A MATHEMATICAL MODEL FOR PREDICTING THE FLEXURAL STRENGTH CHARACTERISTICS OF CONCRETE MIXES MADE WITH GRANITE CHIPPINGS

I. E. Umeonyiagu* , I. O. Onyeyili ${ }^{+}$
*Department of Civil Engineering, Anambra State University, Uli, Anambra State, Nigeria. +Department of Civil Engineering, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria.
E-mail: umeonyiaguikechukwu@yahoo.com

Abstract

Abakaliki, Ebonyi state of Nigeria produces most of the crushed-granite chippings used in the South-eastern part of the country. In this research work, these granite-chippings and fine aggregates from Amansea River in Anambra State of Nigeria were tested for their physical and mechanical properties based on BS 812: Parts 1\&2:1975. Using these aggregates, sixty concrete beams of dimensions 600 mm X 150 mm X 150 mm were made, cured and tested based on BS 1881:1983. Scheffe's $(4,2)$ lattice polynomial with regression equation was used to develop a mathematical model for predicting the flexural strength characteristics of concretes made with these aggregates. The mathematical model developed was $\hat{Y}=4.28 x_{1}+4.42 x_{2}+3.4 x_{3}+2.71 x_{4}+0.2 x_{1} x_{2}+0.04 x_{1} x_{3}-0.14 x_{1} x_{4}-0.08 x_{2} x_{3}$ - $0.3 x_{2} x_{4}+1.22 x_{3} x_{4}$. Finally, the student's t-test and the Fisher test were used to test the model's validity.

Keywords: Concrete, Flexural Strength, Scheffe, Granite-Chippings, Model

1. Introduction

1.1 Actual and Pseudo-Components

The requirement of the simplex that $x_{1}+x_{2}+x_{3}$ $+\mathrm{x}_{4}=1$ makes it impossible to use the normal mix ratios such as $1: 1: 2$, etc., at a given water/cement ratio. Hence, a transformation of the actual components (normal mix ratios) to meet this condition is unavoidable. The design matrix is shown in Table 1. $\left.\left.\mathrm{x}^{(\mathrm{i}}\right)_{1}, \mathrm{x}^{(\mathrm{i}}\right)_{2}$, $\left.x^{(i)}\right)_{3}$ and $x^{(i)}{ }_{4}$ are the pseudo-components for the ith experimental points. For any actual component Z , the pseudo-component (x) is given by
X = AZ
Where A is the inverse of Z matrix and
$\mathrm{Z}=\mathrm{BX}{ }^{\mathrm{T}}$
(2)

Where B is the inverse of Z matrix and X^{T} is the transpose of the matrix.

1.2 The Scheffe's (4, 2) Lattice Polynomial

Simplex is the structural representation of the line or planes joining the assumed positions of the constituent materials (atoms) of a mixture [1]. Scheffe [2] considered experiments with mixtures of which the property studied depended on the proportions of the components present but not on the quantity of the mixture. If a mixture has a total of q components and x_{i} be the proportion of the ith component in the mixture such that $x_{i} \geq 0(i=1,2 \ldots q)$, then
$x_{1}+x_{2}+x_{3}+\ldots \ldots \ldots+x_{q}=1$
Scheffe described mixture properties by reduced polynomials obtainable from eqn (4): $\hat{Y}=b_{0}+\sum b_{i} x_{i}+\sum b_{i j} x_{i} x_{j}+\sum b_{i j k} x_{i} x_{j} x_{k}+\sum b_{i 1, i} 2 \ldots i_{n}$ $x_{i 1} X_{i 2} x_{i 1} n$
Where ($1 \leq \mathrm{i} \leq \mathrm{q}, 1 \leq \mathrm{i} \leq \mathrm{j} \leq \mathrm{q}, 1 \leq \mathrm{i} \leq \mathrm{k} \leq \mathrm{q}$) respectively and b is constant coefficient.

PREDICTING FLEXURAL STRENGTH OF CONCRETE WITH GRANITE, I. E. Umeonyiagu, et al

Multiplying eqn. (3) by b_{0} and multiplying the outcome by $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}$ and x_{4} in turn and substituting into eqn. (4), we have:
$\hat{Y}=b_{0} x_{1}+b_{0} x_{2}+b_{0} x_{3}+b_{0} x_{3}+b_{0} x_{4}+b_{1} x_{1}+b_{2}$ $x_{2}+b_{3} \mathrm{X}_{3}+\mathrm{b}_{4} \mathrm{X}_{4}+\mathrm{b}_{12} \mathrm{x}_{1} \mathrm{x}_{2}+\mathrm{b}_{13} \mathrm{x}_{1} \mathrm{x}_{3}+\mathrm{b}_{14} \mathrm{x}_{1}$
$\mathrm{x}_{4}+\mathrm{b}_{23} \mathrm{X}_{2} \mathrm{X}_{3}+\mathrm{b}_{24} \mathrm{X}_{2} \mathrm{X}_{4}+\mathrm{b}_{34} \mathrm{X}_{3} \mathrm{X}_{4}+\mathrm{b}_{11}\left(\mathrm{x}_{1}-\mathrm{x}_{1} \mathrm{X}_{2}-\right.$ $\left.\mathrm{x}_{1} \mathrm{X}_{3}-\mathrm{x}_{1} \mathrm{X}_{4}\right)+\mathrm{b}_{22}\left(\mathrm{x}_{2}-\mathrm{x}_{1} \mathrm{X}_{2}-\mathrm{x}_{2} \mathrm{X}_{3}-\mathrm{x}_{2} \mathrm{X}_{4}\right)+$ $\mathrm{b}_{33}\left(\mathrm{x}_{3}-\mathrm{x}_{1} \mathrm{X}_{3}-\mathrm{x}_{2} \mathrm{X}_{3}-\mathrm{x}_{3} \mathrm{X}_{4}\right)+\mathrm{b}_{44}\left(\mathrm{x}_{4}-\mathrm{x}_{1} \mathrm{X}_{4}-\right.$ $\left.\mathrm{X}_{2} \mathrm{X}_{4}-\mathrm{x}_{3} \mathrm{X}_{4}\right)$
Re-arranging eqn. (5), we have
$\hat{\mathrm{Y}}=\sum \alpha_{i} x_{i}+\sum \alpha_{i j} x_{i} x_{j}$
$\alpha_{i j}=\mathrm{b}_{\mathrm{ij}}-\mathrm{b}_{\mathrm{ii}}+\mathrm{b}_{\mathrm{jj}}$ and $\alpha_{i}=\mathrm{b}_{0}+\mathrm{b}_{\mathrm{i}}+\mathrm{b}_{\mathrm{ii}}$
Let the response function to the pure components (x_{i}) be denoted by y_{i} and the response to a $1: 1$ binary mixture of components i and j be $y_{i \mathrm{ij}}$. From eqn (6), it can be written that
$\sum \propto_{i} \mathrm{X}_{\mathrm{i}}=\Sigma \mathrm{y}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}$
Where ($\mathrm{i}=1$... 4)
Evaluating y_{i}, for instance gives:
$\mathrm{y}_{\mathrm{i}}=\propto_{\mathrm{I}}$
Also evaluating $y_{i j}$, gives in general the equations of the form
$\propto_{i j}=4 y_{i j}-2 y_{i}-2 y_{j}$
For the Scheffe's $(4,2)$ lattice polynomial, that is eqn. (6) becomes:

$$
\begin{align*}
\hat{Y}= & y_{1} x_{1}+y_{2} x_{2}+y_{3} x_{3}+y_{4} x_{4}+\left(4 y_{12}-2 y_{1}-2 y_{2}\right) \\
& x_{1} x_{2}+\left(4 y_{13}-2 y_{1}-2 y_{3}\right) x_{1} x_{3}+\left(4 y_{14}-2 y_{1}\right. \\
& \left.-2 y_{4}\right) x_{1} x_{4}+\left(4 y_{23}-2 y_{2}-2 y_{3}\right) x_{2} x_{3}+ \\
& \left(4 y_{24}-2 y_{2}-2 y_{4}\right) x_{2} x_{4}+\left(4 y_{34}-2 y_{3}-2 y_{4}\right) \\
& x_{3} x_{4} \tag{11}
\end{align*}
$$

1.2 The student's \boldsymbol{t}-test

The unbiased estimate of the unknown variance $S_{Y}{ }^{2}$ is given by Biyi [3]
$\mathrm{S}_{Y}^{2}=\frac{\sum\left(\mathrm{y}_{\mathrm{i}}-\mathrm{Y}\right)^{2}}{\mathrm{n}-1}$
If $\mathrm{a}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}\left(2 \mathrm{x}_{\mathrm{i}}-1\right), \mathrm{a}_{\mathrm{ij}}=4 \mathrm{x}_{\mathrm{i}} \mathrm{x}_{\mathrm{j}}$; for $(1 \leq \mathrm{i} \leq \mathrm{q})$ and $(1 \leq i \leq j \leq q)$ respectively. Then,
$\varepsilon=\Sigma \mathrm{a}^{2}{ }_{\mathrm{i}}+\Sigma \mathrm{a}^{2}{ }_{\mathrm{ij}}$
where ε is the error of the predicted values of the response. The t-test statistic is given by Biyi [3]:
$\mathrm{t}=\frac{\Delta \mathrm{Y}}{\mathrm{S}_{\mathrm{Y}}} \frac{\sqrt{\mathrm{n}}}{\sqrt{1+\varepsilon}}$
where $\Delta \mathrm{Y}=\mathrm{Y}_{0}-\mathrm{Y}_{\mathrm{t}} ; \mathrm{Y}_{0}=$ observed value, $\mathrm{Y}_{\mathrm{t}}=$ theoretical value; $n=$ number of replicate observations at every point; $\varepsilon=$ as defined in eqn.(13).

1.3 The fisher's test

The Fishers-test statistic is given by $\mathrm{F}=\mathrm{S}_{1}{ }^{2} / \mathrm{S}_{2}{ }^{2}$
The values of S_{1} (lower value) and S_{2} (upper value) are calculated from eqn. (12).

2. Materials and method

2.1 Preparation, Curing and Testing of Beam Samples

The aggregates were sampled in accordance with the methods prescribed in BS 812: Part 1:1975 [4]. The test sieves were selected according to BS 410:1986 [5]. The water absorption, the apparent specific gravity and the bulk density of the coarse aggregates were determined following the procedures prescribed in BS 812: Part 2: 1975 [6]. The Los Angeles abrasion test was carried out in accordance with ASTM. Standard C131: 1976 [7]. The sieve analyses of the fine and coarse aggregate samples satisfied BS 882:1992 [8]. The sieving was performed by a sieve shaker. The water used in preparing the experimental samples satisfied the conditions prescribed in BS 3148:1980 [9]. The required concrete specimens were made in threes in accordance with the method specified in BS 1881: 109:1983 [10].These specimens were cured for 28 days in accordance with BS 1881: Part 111: 1983 [11]. The testing was done in accordance with BS 1881: Part 118:1983 [12] using flexural testing machine.

2.2 Testing the Fit of the Quadratic Polynomials

The polynomial regression equation developed was tested to see if the model agreed with the actual experimental results. The null hypothesis (that there was agreement between the experimentallyobserved data and the theoretically-obtained data) was denoted by H_{0} and the alternative (that there was no agreement between these two) by H_{1}.

3. Results and discussion
 3.1 Physical and Mechanical Properties of Aggregates

The maximum aggregate size for the granite chipping was 20 mm and 2 mm for the fine sand. The granite chippings had water absorption of 2.7%, moisture content of 44.2%, apparent specific gravity of 2.26 , Los

PREDICTING FLEXURAL STRENGTH OF CONCRETE WITH GRANITE, I. E. Umeonyiagu, et al

Angeles abrasion value of 22% and bulk density of $2072.4 \mathrm{~kg} / \mathrm{m}^{3}$.

3.2 The Regression Equation for the Flexural Strength Tests Results

Applying the responses (average flexural strengths) in determining the coefficients of the $(4,2)$ lattice polynomial to eqns. (9) and (10), we had $\alpha_{1}=4.28, \alpha_{2}=4.42, \alpha_{3}=3.4$, $\alpha_{4}=2.71, \alpha_{12}=0.2, \alpha_{13}=0.04, \alpha_{14}=-0.14, \alpha_{23}=-$ $0.08, \alpha_{24}=-0.3, \alpha_{34}=1.22$. Thus, from
eqn.(11): $\hat{Y}=4.28 x_{1}+4.42 x_{2}+3.4 x_{3}+2.71 x_{4}+$ $0.2 \mathrm{x}_{1} \mathrm{x}_{2}+0.04 \mathrm{x}_{1} \mathrm{x}_{3}-0.14 \mathrm{x}_{1} \mathrm{x}_{4}-0.08 \mathrm{x}_{2} \mathrm{x}_{3}-0.3$ $\mathrm{x}_{2} \mathrm{x}_{4}+1.22 \mathrm{x}_{3} \mathrm{x}_{4}$. This is the mathematical model for the response prediction of the flexural strength characteristics of the granite chippings concrete, based on Scheffe's (4, 2) polynomial. Y represents the flexural strength of the concrete.

Table 1 Design Matrix for Scheffe's (4, 2) Lattice Polynomial
Legend: $z_{1}=$ water $/$ cement ratio; $z_{2}=$ Cement; $z_{3}=$ Fine aggregate; $z_{4}=$ Coarse aggregate

Pseudo-components					Actual components			
S/N	x_{1}	x_{2}	X_{3}	X_{4}	z_{1}	z_{2}	Z_{3}	Z_{4}
1	1	0	0	0	0.6	1	1.5	2
2	0	1	0	0	0.5	1	1	2
3	0	0	1	0	0.55	1	2	5
4	0	0	0	1	0.65	1	3	6
5	$1 / 2$	1/2	0	0	0.55	1	1.25	2
6	$1 / 2$	0	1122	0	0.575	1	1.75	3.5
7	$1 / 2$	0	0	1/2	0.625	1	2.25	4
8	0	1/2	1/2	0	0.525	1	1.5	3.5
9	0	1/2	0	$1 / 2$	0.575	1	2	4
10	0	0	$1 / 2$	1/2	0.6	1	2.5	5.5
Control								
11	$1 / 2$	1/4	1/4	0	0.5625	1	1.5	2.75
12	$1 / 2$	0	$1 / 4$	$1 / 4$	0.6	1	2.0	3.75
13	0	1/2	$1 / 4$	$1 / 4$	0.55	1	1.75	3.75
14	$1 / 4$	$1 / 4$	1/4	$1 / 4$	0.575	1	1.875	3.75
15	3/4	$1 / 4$	0	0	0.575	1	1.375	2
16	3/4	0	1/4	0	0.5875	1	1.625	2.75
17	3/4	0	0	$1 / 4$	0.6125	1	1.875	3.0
18	0	$3 / 4$	1/4	0	0.5125	1	1.25	2.75
19	0	3/4	0	$1 / 4$	0.5375	1	1.5	3.0
20	0	0	$3 / 4$	$1 / 4$	0.5850	1	2.25	5.25

Table 2: Flexural Strength Tests Results and Sample Variances, S_{i}^{2}, for Crushed -Granite Concrete, based on Scheffe's $(4,2)$ Simplex Lattices

S/N0	Replication	Responses $y_{i}\left(N / \mathrm{mm}^{2}\right)$	Response symbol	Σy_{i}	$\Sigma y_{i}{ }^{2}$	ў	$\left(\Sigma y_{i}\right)^{2}$	$\mathbf{S i}^{\mathbf{2}}$
1	$\begin{aligned} & \text { 1A } \\ & \text { 1B } \\ & 1 \mathrm{C} \end{aligned}$	$\begin{aligned} & 4.15 \\ & 4.35 \\ & 4.34 \end{aligned}$	y_{1}	12.84	54.98	4.28	164.87	0.012
2	$\begin{aligned} & 2 \mathrm{~A} \\ & 2 \mathrm{~B} \\ & 2 \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & 4.30 \\ & 4.56 \\ & 4.40 \end{aligned}$	y_{2}	13.26	58.64	4.42	175.83	0.015

PREDICTING FLEXURAL STRENGTH OF CONCRETE WITH GRANITE, I. E. Umeonyiagu, et al

S/NO	Replication	Responses $y_{i}\left(N / \mathrm{mm}^{2}\right)$	Response symbol	Σy_{i}	$\Sigma y_{i}{ }^{2}$	ў	$\left(\Sigma y_{i}\right)^{2}$	$\mathbf{S i}^{2}$
3	$\begin{aligned} & \text { 3A } \\ & \text { 3B } \\ & \text { 3C } \end{aligned}$	$\begin{aligned} & 3.00 \\ & 3.45 \\ & 3.75 \end{aligned}$	уз	10.2	34.97	3.4	104.04	0.145
4	$\begin{aligned} & 4 \mathrm{~A} \\ & 4 \mathrm{~B} \\ & 4 \mathrm{C} \end{aligned}$	$\begin{aligned} & 2.68 \\ & 2.68 \\ & 2.77 \end{aligned}$	y_{4}	8.13	22.04	2.71	66.10	0.003
5	$\begin{aligned} & 5 \mathrm{~A} \\ & 5 \mathrm{~B} \\ & 5 \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & 4.60 \\ & 4.25 \\ & 4.35 \\ & \hline \end{aligned}$	y_{12}	13.2	58.15	4.4	174.24	0.035
6	$\begin{aligned} & 6 \mathrm{~A} \\ & 6 \mathrm{~B} \\ & 6 \mathrm{C} \end{aligned}$	$\begin{aligned} & 3.82 \\ & 3.95 \\ & 3.78 \end{aligned}$	Y13	11.55	44.48	3.85	133.40	0.007
7	$\begin{aligned} & 7 \mathrm{~A} \\ & 7 \mathrm{~B} \\ & 7 \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & 3.50 \\ & 3.60 \\ & 3.28 \\ & \hline \end{aligned}$	Y14	10.383	35.97	3.46	107.74	0.028
8	$\begin{aligned} & \text { 8A } \\ & \text { 8B } \\ & \text { 8C } \end{aligned}$	$\begin{aligned} & 3.80 \\ & 3.79 \\ & 4.08 \\ & \hline \end{aligned}$	Y23	11.67	45.45	3.89	136.19	0.027
9	$\begin{aligned} & 9 \mathrm{~A} \\ & 9 \mathrm{~B} \\ & 9 \mathrm{C} \end{aligned}$	$\begin{aligned} & 3.44 \\ & 3.58 \\ & 3.45 \\ & \hline \end{aligned}$	Y24	10.47	36.55	3.49	109.62	0.005
10	$\begin{aligned} & 10 \mathrm{~A} \\ & 10 \mathrm{~B} \\ & 10 \mathrm{C} \end{aligned}$	$\begin{aligned} & 3.40 \\ & 3.52 \\ & 3.16 \end{aligned}$	У34	10.083	33.94	3.36	101.61	0.035
CONTROL								
11	$\begin{aligned} & 11 \mathrm{~A} \\ & 11 \mathrm{~B} \\ & 11 \mathrm{C} \end{aligned}$	$\begin{aligned} & 4.22 \\ & 4.35 \\ & 4.06 \end{aligned}$	C_{1}	12.635	53.21	4.21	159.52	0.018
12	$\begin{aligned} & 12 \mathrm{~A} \\ & 12 \mathrm{~B} \\ & 12 \mathrm{C} \end{aligned}$	$\begin{aligned} & 3.82 \\ & 3.75 \\ & 3.23 \end{aligned}$	C_{2}	10.8	39.09	3.6	116.64	0.105
13	$\begin{aligned} & 13 \mathrm{~A} \\ & 13 \mathrm{~B} \\ & 13 \mathrm{C} \end{aligned}$	$\begin{aligned} & 3.85 \\ & 3.90 \\ & 3.86 \end{aligned}$	C_{3}	11.61	44.93	3.87	134.79	0.00
14	$\begin{aligned} & 14 \mathrm{~A} \\ & 14 \mathrm{~B} \\ & 14 \mathrm{C} \end{aligned}$	$\begin{aligned} & 3.95 \\ & 3.78 \\ & 3.76 \end{aligned}$	C4	11.49	44.03	3.83	132.02	0.012
15	$\begin{aligned} & 15 \mathrm{~A} \\ & 15 \mathrm{~B} \\ & 15 \mathrm{C} \end{aligned}$	$\begin{aligned} & \hline 4.00 \\ & 4.50 \\ & 4.49 \end{aligned}$	C_{5}	12.995	56.41	4.33	168.74	0.082
16	$\begin{aligned} & \hline 16 \mathrm{~A} \\ & 16 \mathrm{~B} \\ & 16 \mathrm{C} \end{aligned}$	$\begin{aligned} & 4.10 \\ & 3.85 \\ & 3.75 \end{aligned}$	C_{6}	11.7	45.70	3.9	136.89	0.035
17	$\begin{aligned} & 17 \mathrm{~A} \\ & 17 \mathrm{~B} \\ & 17 \mathrm{C} \end{aligned}$	$\begin{aligned} & 3.90 \\ & 3.57 \\ & 4.14 \end{aligned}$	C_{7}	11.61	45.09	3.87	134.79	0.08
18	$\begin{aligned} & 18 \mathrm{~A} \\ & 18 \mathrm{~B} \\ & 18 \mathrm{C} \end{aligned}$	$\begin{aligned} & \hline 4.20 \\ & 4.80 \\ & 4.20 \\ & \hline \end{aligned}$	C8	13.2	58.32	4.4	174.24	0.12
19	$\begin{aligned} & 19 \mathrm{~A} \\ & 19 \mathrm{~B} \\ & 19 \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 4.10 \\ & 3.95 \\ & 3.65 \end{aligned}$	C9	11.7	45.74	3.9	136.89	0.055

PREDICTING FLEXURAL STRENGTH OF CONCRETE WITH GRANITE, I. E. Umeonyiagu, et al

S/NO Replication	Responses $\mathbf{y}_{\mathbf{i}}\left(\mathbf{N} / \mathbf{m m}^{\mathbf{2}}\right)$	Response symbol	$\boldsymbol{\Sigma} \mathbf{y}_{\mathbf{i}}$	$\boldsymbol{\Sigma \mathbf { y i } _ { \mathbf { i } } { } ^ { \mathbf { 2 } }}$	$\check{\mathbf{y}}$	$\left(\boldsymbol{\Sigma} \mathbf{y}_{\mathbf{i}} \mathbf{)}^{\mathbf{2}}\right.$	$\mathbf{S}_{\mathbf{i}}{ }^{\mathbf{2}}$	
20	20 A	3.25						
	20 B	3.60	C_{10}	10.3235 .56	3.44	106.50	0.03	
	20 C	3.47						

Table 3a: Regression Analysis of the Flexural Strength Tests Results

Regression Statistics	
Multiple R	0.99974617
R Square	0.9994924
Adjusted R Square	0.83257193
Standard Error	0.11475943
Observations	10

Table 3b: Analysis of variance

ANOVA					
	df	SS	MS	F	Significance F
Regression	4	155.5902816	38.89757	2953.559	$1.28792 \mathrm{E}-08$
Residual	6	0.079018365	0.01317		
Total	10	155.6693			

Table 3c: Regression Statistics

REGRESSION STATISTICS						
	Coefficients	Standard Error	t Stat	P-value	Lower 95\%	Upper 95\%
Intercept	0	\#N/A	\#N/A	\#N/A	\#N/A	\#N/A
x_{1}	4.1833	0.0844	49.541	$4.54 \mathrm{E}-09$	3.9766	4.3899
x_{2}	4.5405	0.1056	42.98	$1.06 \mathrm{E}-08$	4.2820	4.7989
x_{3}	3.7303	0.1546	24.12	$3.33 \mathrm{E}-07$	3.3519	4.1086
x_{4}	2.5525	0.2679	9.52	$7.63 \mathrm{E}-05$	1.8969	3.2080

Legend $\mathrm{df}=$ degree of freedom, $\mathrm{SS}=$ sum of squares, $\mathrm{MS}=$ mean of squares, $\mathrm{F}=\mathrm{F}$-statistic, \#N/A = insignificant value, ANOVA = analysis of variance.

3.3 Regression Analysis of the Flexural Strength Tests Results for the granitechippings Concrete

Table 3 shows the summary output of the regression analysis of the flexural strength tests results of the granite-chippings concrete. The coefficient of determination, r^{2} $=0.9994$ shows a very strong relationship between the independent variables ($\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}$, x_{4}) and the dependent variable, \hat{Y}. Since the F -observed value of 2953.559 is very high; it is extremely unlikely that an F value this high occurred by chance. From the Student's t distribution table, t critical is 3.69 . The absolute values of the t stat are greater than this t critical. This shows that all the variables used in the regression equation are useful in predicting the response. The P -values being very small means that the experimentallyobtained values and the predicted values of \hat{Y}
have variances that are not significantly different. Thus, the regression equation for the prediction of the flexural strength characteristics of the granite-chippings concrete is valid.

3.3 Fit of the Polynomial

The polynomial regression equation developed i.e., $\hat{Y}=4.28 \mathrm{x}_{1}+4.42 \mathrm{x}_{2}+3.4 \mathrm{x}_{3}+$ $2.71 x_{4}+0.2 x_{1} x_{2}+0.04 x_{1} x_{3}-0.14 x_{1} x_{4}-0.08$ $x_{2} x_{3}-0.3 x_{2} x_{4}+1.22 x_{3} x_{4}$, was tested to see if the model agreed with the actual experimental results. There was no significant difference between the experimental and the theoretically expected results. The null hypothesis, H_{0} was satisfied.

$3.4 \boldsymbol{t}$-value from table

The t-student's test had a significance level, α $=0.05$ and $\mathrm{t}_{\alpha /(\mathrm{ve})}=\mathrm{t}_{0.005(9)}=3.69$. This was

PREDICTING FLEXURAL STRENGTH OF CONCRETE WITH GRANITE, I. E. Umeonyiagu, et al
greater than any of the t values calculated in table 4. Therefore, the regression equation for the crushed granite chippings concrete was adequate.

3.5 F-statistic analysis

Table 5 shows the F - statistic for the controlled points. The sample variances $S_{1}{ }^{2}$ and $S_{2}{ }^{2}$ for the two sets of data were not significantly different. It implied that the
error(s) from experimental procedure were similar and that the sample variances tested were estimates of the same population variance. Based on eqn. (12), we had that $S_{K}{ }^{2}$ $=0.82705 / 9=0.0919, \mathrm{~S}_{\mathrm{E}}^{2}=0.604959 / 9=$ 0.06722 \& $\mathrm{F}=0.0919 / 0.06722=1.367$. From Fisher's table, $\mathrm{F}_{0.95(9,9)}=3.3$, hence the regression equation for the flexural strength of the crushed-granite concrete was adequate.

Table 4: t-Statistic for the controlled Points, granite-chippings concrete flexural test, based on Scheffe's $(4,2)$ polynomial

Response symbol	$\mathrm{Y}_{\mathrm{K}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	$\mathrm{Y}_{\mathrm{E}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	$\mathrm{Y}_{\mathrm{K}}-\breve{\mathrm{Y}}_{\mathrm{K}}$	$\mathrm{Y}_{\mathrm{E}}-\breve{\mathrm{Y}}_{\mathrm{E}}$	$\left(\mathrm{Y}_{\mathrm{K}}-\breve{\mathrm{Y}}_{\mathrm{K}}\right)^{2}$	$\left(\mathrm{Y}_{\mathrm{E}}-\breve{\mathrm{Y}}_{\mathrm{E}}\right)^{2}$
C_{1}	4.21	4.12	0.275	0.19975	0.075625	0.0399
C_{2}	3.6	3.73125	-0.335	-0.189	0.112225	0.035721
C_{3}	3.87	3.76625	-0.065	-0.154	0.004225	0.023716
C_{4}	3.83	3.76125	-0.105	-0.159	0.011025	0.025281
C_{5}	4.33	4.3525	0.395	0.43225	0.156025	0.18684
C_{6}	3.9	4.0675	-0.035	0.14725	0.001225	0.021683
C_{7}	3.87	3.86125	-0.065	-0.059	0.004225	0.003481
C_{8}	4.4	4.15	0.465	0.22975	0.216225	0.052785
C_{9}	3.9	3.93625	-0.035	0.016	0.001225	0.000256
C_{10}	3.44	3.45625	-0.495	-0.464	0.245025	0.215296
Σ	39.35	39.2025			0.82705	0.604959

 value; $\hat{Y}=$ theoretical value; $\mathrm{t}=\mathrm{t}$-test statistic.

Table 5: F-statistic for the controlled points, granite-chipping concrete flexural test, based on Scheffe's $(4,2)$ polynomial

Table 5a: Response symbol for $C_{1}: \varepsilon=0.6093, \breve{y}=4.21 \mathrm{~N} / \mathrm{mm}^{2}, \hat{Y}=4.12 \mathrm{~N} / \mathrm{mm}^{2}$ and $t=0.456923$

i	j	a_{i}	a_{ij}	$\mathrm{a}_{\mathrm{i}}{ }^{2}$	$\mathrm{a}_{\mathrm{ij}}{ }^{2}$
1	2	0	0.5	0	0.25
1	3	0	0.5	0	0.25
1	4	0	0	0	0
2	3	-0.12	0.25	0.0156	0.0625
2	4	-0.12	0	0.0156	0
3	4	-0.12	0	0.0156	0
4	-	0	-	0	-
			\sum	0.0468	0.5625

PREDICTING FLEXURAL STRENGTH OF CONCRETE WITH GRANITE, I. E. Umeonyiagu, et al
Table YY: Response symbol for $C_{2}-C_{10}$

RESPONSE SYMBOL	ε	$\check{\mathrm{Y}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	$\hat{\mathrm{Y}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	t
C_{2}	0.4842	3.6	3.73125	-0.72251
C_{3}	0.7343	3.87	3.76625	0.488766
C_{4}	0.5939	3.83	3.76125	0.35241
C_{5}	0.2893	4.33	4.3525	-0.14258
C_{6}	0.8593	3.9	4.0675	-0.73604
C_{7}	0.5937	3.87	3.86125	0.044858
C_{8}	0.4833	4.4	4.15	1.377045
C_{9}	0.6405	3.9	3.93625	-0.18054
C_{10}	0.4697	3.44	3.45625	-0.09034

Legend: $\check{y}=\Sigma y / n$ where y is the response and n, the number of observed data (responses), Y_{k} is the experimental value (response), Y_{E} is the expected or theoretically calculated value (response)

4. Conclusion

The strengths (responses) of concrete were a function of the proportions of its ingredients: water, cement, fine aggregate and coarse aggregates. Since the predicted strengths by the model were in total agreement with the corresponding experimentally -observed values, the null hypothesis was satisfied. This meant that the model equation was valid.

References

1. Jackson, N. and Dhir, R. K. Civil Engineering Material, Macmillan ELBS, Hampshire RG21 2XS, England, 1988.
2. Scheffe, H., Experiments with mixtures, Royal Statistical Society Journal, Ser. B, Vol. 20, 1958, pp340-360.
3. Biyi, A., Introductory Statistics, Abiprint \& Pak Ltd., Ibadan, 1975.
4. British Standard 812: Part 1 Sampling, shape, size and classification. Methods for sampling and testing of mineral aggregates, sands and fillers. British Standards Institution Publication, London, 1975.
5. British Standard 410 Specification for test sieves. British Standards Institution Publication, London, 1986.
6. British Standard 812: Part 2 Methods for sampling and testing of mineral aggregates, sands and fillers. Physical properties. British Standards Institution Publication, London, 1975.
7. ASTM. Standard C 131 Tests for Resistance to Abrasion of Small Size Coarse Aggregate by Use of the Los Angeles Machine. American Society for Testing and Materials Publication, New York, 1976.
8. British Standard 882 Specification for aggregates from natural sources for concrete. British Standards Institution Publication, London, 1992.
9. British Standard 3148 Tests for water for making concrete. British Standards Institution Publication, London, 1980.
10. British Standard 1881: Part 109 Method for making test beams from fresh concrete. British Standards Institution Publication, London, 1983.
11. British Standard 1881: Part 111 Method of normal curing of test specimens $\left(20^{\circ} \mathrm{C}\right)$. British Standards Institution Publication, London, 1983.
12. British Standard 1881: Part 118. Method for determination of flexural strength. British Standards Institution Publication, London, 1983.
