4} \\
\mathrm{U}_{5} \\
\mathrm{U}_{6}
\end{array}\right\}=\left\{\begin{array}{cccccc}
\mathrm{e}_{11} & 0 & 0 & 0 & 0 & 0 \\
0 & \mathrm{e}_{22} & 0 & 0 & 0 & 0 \\
0 & 0 & \mathrm{e}_{33} & 0 & 0 & 0 \\
\mathrm{e}_{41} & \mathrm{e}_{42} & 0 & \mathrm{e}_{44} & 0 & 0 \\
\mathrm{e}_{51} & 0 & \mathrm{e}_{53} & 0 & \mathrm{e}_{55} & 0 \\
0 & \mathrm{e}_{62} & \mathrm{e}_{63} & 0 & 0 & \mathrm{e}_{66}
\end{array}\right\}\left\{\begin{array}{l}
\mathrm{C}_{1} \\
\mathrm{C}_{2} \\
\mathrm{C}_{3} \\
\mathrm{C}_{4} \\
\mathrm{C}_{5} \\
\mathrm{C}_{6}
\end{array}\right\}
$$

be determined by $\{\mathrm{C}\}=[\mathrm{e}]^{-1}\{\mathrm{U}\}$
By using the relations giving by equation
(7) the normal stiffness matrix can then be determined. Shear stiffness.
For $\epsilon_{1}=\epsilon_{2}=\epsilon_{3}=0$, equation (5)

$$
\begin{equation*}
\mathrm{U}=\left(\mathrm{C}_{44} \mathfrak{e}_{42}+\mathrm{C}_{55} \mathfrak{€}_{52}+\mathrm{C}_{66} \mathrm{e}_{6}\right) \tag{12}
\end{equation*}
$$

Where $\epsilon_{4}, \epsilon_{5}$, and ϵ_{6} are engineering shear strains, γ_{12}, γ_{13} and $\gamma_{23}\left(\right.$ or $\gamma_{\mathrm{xy}}, \gamma_{\mathrm{xy}}, \gamma_{\mathrm{yz}}$), respectively.

The following three sets of displacement boundary conditions are prescribed to produce these strains separately:
$p=7: \mathfrak{\epsilon}_{4}=\gamma_{\mathrm{xy}}, \mathrm{\epsilon}_{5}=\mathrm{\epsilon}_{6}=0$, giving, $\mathrm{C}_{44}=2 \mathrm{U}_{7} / \gamma_{\mathrm{xy}}^{2}$,
$p=8: \mathrm{e}_{5}=\gamma_{\mathrm{xz},} \mathrm{e}_{4}=\mathrm{e}_{6}=0$, giving, $\mathrm{C}_{55}=2 \mathrm{U}_{8} / \gamma_{\mathrm{xy}}$ and

$$
\begin{align*}
p & =9: \mathrm{e}_{6}=\gamma_{\mathrm{yz}}, \mathrm{e}_{4}=\mathrm{e}_{5}=0, \text { giving, } \\
\mathrm{C}_{66} & =2 \mathrm{U}_{9} / \gamma_{\mathrm{yz} .,}^{2}
\end{align*}
$$

By using the matrix [C] thus determined can be used to compute the effective elastic constants of the composite.

The normal stiffness vector can then

Table 3: Applied displacements for different boundary conditions

Load	Analysis		Applied displacements on sides (surfaces)				
Cond. (P)	type	AD(ADHE)	BC(BCGF)	AB (ABFE)	CD(CDHG)	(ABCD)	(EFGH)
1	2D	$\mathrm{U}_{\mathrm{x}}=0$	$\mathrm{U}_{\mathrm{x}}=0.01$	$\mathrm{U}_{\mathrm{y}}=0$	$\mathrm{U}_{\mathrm{y}}=0$	---	---
2	2D	$\mathrm{U}_{\mathrm{x}}=0$	$\mathrm{U}_{\mathrm{x}}=0$	$\mathrm{U}_{\mathrm{y}}=0.01$	$\mathrm{U}_{\mathrm{y}}=0$	---	---
3	3D	$\mathrm{U}_{\mathrm{x}}=0$	$\mathrm{U}_{\mathrm{x}}=0$	$\mathrm{U}_{\mathrm{y}}=0$	$\mathrm{U}_{\mathrm{y}}=0$	$\mathrm{U}_{\mathrm{z}}=0.01$	$\mathrm{U}_{2}=0$
4	2 D	$\mathrm{U}_{\mathrm{x}}=0$	$\mathrm{U}_{\mathrm{x}}=0.01$	$\mathrm{U}_{\mathrm{y}}=0.01$	$\mathrm{U}_{\mathrm{y}}=0$	---	---
5	3D	$\mathrm{U}_{\mathrm{x}}=0$	$\mathrm{U}_{\mathrm{x}}=0.01$	$\mathrm{U}_{\mathrm{y}}=0$	$\mathrm{U}_{\mathrm{y}}=0$	$\mathrm{U}_{2}=0.01$	$\mathrm{U}_{2}=0$
6	3D	$\mathrm{U}_{\mathrm{x}}=0$	$\mathrm{U}_{\mathrm{x}}=0$	$\mathrm{U}_{\mathrm{y}}=0.01$	$\mathrm{U}_{\mathrm{y}}=0$	$\mathrm{U}_{\mathrm{z}}=0.01$	$\mathrm{U}_{\mathrm{z}}=0$
7(A)	2D	$\mathrm{U}_{\mathrm{x}}=0$	$\mathrm{U}_{\mathrm{y}}=0$	$\mathrm{U}_{\mathrm{y}}=0$	$\mathrm{U}_{\mathrm{y}}=0$	---	---
		$\mathrm{U}_{\mathrm{x}}=$ Linear	$\mathrm{U}_{\mathrm{x}}=$ linear	$\mathrm{U}_{\mathrm{x}}=0.01$	$\mathrm{U}_{\mathrm{x}}=0.01$	---	---
(B)	2D	$\mathrm{U}_{\mathrm{x}}=0$	$\mathrm{U}_{\mathrm{y}}=0$	$\mathrm{U}_{\mathrm{y}}=0$	$\mathrm{U}_{\mathrm{y}}=0$	---	---
				$\mathrm{U}_{\mathrm{x}}=0.01$	$\mathrm{U}_{\mathrm{x}}=0.01$	---	---
(C)	2D	---	---	$\mathrm{U}_{\mathrm{y}}=0$	$\mathrm{U}_{\mathrm{y}}=0$	---	---
				$\mathrm{U}_{\mathrm{x}}=0.01$	$\mathrm{U}_{\mathrm{x}}=0.01$	---	---
8(A)	3D	$\mathrm{U}_{\mathrm{x}}=0$	$\mathrm{U}_{\mathrm{x}}=0$	$\mathrm{U}_{\mathrm{y}}=0$	$\mathrm{U}_{\mathrm{y}}=0$	$\mathrm{U}_{\mathrm{x}}=0$	$\mathrm{U}_{\mathrm{x}}=0$
		$\mathrm{U}_{\mathrm{z}}=0.01$	$\mathrm{U}_{\mathrm{z}}=0.01$				
(B)	3D	$\mathrm{U}_{\mathrm{x}}=0$	$\mathrm{U}_{\mathrm{x}}=0$	$\mathrm{U}_{\mathrm{y}}=0$	$\mathrm{U}_{\mathrm{y}}=0$	---	---
		$\mathrm{U}_{\mathrm{z}}=0.01$	$\mathrm{U}_{\mathrm{z}}=0.01$				
9(A)	3D	$\mathrm{U}_{\mathrm{x}}=0$	$\mathrm{U}_{\mathrm{x}}=0$	$\mathrm{U}_{\mathrm{z}}=0.01$	$\mathrm{U}_{\mathrm{z}}=0.01$	$\mathrm{U}_{\mathrm{y}}=0$	$\mathrm{U}_{\mathrm{y}}=0$
				$\mathrm{U}_{\mathrm{y}}=0$	$\mathrm{U}_{\mathrm{y}}=0$		
(B)	3D	$\mathrm{U}_{\mathrm{x}}=0$	$\mathrm{U}_{\mathrm{x}}=0$	$\mathrm{U}_{\mathrm{z}}=0.01$	$\mathrm{U}_{\mathrm{z}}=0.01$	---	---
				$\mathrm{U}_{\mathrm{y}}=0$	$\mathrm{U}_{\mathrm{y}}=0$		

Table 4: Comparison of effective elastic constants by different methods

Notes: (1) (A), (B), and (C) represent different boundary conditions described in Table 3
$\{2\}^{*}$ Assumed V_{TT} for which E_{T} are given
$\{3\} \mathrm{LB}=$ Lower Bound, UB $=$ Upper Bound
Table 5: \quad Comparison of effective elastic constants by different methods

$$
\mathrm{E}_{\mathrm{f}}=2.075 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}, \mathrm{E}_{\mathrm{m}}=7.6 \mathrm{~N} / \mathrm{mm}^{2}, \mathrm{v}_{\mathrm{f}}=0.3, \mathrm{v}_{\mathrm{m}}=0.49908, \mathrm{~V}_{\mathrm{f}}=0.74
$$

Method	E_{L} $\mathrm{N} / \mathrm{mm}^{2}$ (x10 ${ }^{4}$)	$\begin{aligned} & \mathrm{E}_{\mathrm{T}} \\ & \mathrm{~N} / \mathrm{mm}^{2} \\ & \hline \end{aligned}$	$\mathrm{v}_{\text {TL }}$	$\mathrm{V}_{\text {TT }}$	$\begin{aligned} & \mathrm{G}_{\mathrm{LT}} \\ & \mathrm{~N} / \mathrm{mm}^{2} \\ & \hline \end{aligned}$	G_{TT} $\mathrm{N} / \mathrm{mm}^{2}$
Rule of mixtures	15.31	29.18	0.3518	----	9.73	----
Halpin-Tsai	15.31	72.36	0.3518	----	16.97	----
Ekvall	15.31	72.78	0.3518	----	43.74	----
Greszezuk	15.31	227.40	0.3518	----	6623.0	----
Whitney and Riley	15.31	1518.0	0.3517	0.8580*	16.97	----
Foye	15.31	1725.0	0.3518	0.4811	38.98	----
Hahn	15.31	67.41	0.3518	----	16.94	16.90
Hashin (LB)	15.31	67.41	0.3516	0.8577	16.94	16.90
Hashin (UB)	15.31	1559.0	0.3517	0.9995	46700.0	391.50
FEEM (1 RVE)	14.90	1550.0	0.3512	0.8580	25.77	(A)1147.0, (B)41.0, (C)39.0
FEEM (9 RVE)	14.90	1550.0	0.3512	0.8580	25.77	$\begin{aligned} & \text { (A) } 91.0 \text {, } \\ & \text { (B) } 22.3, \text { (C) } 19.1 \\ & \hline \end{aligned}$

Notes: (1) (A), (B), and (C) represent different boundary conditions described in Table 3
$\{2\}^{*}$ Assumed V_{TT} For which E_{T} are given
$\{3\} \mathrm{LB}=$ Lower Bound, UB $=$ Upper Bound

DISCUSSIONS/RESULTS

Table 3 gives the various applied displacements on the sides/surfaces of these models according to the strain-boundary conditions explained earlier. This set of displacements represents nine separate problems to be analyzed, yielding nine independent elastic constants. Where the
transverse dimensions along X and Y axes of the model are equal, which could be the case for most general composites, the boundary condition (1) is the same as (2), (5) and (6), and (8) as (9), leaving only six independent boundary conditions. This reduced set of boundary conditions would give six independent elastic constants, E_{L},
$\mathrm{E}_{\mathrm{T}}, \mathrm{V}_{\mathrm{TL}}, \mathrm{V}_{\mathrm{TT}}, \mathrm{G}_{\mathrm{LT}}$, and G_{TT}. Figures 2 and 3 show the two-dimensional finite element grids employed. The threedimensional grids are exactly the same except that there are three elements in the Zdirection. Six separate finite element analyses were performed according to the boundary conditions given in table 3 which give six values of strain energy for the six sets of applied strains.

The six elastic constants were computed by using equations (11) and (13) and the other relations. These results are set into tables 4 and 5 to compare with results of the other methods as formerly obtained in tables 1 and 2 (see and compare for yourself). In tables 1 and 4 , a steel-urethane composite was employed, where Young's modulus for urethane is $68.98 \mathrm{~N} / \mathrm{mm}^{2}$ and fibre volume fractions is 50 percent and in tables 2 and 5, a steel-urethane composite having Young's modulus for urethane, 7.6 $\mathrm{N} / \mathrm{mm}^{2}$ and the fibre volume fraction, 74 percent.

CONCLUSIONS:

It is worthy of note that all elastic constants by the FEEM for one RVE and nine RVEs are found the same except for the values of $\mathrm{G}_{\text {Tт. }}$ [see tables 4 and 5 to confirm]. This actually goes to prove the effectiveness of the work of Gupta. The little disparity in the values of $\mathrm{G}_{\text {TT }}$ can easily be understood if we recognize that more energy is required for the condition at (A), in the case of one RVE, than in nine RVE where the energy is reduced drastically because the comparatively rigid fibres are allowed to rotate freely under the application of the classical boundary conditions. Since the resulting values should not be less accurate, better results would be given by more RVE's in the model, with the boundary
conditions at (A). In conclusion, therefore, the FEEM can be regarded as the all-in-one-tool so far available for the effective prediction of elastic constants in composites possessing very stiff fibres and very soft matrix.

REFERENCES

1. Hashin, Z., "Analysis of Composite Materials - A Survey," ASME Journal of Applied Mechanics, Vol. 50, Sept. 1983, pp. 481-505.
2. Chamis, C. C., and Sendeckyj. G. P., "Critique on Theories Predicting Thermoplastic Properties of Fibrous Composites," J. Composite Materials, Vol. 2, No. 3, July 1968, pp. 332 - 358.
3. Hannibal, A, J,m Gupta, B. P., Avila, J. A., and Parr, C. H., "Flexible Matrix Composites Applied to Bearingless Rotor Systems," Journal of the American Helicopter Society, Vol. 31, No. 1, Jan. 1985, pp. 21 - 27.
4. Hannibal, A. J., and Avila, J. A., "A Torsionally Stiff- Bending Soft Driveshaft," $39^{\text {th }}$ Annual Conference, Reinforced Plastics/Composites institute, The Society of the Plastic Industry, Inc., Jan. 1984,PP 16 - 19,
5. McGuire, D. P., Hannibal, A. J., and Blenner, D. R., "Progress in the Development of Electrometric Metric Composites," The American Helicopter Society Composite Manufacturing Specialists Meeting, Stamford, Connecticut, June 1985. PP 10-13,
6. Jones, R. M., Mechanics of Composite Materials, $1^{\text {st }}$ ed., McGraw-Hill New York, 1975, pp. 114-120.
7. Ashton, J. E., Halpin, J. C., and P. H., Primer on Composite Materials; Analysis, $1^{\text {st }}$ ed., Technomic Publishing Co., Stamford, Conn., 1969, pp. 77 81.
8. Ekvall, J. C., "Structural Behavior of Monofilament Composites," AIAA/ASME 7 ${ }^{\text {th }}$ Structural Dyamics and Materials Conference, Palm

Springs, California, 1966, pp. 205 263.
9. Ekvall, J. C., "Elastic Properties of Orthotropic Monofilament Laminates," ASME Aviation Conference, Los Angeles, California, Paper No. 61 - AV - 56, 1961.
10. Greszczuk, L. B., "Theoretical and Experimental Studies on Properties and Behavior of Filamentary Composites," SPI $21^{\text {st }}$ Conference, Chicago, III., 1966.
11. Whitney, J. M., and Riley, M. B., "Elastic Properties of Fiber Reinforced Composite Materials," AIAA Journal, Vol. 4, Sept. 1966, pp. 1537 -1542.
12. Hashin, Z., "Analysis of Properties of Fiber Composites with Anisotropic Constituents," ASME Journal of Applied Mechanics, Vol. 46, 1979, pp. 543 - 550.
13. Hashin, Zvi., "Theory of Fiber Reinforced Materials," NASA-CR-1974 (Under NASA Contract No. NASI-8818), Mar. 1972, p. 289.
14. Hahn. H. T., "Simplified Formulas for Elastic Moduli of Unidirectional Continuous Fibre Composites," Composite Technology Review, Vol. 2, No. 3, 1980, pp. 5-7.
15. Foye, R. L., "Advanced Design Concepts for Advanced Composite Airframes," Technical Report AFML-TR-68-91, Vol. 1, July 1968, pp. 92 167.
16. Hashin, Zvi., and Rosen, B. W., "The Elastic Moduli of Fiber-Reinforced Materials," ASME Journal of Applied Mechanics, Vol. 31, June 1964, pp. 223-231.
17 Sijian L. I. "Thre-Dimensional Elastic Constants for Thick laminate" Journal of Composite Materials" vol. 22, No.7, 1988, pp 629-639,
18 Iwona, J. "Effective Elastic Constants of Particulate Composites with Inhomogeneous Interfaces", Journal of

Composite Materials, vol. 32, No. 15, 1998, pp1391-1424
19 Middya,T.R, Paul, M., and Basu A. N., "...S imulated Dynamic Model Approaches to Effective Elastic Properties of Randomly Disordered Composites", Journal of Applied Physics,vol.59, No 3, 2006, pp 2376-2381
20 Lee, S-W. R., Sun, C.T., " A Quasi-Static Penetration Model for Composite Laminates, Journal of Composite Materials", vol. 27, No 3, Jan., 1992 pp 251-271
21 Gupta B. P., "Micro-mechanical Property Prediction for Flexible Matrix Composites", Journal of Engineering for Industry, Transactions of ASME, 2003, Vol. 109 pp 29-33

