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ABSTRACT  

 

In this paper, the governing differential equation for the vibration of a homogeneous, 

isotropic embankment dam was established by the shear beam theory. The governing 

equation was developed for a typical wedge shaped embankment dam with rectilinear side 

slopes and having the same gradient on both the upstream and downstream slope. For 

harmonic displacement response, it was found that the governing partial differential 

equation reduces to an ordinary differential equation of the Bessel type. This was then 

solved, subject to the boundary conditions, to obtain the modal shape functions and natural 

frequencies of vibration. The shear stress distribution along the embankment dam was also 

obtained. 

 

INTRODUCTION 

Theoretical analysis using shear beam 

theory, numerical analysis as a two or three 

dimensional elastic structure, and the use of 

model tests are some of the methods for 

determining the dynamic characteristics of 

embankment dams.[1] 

 Shear beam theory idealizes the dam 

as a plate obtained by introducing imaginary 

sections at two arbitrary cross-sections 

perpendicular to the axis of the dam, and 

analyzes the resulting substructure as a 

wedge-shaped shear beam. The effect of 

both banks of the valley is ignored in the 

analysis. The displacements at various 

points at the same elevation are all assumed 

to be equal. 

 Another more rigorous method 

considers the resulting plate as a 

two-dimensional structure with the 

thickness of the dam taken into account in 

the determination of the vibration 

characteristics. The effect of the banks is 

also disregarded here. [2] 

 However, a closed form solution, 

especially for complicated boundary 

conditions, is usually difficult, if not 

impossible to obtain in some cases. Hence, 

numerical procedures like the finite 

difference method and the finite element 

techniques have been developed to yield 

approximate solutions to boundary value 

problems of engineering and mathematical 

physics [3]. 

 Recent developments in the finite 

element analysis of dynamic structures have 

made it possible to determine the dynamic 

characteristics by considering the 

three-dimensional geometry of the dam, the 

anisotropy and heterogeneity of the dam 

materials and the influence of the banks. [4]  
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 However, the procedure is extremely 

demanding of computer storage space due to 

the large number of equations obtained. 

 In the similitude tests, a physical 

model of the dam is built, and submitted to 

an elastic vibration test in order to determine 

the periodic time, mode of natural 

vibrations, and the displacement and surface 

strain of the dam during vibrations. Then, 

using the principles of similarity, the 

vibration characteristics of the actual dam 

can he obtained. 

 Similitude tests employ the 

principles of similarity between the model 

and the prototype in order to determine the 

vibration characteristics of the real dam 

from the vibration characteristics of the 

physical model. However, dams are such 

complex structures that it is usually 

impossible to obtain similarities for all the 

characteristics. This is a major limitation of 

the use of similitude tests. 

In this work, we seek to: 

 

♦  obtain an equation governing the 

vibration behaviour of a 

wedge-shaped embankment dam 

assumed to be made of homogenous, 

isotropic and linear elastic material  

◆  solve the resulting governing 

equation to obtain the vibration 

period, natural frequencies and mode 

shapes of the embarkment dam. 

◆  calculate the shear stress variation 

with depth on the axis of the dam for 

each mode of vibration. 

 

Formulation of the Governing 

Differential Equation by the Shear Beam 

Theory 
 

The derivation is based on the following 

assumptions: 

(i)  the dam is idealized as a beam with a 

cross-section shaped in the form of a 

wedge since the trapezoidal shape of 

some embankment dams can be built 

up from a consequence of the 

superposition principle applied to 

triangular wedges. Again if the crest 

of the dam is very small relative to 

the base width, the dam can be 

approximated, for ease of analysis, 

as a triangular wedge. 

(ii)  the displacement field is a function 

of the depth coordinate alone. 

(iii)  according to the shear beam theory, 

the deformation of the dam is due to 

shear stress effects only [1] and [4], 

hence flexural deformations are 

ignored. 

(iv)  the material of the dam is 

homogeneous, linear elastic and 

isotropic 

(v)  the dam is very long compared with 

its cross-sectional base width that the 

dam is idealized as infinitely long. 

Consequent upon this assumption, 

end effects are ignored. 
 
The problem is required to satisfy 

simultaneously 

❖  the differential equations of dynamic 

equilibrium 

❖  the stress-strain law for the material 

of the dam, and 

❖  the strain displacement requirement. 
 
We consider an elemental segment of the 

dam, as shown in Fig.1. For equilibrium of 

forces acting on the elemental segment, we 

apply D’Alembert’s principle of dynamic 

equilibrium to yield: 

∑      

         
    

  
       

   

   
  

Using the principle of complimentary stress, 

Szy = Syz, and the equation of motion for the 

elemental shear beam becomes 

 (1) 
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(  )          (1) 

where ρ = mass density of the material of the 

dam 

S = shearing force 

H = dam height 

G = shear modulus of elasticity of the  

        material of the dam 

τ = shear stress 

v = displacement in the direction of the y- 

        coordinate 

 

 
Fig. 1: The Embankment Dam 

 

The stress-strain law for the material of the 

dam assuming linear isotropic elasticity is 

                             (2) 

where γ = shear strain 

The strain displacement equation is given, 

assuming finite strain behaviour, by 

  
  

  
                           (3) 

Using equations (2) and (3) in equation (1) 

we obtain the differential equation of 

equilibrium as: 

  
   

   
 

 

  
(  

  

  
)                (4) 

For a wedge-shaped cross-section, which we 

assumed, the dam width can be expressed as 

b(z) = b0z where b0 is a measure of the 

gradient of the side slopes, and 0 ≤ z ≤ H, 

then  

    
   

   
 

 

  
(    

  

  
)           (5) 

Simplifying we obtain 
 

 

   

   
 
   

   
 
 

 

  

  
                   (6) 

Equation (6) is the governing differential 

equation for the natural vibrations of the 

dam. 

 

Closed Form Solution 
Assuming harmonic vibrations, and 

harmonic response, we seek a closed form 

solution for v(z, t) in the variable separable 

form 

 (   )   ( )    (    )         (7) 

where v(z) is the mode of natural vibrations, 

ω is the circular frequency of natural 

vibrations, and α is the phase.  

Then the governing equation becomes, 

(
   

   
 
 

 

  

  
 
   

 
 )    (    )    (8) 

For nontrivial solutions, cos(ωt + α) ≠ 0, and 

the characteristic equation becomes 
   

   
 
 

 

  

  
 
   

 
                   (9) 

Let    √
 

 
  where    velocity of shear 

waves, then we obtain 
   

   
 
 

 

  

  
 
  

  
                     (9a) 

Equation (9a) is a Bessel differential 

equation, 

the general solution of which is, 

 ( )      (
  

  
)      (

  

  
)      (10) 

where J0 is the Bessel function of the first 

kind of order zero, and Y0 is the Bessel 

function of the second kind of order zero, 

and c1 and c2 are constants of integration 

which are determined from the boundary 

conditions. 

The boundary conditions are 

 (   )                     (11a) 

 (   )                    (11b) 

Using equation 11a, we find: c2 = 0 

Thus the modal shape function becomes 

 ( )      (
  

  
)                (10a) 

Using equation (11b), we obtain the 

frequency equation 
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   (
  

  
)                   (12) 

Solving, 
  

  
    

where zn are the n roots of J0(z) = 0 

So,   
    

 
 

where zn = 2.4048, 5.5201, 8.6537, 11.7915, 

14.931, etc. 

 

So,   
      

 
√
 

 
  

   
      

 
√
 

 
  

   
      

 
√
 

 
  

   
       

 
√
 

 
  

   
      

 
√
 

 
  

This compares remarkably well with the first 

two natural frequencies obtained by Ashok 

K.C. in [2] as follows 

   
  

     
√
 

 
 
     

 
√
 

 
  

   
  

     
√
 

 
 
     

 
√
 

 
  

The natural period is 

   
  

  
 
  

  

 

  
 
   

  
√
 

 
  

The vibration mode is 

  ( )      (
  

  
)      (

   

 
)  

Shear stress 

The shearing stress is 

   
  

  
  

  

  
  (

   

 
)    (    )  

The modes and shearing stress amplitudes of 

the first, second and third order natural 

vibrations are as given in Tables 1, 2, and 3 

below: 

 

First order mode 

Table 1  Mode function value and shear 

stress amplitude variation  with depth  

factor (
z
/H): First Order Mode 

 

 

 

z/H 

 

vn  

GH zn/

 
0       1.00     0 

0.1    0.9850     0.1202 

0.2    0.94     0.2405 

0.3    0.88     0.3295 

0.4    0.77     0.44 

0.5    0.67     0.498 

0.6   0.53     0.55 

0.7   0.398     0.577 

0.8   0.28     0.58 

0.9   0.11     0.548 

1.0   0     0.519 

 

Table 2 Mode function value and shear 

stress amplitude variation with depth factor: 

Second Order Mode 

 

z/H vn 

( )


-GH z n/
 

0    1.00   0       

0.1 0.92   0.259 

0.2 0.72   0.469 

0.3 0.42   0.569 

0.4 0.11    0.556 

0.5 -0.16      0.4195 

0.6 -0.34      0.2208 

0.7 -0.40    -0.027 

0.8 -0.34    -0.204 

0.9 -0.18    -0.325 

 1.00 0      -0.341 

 

1st order natural vibration 

- - - -  normalized shear stress ( )


-GH z n/
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        Deflection mode amplitude 

 

 
 

 

Fig. 2  Mode shapes and shearing stress due to 

shear vibration for 1st mode of vibration 

2nd order natural vibration 

 
Fig. 3 Deflection mode shape and shearing 

stress due to shear vibration for 2nd mode of 

vibration 
 
Table 3 Mode function value and shear 

stress amplitude variation with depth factor: 

3rd order mode 

 
 

z/H 
 

vn ( )


-GH z n/
 

0   1    0 

0.1 0.82    0.381 

0.2 0.38    0.58 

0.3 –0.0968  0.467 

0.4 –0.370   0.147 

0.5 –0.361   –0.1730  

0.6 –0.1103 –0.3460  

0.7 0.16   –0.1644  

0.8 0.2981 –0.0350  

0.9 0.2154 0.199  

 1 0         0.271    

 

The rate of distribution to each normal 

coordinate is measured by the modal 

participation factor which is defined, for the 

nth mode, by 

   

 

    (
   

 
)  

 

  (  (
   

 
))
 

  

 
 

    (  )
  

The modal participation factors can be 

calculated as: μ1 = 1.60, μ2 = -1.06,  

μ3 = 0.86 

 

Conclusion 

The governing partial differential equation 

for a wedge-shaped embankment dam made 

of homogeneous, isotropic, linear elastic 

material has been obtained using the shear 

beam theory. 

 Closed form expressions for the 

natural frequencies, period, and modal shape 

functions of an embankment dam have been 

obtained from a solution of the governing 

partial differential equation. As in all 

classical solutions, an infinite set of values 
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was obtained for the natural frequencies and 

the mode shapes of the dam. 

 According to shear beam theory, the 

stress due to the natural vibration of a dam is 

distributed as shown in Figs 2, and 3 and, as 

tabulated in Tables 1, 2, and 3. 

 From the charts, it is observed that 

shear stresses are maximum at z = 0.75H 

with first order vibration and at z = 0.33H 

with second order vibration. This agrees 

remarkably well with the observed response 

of physical models of dams from the 

technical literature, such as Ashok K.C. in 

[2] and Gazetas G. in [1]. 
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