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ABSTRACT  

Analysis of underground circular cylindrical she ll is carried out in this work. The forth order 

differential equation of equilibrium, comparable to that of beam on elastic foundation, was 

derived from static principles on the assumptions of P. L Pasternak. Laplace transformation 

was used to solve the governing differential  equation at critical condition. The Greenwich 

contour formula was successfully used to determine the inverse transform of the obtained 

subsidiary equation. The final solution was found to agree with that obtained using the 

classical method. The Laplace transformation appeared to be less tedious and more time saving 

than the classical method in the solution of the aforementioned differential equation . 
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1.  INTRODUCTION 

Thin shells as structural elements occupy a 

leadership position in engineering and, in 

particular in civil, mechanical, architectural, 

aeronautical, and marine engineering [1].  

The wide application of shell structures in 

engineering is conditioned by their following 

advantages:  

- Efficiency of load-carrying behavior  

- High degree of reserved strength and 

structural integrity  

- High strength / weight ratio  

- Very High stiffness  

- Containment of space   

Shells are for most part the deep-seated 

structures in manufacturing submarines, 

missiles, tanks and their roofs, and fluid  

reservoirs [2]. Circular cylindrical shells are 

used in a large variety of civil engineering 

structures; e.g. off-shore platforms, chimneys, 

silos, pipelines, bridge arches or wind turbine 

towers [3].  

The objective of this study is to carry out the 

analysis of an underground circular 

cylindrical shell using Laplace transformation 

and compare the results with those obtained 

by means of the classical method.  

Shell theories of varying degrees of 

accuracy were derived, depending on the 

degree to which the elasticity equations were 

simplified. The approximations necessary for 

the development of an adequate theory of 

shells have been subject of numerous 

discussions among the researchers in the 

field.  

Love [4] was the first investigator to 

present a successful approximation of shell 

theory based on the analogy of plates due to 

Kirchoff [5]. This theory known as moment 

theory, in spite of its attractive accuracy, is 

seldom applied by an average engineer due to 

the rigorous mathematics involved. 

Subsequently Finsterwalder [6]; Vlasov [7] 

and Pasternak [8], by ignoring the effects of 

longitudinal bending moment, shear forces 

and torques arrived at the so-called semi-

moment theory. This method which has been 

experimentally verified is found to give 

acceptable results for cylindrical shells whose 

ratio of length to diameter ranges between 2 

and 8 [9].  

Shells of revolution, a very important 

class of thin shells, have many technical 

applications in engineering. [1]. H. Reissner 

[10] presented a classical formulation of the 

bending problems for a shell of revelation and 

studied a spherical shell under axisymmetric 

bending. He reduced the differential equations 
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of a spherical shell to a convenient form and 

then applied the asymptotic method for their 

integration.  

Pasternak [8] later showed that when the 

load on a circular cylindrical shell is 

axisymmetric, the stresses and strains are 

functions of only one variable along the axis 

of the cylinder. The differential equation of 

equilibrium of the shell in this case reduces to 

a forth order differential equation equivalent 

to that of Bean on Elastic Foundation (BEF). 

This latter equation will  be analyzed here by 

means of Laplace transformation to obtain the 

displacement function.  

Laplace transformation is widely used in 

Engineering to solve various differential 

equations. Few applications of this method 

are the solution of the equation that describes 

the variation of the charge in a capacitor, the 

equation of variation of concentration of 

solids in sewage sludge etc. [11].  

An abundant literature is available on the 

use of numerical methods, specially the finite 

element method, for the analysis of 

cylindrical shells [12]; but recent studies have 

shown the great dangers of using numerical 

modeling without a sufficient deep 

understanding of the effects of choosing 

different analysis options [13]. Thus the use 

of exact analytical methods, such as Laplace 

transformation, in the analysis of cylindrical 

shells cannot be overemphasized.  

 

2.  Differential Equation of Equilibrium 

The equations of equilibrium of a cylindrical 

shell according to the semi-moment theory are 

[9]: 
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where x, y and z axes at a given point O of the 

middle surface are taken in the directions of 

the axis of the cylinder, the tangent to the 

circumference, and the normal to the middle 

surface of the shell respectively; X, Y, and Z 

are the components of the transverse 

distributed load in x, y, and z directions 

respectively; u, v, and w are the displacement 

components in x, y, and z directions 

respectively; 

h is the thickness of the shell;  

E is Young modulus of the material;  

R is the radius of the cylinder; 

and  is Poisson’s ratio. 

On the assumptions that (i) the middle 

surface of the shell is inextensible in y – 

direction such that   v =0, and (ii) the normal 

force Nx acting on the transverse section of 

the shell is neglected, Pasternak arrived at the 

following relations:  
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N is the hoop tension; 

 S is the membrane shearing force;  

Mx is the longitudinal moment; and 

M is the transverse moment.  
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Substituting the above relations into equation 

(3), we obtain: 
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q is the intensity of transverse load.    

Equation (9) is due to Pasternak [8] and is 

only applicable to cylindrical shell subject to 

axisymmetric loading i.e. stresses and strains 

are constant along the circumferential section. 

One of the critical conditions examined 

during the design of buried reservoirs, is 

when they are empty. In this case, the 

transverse load q will consist of only the earth 

pressure. It follows that:  

)( xLKq a 

 
Fig. 1: Underground reservoir subjected to earth 

pressure 

 

where the distance x is measured vertically 

from the base, while L stands for the height of 

the reservoir;  

Ka = (1 – sinφ) / (1 + sinφ) is the Rankine 

active earth pressure coefficient; φ is the 

angle of internal friction of the soil; γ is 

specific weight of the retained soil.  

Equation (9) can thus be written as:  
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3. Representation of the ODE inTerms of 

“s” Parameter. 

Laplace transformation is next applied to the 

various terms in equation (10):  
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derivatives of w with respect to x 

respectively.    

Substituting where appropriate equations 

(11), (12) and (13) and collecting like terms, 

we have that:  
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Making )(sw  subject of the formula in the 

equation above, we obtain:  
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4. Application of Greenwich Contour 

Theorem to the Determination of the 

Laplace Inverse.             

Having a close look at equation (15), it is 

found out that the governing equation has 

been reduced to a function of “s” parameter. 

Equation (15) is known as subsidiary 

equation. The inverse transform of the 

subsidiary equation will yield the solution 

w(x). In the absence of any boundary 

conditions we shall utilize the Greenwich 

contour formula for this purpose.  

In general, the inverse of a Laplace 

Transformation is defined by means of 

Greenwich contour or complex integral as: 

[10]  
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where c is the Greenwich contour region.  

   
c

ds  is the close integral.     

From residue theorem, the close integral 

equals the summation of the residues obtained 

within the Greenwich contour region.  

Let equation (15) be written as:  
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Applying inverse transformation to equation 

(16) gives:  
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Equation (17) will be analyzed term by term.  
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equation (21) becomes:  
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By the residue theorem, w1(x) equals the sum 

of the residues at the poles of ℮
sx

w1(s) within 

the contour. The residue is obtained by the 

evaluation of the expression:  
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where k = order of pole; f(s) is the function 

and so is the pole or point of discontinuity. 

For equation (22), the poles are:  

i2 ; i2 ; i2  and .2i  

For so = ,2i the residue R1 is given by:  
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For so = i2 , the residue R2 is:   
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For so = i2 , the residue R3 will be: 
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For so = ,2i the residue  R4 is given by: 
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The sum of R, R2, R3 and R4 gives w1(x):  

W1 (x) = R1 + R2 + R3 + R4               (28)  

Substituting R1, R2, R3 and R4 into equation 

(28), we obtain:  
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In a similar manner, making use of the 

residue theorem, we obtain the expressions 

for w2(x) and w3(x) as follows:  
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Substituting equations (29); (30) and (31) into 

equation (17) we obtain:  
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Noting that:  
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which can be better written as: 
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where 311 EEA  ; 422 EEA  ; 

313 EEA  ; and 424 EEA  . 

Equation (33) above represents the solution of 

equation (10) thus the displacement function 

which we are solving for.  

 

5. Discussion 

Previous works [14, 15] have used the 

classical method to solve the fourth order 

differential equation (10). They arrived at the 

following solution: 

)34(
)(

sinsinhcossinh

sincoshcoscosh)(

2

43

21

Et

xLaK

xxCxxC

xxCxxCxw

a 





  

where Ka, L, γ and E denote the same 

parameters as in equation (33); a stands for 

the radius of the cylinder and t for its 

thickness; C1, C2, C3 and C4 are constants to 

be determined using the boundary conditions.  

It is obvious that equations (33) and (34) 

are identical. It follows that the results 

obtained using the Laplace transformation 

method are in order with those given by the 

classical method. 

The Laplace transformation has the merit 

to be less tedious and more time saving than 

the classical approach in the sense that it is 

direct and does not implicate any splitting of 

the solution into homogeneous and particular 

solutions as the classical approach does.  

The Laplace transformation method has 

advantages over the numerical methods such 

as finite element and finite difference in the 

sense that it gives an exact solution at every 

point along the height of the reservoir.  

Other parameters such as bending 

moment, shear force, and hoop tension very 

essential for the design of circular cylindrical 

shell can be obtained by using the well known 

relationships between these parameters and 

the displacement function obtained in this 

work.  

 

5. Conclusion  

This study showed the agreement between the 

results obtained using Laplace transformation 

and those achieved by means of the classical 

method in the analysis of an underground 

circular cylindrical reservoir.  

The benefit of using the semi-moment 

theory in the analysis of thin cylindrical 

shells rather than employing strictly the 

membrane theory cannot be over-emphasized 
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as it provides more accurate equations for 

design purposes than the membrane theory.  

Finally Laplace Transformation which is 

very convenient in handling differential 

equations involving Dirac delta function can 

be recommended for the analysis of ring-

stiffened buried circular cylindrical reservoir.  
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