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ABSTRACT

Instability is an important branch of structural mechanics which examines alternate
equilibrium states associated with large deformations. In this study, Varbanov's generalized
strain fields and Vlasov's displacement equations were used to obtain a set of equations for
neutral equilibrium of axially compressed single-cell box column with deformable
cross-sections. The study involved a theoretical formulation based on Vlasov's theory as
modified by Varbanov and implemented the associated displacement model in generating
series of ordinary differential equations in distortional displacement V(x). The initial result
of the formulation was in form of total potential energy functional, which was then minimized
using Euler-Lagrange equation. Minimization of the total potential energy functional resulted
to a set of governing equations of equilibrium in matrix form. The longitudinal warping

(x)displacement functions U  were eliminated from the governing equations of equilibrium in
different forms to obtain the following equations: two fully uncoupled ordinary differential

1 2equations in V  and V  representing flexural buckling about the two axis of symmetry; a fully

4separated ordinary differential equation in V  representing distortional buckling about the

3longitudinal ox-axis; a pair of coupled simultaneous ordinary differential equations in V  and

4V  representing torsional – distortional buckling mode. This study has resulted in better
understanding and separation of distortional mode from the other stability modes. The results
show that the effect of deformation can be substantial and should not be disregarded by
assuming rigid cross-sections. This present work has also simplified instability analysis and
design of thin-walled box columns with deformable single-cell cross-sections on the basis of
Vlasov's theory by deriving precise equations for all the possible buckling modes.

Key words: Instability, Flexural buckling, Distortional buckling, Torsional-Distortional

buckling, Thin-walled Column, Vlasov's theory. 

NOTATIONS:

iU (x): Longitudinal displacements function
due to flexure about oy- and oz-axes
and warping due to torsion about
ox-axis.

kV (x): Transverse displacements function
due to flexure about oy- and oz-axes,
torsion about ox-axis, and distortion
of the cross-section.

in (s): Generalized longitudinal strain fields
due to flexure about oy- and oz-axes,
and warping torsion about ox-axis.

in N(s): First derivative of the longitudinal
strain fields with respect to the profile
coordinate, S

kψ (s): Generalized transverse strain fields
due to flexure about oy- and oz-axes,
torsion about ox-axis and distortion
of the cross-section
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crP : Critical buckling load
S: Profiles coordinate
E: Modulus of elasticity
G: Modulus of rigidity
τ(x, s): Shear stress
σ(x, s): Normal stress

xg : Longitudinal strain

xsγ : Shear strain

yI : Moment of inertia about the oy - axis

zI : Moment of inertia about the oz - axis

ωωI : Warping constant
ω: Warping function

INTRODUCTION
According to Saade et al. [1], the carrying
capacity of thin-walled beams and columns is
often governed by instability or loss of
stability. Heins [2] and Osadebe [3] are of the
view that thin-walled closed structures are
very economical as structural members due to
their light weight and their high flexural and
torsional rigidity but these structures appear
to have low resistance against buckling;
consequently, their instability problems need
some careful and in-depth study. Compared
with conventional structural columns, the
pronounced role of instability complicates the
behaviour and design of thin-walled columns.
In most structural analysis problems, bending
effects dominate, however, for thin-walled
structures, stability (resistance to buckling) is
often crucial and all designs must be assessed
for possible buckling failure. According to
Ezeh [4], thin-walled steel box columns with
deformable cross-sections have at least three
competing instability modes; flexural,
distortional and torsional-distortional
buckling modes respectively.

Vlasov [5] was the first to substantiate
the existence of distortional and warping
stresses in thin-walled closed structures and
he subsequently formulated a theory for their
analysis. Research has shown that strict
application of Vlasov's displacement model
for the analysis of thin-walled closed
structures leads to a large number of
kinematic unknowns in form of displacement
functions. Varbanov [6] has shown that by
using generalized strain fields on the Vlasov's

equation, the number of the kinematic
unknowns can be drastically reduced. The
generalized strain fields have been used by
Varbanov [6], Varbanov and Ganer [7], and
Osadebe [3] in the stability and stress
analyses of multi-cell and single-cell box
columns respectively. The second author of
this paper has also used generalized strain
fields and Vlasov's equations to obtain a set
of equations for neutral equilibrium of axially
compressed single-cell box column (Osadebe
and Kwaja [8]). 

This present study, which is
formulated based on Vlasov's theory with the
modification thereof, differs from the former
one [8], in that here the effect of cross-section
deformations which can be substantial is
considered. The main motivation for the
present study is the need to provide
comprehensive c1oseddform equations for
the buckling modes of a deformable
single-cell box column obtained on the basis
of Vlasov's formulation. The readily
availability of such equations will not only
simplify the work of designers but will also
ensure safe design through checking of all
possible stability modes. 
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Figure 1: Axially compressed single-

cell thin-walled box column with deformable cross-sections

Figure 1 shows an axially compressed
thin-walled hollow column with deformable
cross-sections, the section dimensional
parameters and the stress resultants. On the
basis of Lagrange's principle, Vlasov [5]
expressed the displacements in the

(x, s)longitudinal and transverse directions, u

(x, s)and v  of a thin-walled closed structure in
series form as follows:

(1)

(2)

i k Where, U (x)and V (x)are unknown functions
which express the law governing the
variation of the displacements along the

i k length of the column. n (s) and ψ (s) are
elementary displacements of the column
(longitudinal and transverse strain modes)
respec t i v e l y ou t  o f  t he  p l ane
(m-displacements) and in the plane
(n-displacements).

Vlasov's formulation yields (m + n)
second order differential equations, but later
work by Varbanov [6] has shown that m and

n can be limited to four by using generalized
strain fields. The potential energy of an
axially loaded thin-walled closed structure is
given by:

pπ  = S – W (3)
For the structure under consideration, the
strain energy and work done by the external
load are given by:

                (4)

(5)

Using equations (1) and (2) and basic
stress-strain relations of the theory of
elasticity, the expressions for normal and
shear stresses become [3 - 8]:

(6)

NIGERIAN JOURNAL OF TECHNOLOGY, VOL. 28 NO.2, SEPTEMBER 2009



83FLEXURAL, TORSIONAL AND DISTORTIONAL BUCKLING OF SINGLE-CELL THIN-WALLED BOX COLUMNS

(7)

The bending moment induced by distortion is

given by:

(8)

Substituting equation (4) and (5) into

equation (3), we obtained:

      (9)

Using constitutive relation in equation (9), we

obtained:

        (10)

Substituting equations (6), (7), (8) and (2)
into equation (10) and simplifying, we
obtained:

(11)

where,

Equation (11) shows that the total potential

penergy π  is a functional of the form:

(12)

pThe total potential energy functional π  has
stationary (extreme) values if the following
Euler-Lagrange differential equations are
satisfied:

(13)

(14)

Using equations (13) and (14) on equation

(11) and noting that for the thin-walled closed

column under consideration, m = 3, n = 4, we

obtained the governing equations of

equilibrium as:
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(15)

(16)

GENERALIZED STRAIN FIELDS AND
ELEMENTS OF COEFFICIENT
MATRICES:
Considering the nature of loading, the

i longitudinal strain fields n (s) consist of
bending about oy-axis, bending about oz-axis
and warping in the longitudinal direction and

they are chosen as follows:

1 (s) 2 (s) 3 M n (s) = y ; n (s) = z ; n (s) = ω (s) (17)

k The transverse strain fields ψ (s)consist of
bending about the oy-axis, bending about the
oz-axis, pure rotation about ox-axis and
distortion of the cross section, and they are
chosen as follows:

(18)

The elements of the coefficients of the
governing differential equations of
equilibrium were determined for the
respective cross, sections by first generating
and plotting the strain fields as shown in
figure 2.
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agram multiplication on the strain field

diagrams, the elements of the coefficient

matrices were determined as follows:

ij ji s i j a  = a  = I n (s) n (s) t(s)ds

11 s 1 1 a  = I n (s) n (s) t(s)ds = 7.333a t3

22 s 2 2 a  = I n (s) n (s) t(s)ds = 13.5a t3

12 21 s 1 2 a  = a  = I n (s) n (s) t(s)ds = 0

13 31 s 1 3 a  = a  = I n (s) n (s) t(s)ds = 0

23 32 s 2 3 a  = a  = I n (s) n (s) t(s)ds = 0

33 S 3 3 a  = I n (s) n (s) t(s)ds = 0.3a t5

ij ji S i j b  = b  = I nN(s) nN (s) t(s)ds

11 s 1 1 b  = I nN (s) nN (s) t(s)ds = 4at

12 21 s 1 2  b  = b  = I nN(s) nN (s) t(s)ds = 0

13 31 s 1 3(s) b  = b  = I nN(s) nN t(s)ds = 0

22 s 2 2 b  = I nN (s) nN (s) t(s)ds = 6at

23 32 s 2 3 b  = b  = I nN (s) nN (s) t(s)ds = 0

33 s 2 3 b  = I nN (s) nN (s) t(s)ds = 0.6a t3

ir ri s i r c  = c  = I nN(s) ψ (s) t(s)ds

11 s 1 1 c  = I nN (s) ψ (s) t(s)ds = 4at

12 21 s 1 2 c  = c  = I nN (s) ψ (s) t(s)ds = 0

13 31 s 1 3 c  = c  = I nN (s) ψ (s) t(s)ds = 0

14 s 1 4 c  = I nN (s) ψ (s) t(s)ds = 0

22 s 2 2 c  = I nN (s) ψ (s) t(s)ds = 6at

23 32 s 2 3 c  = c  = I nN (s) ψ (s) t(s)ds = 0

24 s 2 4 c  = I nN (s) ψ (s) t(s)ds = 0

33 s 3 3 c  = I nN (s) ψ (s) t(s)ds = 0.6a t3

34 s 3 4 c  = I nN (s) ψ (s) t(s)ds = 0.6a t3

kr rk S k r m  = m  = I ψ (s) ψ (s) t(s)ds

11 s 1 1 m  = I ψ (s) ψ (s) t(s)ds = 4at

12 21 s 1 2 m  = m  = I ψ (s) ψ (s) t(s)ds = 0

13 31 s 1 3 m  = m  = I ψ (s) ψ (s) t(s)ds = 0

14 41 s 1 4 m  = m  = I ψ (s) ψ (s) t(s)ds = 0

22 s 2 2 m  = I ψ (s) ψ (s) t(s)ds = 6at

23 32 s 2 3 m  = m  = I ψ (s) ψ (s) t(s)ds = 0

24 42 s 2 4 m  = m  = I ψ (s) ψ (s) t(s)ds = 0

33 s 3 3 m  = I ψ (s) ψ (s) t(s)ds = 15a t3

34 s 3 4 m  = I ψ (s) ψ (s) t(s)ds = 0.6a t3

44 s 4 4 m  = I ψ (s) ψ (s) t(s)ds = 0.6a t3

kr rk s k r h  = h  = I ψ (s) ψ (s)ds

11 s 1 1 h  = I ψ (s) ψ (s)ds = 

12 21 S 1 2 h  = h  = I ψ (s) ψ (s)ds = 0

13 31 s 1 3 h  = h  = I ψ (s) ψ (s)ds = 0

14 41 s 1 4 h  = h  = I ψ (s) ψ (s)ds = 0.194a2

22 s 2 2 h  = I ψ (s) ψ (s)ds = 6a

23 32 s 2 3 h  = h  = I ψ (s) ψ (s)ds = 0

24 42 s 2 4 h  = h  = I ψ (s) ψ (s)ds = 0

33 s 3 3 h  = I ψ (s) ψ (s)ds = 15a3

34 s 3 4 h  = I ψ (s) ψ (s)ds = 0.6a3

44 s 4 4 h  = I ψ (s) ψ (s)ds = 0.6a3

But, for all the plates

DERIVATION OF BUCKLING

EQUATIONS IN TRANSVERSE

k DISPLACEMENT QUANTITIES V (x):
Substituting the zerio coefficients as obtained

above into the matrix form of the governing

equations of equilibrium (15&16) and

assuming the cross-section to be deformable,

we obtained:
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(19)

(20)

where,

          etc.

Expanding equation (19), we obtained:

(21(a))

(21(b))

(21(c))

Expanding equation (20), we obtained:

(22(a))

(22(b))

(22(c))

(22(d))

1Eliminating U (x) and its derivatives from

equations (21(a)) and (22(a)), we obtained:

(23)

where,

2Eliminating U (x) and its derivatives from

equations (21(b)) and (22(b)), we obtained:

(24)

where,

3Eliminating U (x) and its derivatives from

equations (21(c)) and (22(c)), we obtained:

(25(a))

1 33 33 2 33 34 1 33 33where, θ  = γa k ; θ  = γa k ; φ  = (b k  –

33 2 33 34 33 34c ); φ  = (b k  – c c )2

3Eliminating U (x) and its derivatives from

equations (21(c)) and (22(d)), we obtained:

(25(b))
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3 33 43 34 34 4 33 44where, θ  = (c k  – c k ); θ  = (c k  –

34 33 3 33 44c k ); φ  = γc s )

Hence as a result of interaction (coupling)

between rotation and distortion we have

obtained a pair of simultaneous ordinary

differential equations (ODE) in the form:

(25a)

(25b)

3 3Eliminating U (x) and V (x) and their

derivatives from equations (22(c)), (22(d))

and (21(c)), we obtained:

(26)

Where,

33 33 44 34 34 34 34 33 33 34α  = [c (c k  – c k ) + c (c k  – c k )2

33 44 33 33 33 44 34 33 33 44– γ a s k  – b (k k  – k )] / γa (k k2 2

34– k )2

When the thicknesses of the thin-walls are

very thin, it becomes possible for buckling to

occur without rotation. This type of condition

is referred to as buckling by distortion. Under

pure distortional buckling, equation (22(c))

3was eliminated and the V (x) components in

equations (21(c)) and (22(d)) became zero.

Hence,

(27(a))

(27(b))

3Eliminating U (x) and its derivatives from

equations (27(a) & (b)), we obtained:

(28)

Where,

a n d

RESULTS AND DISCUSSION:
This study has identified and completely

separated three instability behaviours

associated with axially compressed

single-cell thin-walled box columns when the

cross-sections are deformable. The necessary

differential equations for stability analysis

under the different buckling behaviours were

also derived and presented thus:

1. Flexural Behaviour:

(23)

(24)

2. Torsional-Distortional Behaviour:

(25a)

(25b)

3. Distortional Behaviour:

(26)

(28)
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The results show that each of the two

equations representing the flexural behaviour

can easily be solved in closed-form for the

flexural critical buckling loads and for each

set of boundary conditions. The set of

simultaneous ordinary differential equations

representing interaction/coupling between

torsion and distortion can easily be solved

using Varbanov's trigonometrical series with

accelerated convergence (Ezeh [4]). The two

equations representing distortional behaviour

can also be solved in closed-form for the

distortional buckling strength both at normal

thicknesses and under very thin wall

conditions.

NUMERICAL EXAMPLE
Using the distortional buckling mode as a

numerical example we have:

(28)

4Let V  = enx

and

Substituting into equation (28), we obtained:

n e  + n θ e  + λe  = 04 nx 2 2 nx nx

Y        (n  + θ n  + λ)e  = 0 (29)4  2 2 nx

The characteristic or auxiliary equation is

therefore given by: 

n  + θ n  + λ = 0 (30)4  2 2

From equation (30), we obtained:

 and

Hence, the general solution of equation (28)

is given by:

4 1 1 2 1 V  = C  cosh n x + C  sinh n x + 

3 2 4 2        C  sin n x + C  cos n x (31)

1 2 3 4C , C , C  and C  are the constants of

integration which were evaluated from the

boundary conditions as shown in the

hinged-hinged example below.

Hinged - Hinged Column:
The boundary conditions for the hinged-

hinged columns are given by:

4V  = 0; (x = 0, l) (32)

Applying the boundary conditions (32) to

equation (31), we obtained the following

simultaneous homogeneous algebraic

equations:

... (33)

For a nontrivial solution or nonzero values of

the constants, the determinant of the

1 2 3 4coefficients of C , C , C  and C  must vanish.

That is,
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... (34)

Equation (34) is the stability matrix for

equation (28) for the hinged-hinged boundary

conditions. 

Expanding equation (34), we obtained:

(35)

Solving equation (35), we obtained:

(36)

Substituting the expressions for θ  and λ into2

equation (36), we obtained;

(37)

33 33 34 44But a  = 0.3a t; b  = 0.6a t; c  = 0.6a t; h5 3 3

= 0.6a ;  5

44m  = 0.6a t;3

Substituting these coefficients into equation

(37), and using, a = 0.08m; t = 0.0005m to

0.015m; L = 4.5m; E = 210 × 10 MN/m  and3 2

G = 81 × 10 MN/m , we obtained the critical3 2

buckling loads for the hinged-hinged

boundary conditions and very thin-walls as

shown in figure 1.

CONCLUSION:
This work has resulted in better

understanding and separation of distortional

mode from the other buckling modes. The

distortional equation for very thin walls will

help in determining limiting thicknesses to

avoid distortional failure. This study has also

r e v e a l e d  t h a t  a s s u m p t i o n  o f

non-deformability for thin-walled box

columns can obscure areas of structural

weakness for such structures especially under

buckling conditions. It can be said that this

study has greatly simplified buckling analysis

and design of thin-walled closed columns on

the basis of Vlasov's theory by deriving series

of equations that will afford necessary checks

of buckling strength for such structures. 
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