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1111....    INTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTION    

One of the most significant recent advances in power 

electronics is the multilevel inverter. Using this 

concept, the power conversion is performed with 

enhanced power quality. In this scenario

clamped, flying-capacitor, and cascade

multilevel inverters were proposed 

traditional three-level inverters in medium and high

voltage level applications such as motor drives and 

static var compensators [1]–[10]. Akagi, 

one way of classifying multilevel inverters, similar to 

the classification by Lai and Peng [12]. 

Three different basic multilevel inverter topologies 

are the neutral point clamped (NPC) or diode clamped 

[1], the flying capacitor (FC) or capacitor clamped [3] 

and the cascaded H-bridge (CHB) [5]. The main 

drawbacks of NPC inverter topology, with a level

number higher than 3, is the necessity of a capacitor 

voltage balancing control circuit and the high voltage 

across the clamped diodes. The FC multilevel inverter 

uses flying capacitors as clamping devices. These 

topologies have several attractive propert

comparison with NPC inverters, including the 

advantages of the transformerless operation and 
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One of the most significant recent advances in power 

electronics is the multilevel inverter. Using this 

the power conversion is performed with 

enhanced power quality. In this scenario, the diode-

capacitor, and cascaded H-bridge 

were proposed to replace the 

level inverters in medium and high-

voltage level applications such as motor drives and 

Akagi, [11], shows 

erters, similar to 

].  

Three different basic multilevel inverter topologies 

are the neutral point clamped (NPC) or diode clamped 

[1], the flying capacitor (FC) or capacitor clamped [3] 

bridge (CHB) [5]. The main 

drawbacks of NPC inverter topology, with a level 

number higher than 3, is the necessity of a capacitor 

voltage balancing control circuit and the high voltage 

across the clamped diodes. The FC multilevel inverter 

uses flying capacitors as clamping devices. These 

topologies have several attractive properties in 

comparison with NPC inverters, including the 

advantages of the transformerless operation and 

redundant phase leg states that allow the switching 

stresses to be equally distributed between 

semiconductor switches [13]. But these inverters 

require excessive number of storage capacitors for 

high voltage steps. A double FC multi

been presented in [14]. This topology has been 

implemented by adding two low

to the conventional configuration of the FC multilevel 

inverter. The main advantages of the presented 

inverter in comparison with the FC multilevel inverter 

are the doubling of the rms value of the output voltage 

and the number of voltage steps and the cancelling of 

the midpoint of the dc source. But two additional 

switches must operate at the peak of the output 

voltage. This restricts high voltage applications of this 

inverter. The series connection of several basic H

bridge inverters results in the multilevel cascade

bridge (CHB) inverter configurations, which have 

attractive attributes, [15] 

topology is proper option for high level applications 

from the point of view of modularity and simplicity of 

control.  

In recent years, several topologies with various 

control techniques have been presented
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The main advantages of the presented 

inverter in comparison with the FC multilevel inverter 
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multilevel inverters [19]-[23]. Moreover, asymmetric 

and/or hybrid multilevel inverters have been 

presented in [24], [25]. In asymmetric topologies, the 

values of the dc voltage source magnitudes are 

unequal or change dynamically [26]. These converters 

reduce the size and cost of the converter and improve 

the reliability, since fewer semiconductors and 

capacitors are employed [27]. The hybrid multilevel 

converters are composed of different multilevel 

topologies with unequal values of dc voltage sources 

and different modulation techniques and/or 

semiconductor technologies. With appropriate 

selection of switching devices, the converter cost is 

significantly reduced. But, the application of different 

multilevel topologies results in total loss of modularity 

and produces problems with switching frequency and 

restrictions on the modulation and control method 

[28].  

One of the salient factors that determine the 

performance of cascaded multilevel inverters is their 

control techniques. These control strategies are based 

on the following conventional methods: sinusoidal 

PWM (SPWM) extended to single and multiple carrier 

arrangements, space-vector PWM (SVPWM), non-

sinusoidal carrier PWM, selective harmonic 

elimination PWM (SHEPWM), [29]-[44]. Application of 

these control techniques results in cascaded multilevel 

inverters synthesizing output voltages with very low 

Total Harmonic Distortion, THD. But they do not take 

into account that cascaded inverter cells should 

equally share the overall output power. 

 A typical case is seen in the conventional control of 

the CHB multilevel inverter topology whose 9-level 

power circuit is shown in figure 1. The output voltage 

and power profiles are shown in figures 2 and 3. 

Figure 3 clearly shows that different powers are 

drawn from different dc voltage sources. And also 

indicate that the cells are not actually modularized. As 

a result, there is then the need for the allocation of 

different rated power circuit components and dc 

sources to respective cascaded cells during the design 

process; thus, negating the proposed concept of 

cascading similar inverter cells with the same 

characteristics and power capabilities. Works done in 

[45] and [46] proposed switching strategies to balance 

the switching loss dissipation among the four switches 

in a given cell but not in all the constituting power 

switches of the cascaded system.  

Based on these technical backgrounds, this paper 

presents a control strategy, based on the single-carrier 

multilevel modulation technique, [47], which ensures 

equal power handling capability in CHB multilevel 

inverter modules. Besides, a sequential switching 

scheme is embedded in this proposed control method 

to overcome differential heating among the cascaded 

cells due to unequal power loss dissipation. In this 

control technique for the cascade structure, the 

voltage pulses made in different CHB inverter unit 

cells in a period rotate between these cells in a way 

that after n periods, all the cascaded modules receive 

the same average switching signals; where n is the 

number of cascaded unit cells.   

 
Figure 1: Configuration of 9-level cascade H-bridge 

multilevel inverter. 
 

In this article, four CHB inverter unit cells have been 

used to verify the performance of the proposed 

switching scheme. However, the proposed modulation 

strategy can equally be extended to any number of 

cascaded cells. Operational principles and switching 

functions are analyzed. Simulation and experimental 

results are presented to verify the validity of the 

proposed switching technique. 
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Figure 2: Voltage profile f the 9-level CHB inverter with the conventional design 

 

 
Figure 3: Power profile of the 9-level CHB inverter under the conventional control method 

 

3. PROPOSED PWM SWITCHING SCHEME3. PROPOSED PWM SWITCHING SCHEME3. PROPOSED PWM SWITCHING SCHEME3. PROPOSED PWM SWITCHING SCHEME    

Single carrier Sinusoidal PWM (SCSPWM) scheme is 

employed in the generation of the gating signals. Basic 

principle of the proposed switching strategy is to 

generate gating signals by comparing rectified 

sinusoidal modulating/reference signals, at the 

fundamental frequency, with only one triangular 

carrier wave at the desired switching frequency. 2n 

rectified sinusoidal modulating signals have the same 

fundamental frequency, fm, and amplitude, Am, with dc 

bias of Ac (peak-peak amplitude of the triangular 

carrier signal) as a difference between these signals, 

for k-level SCSPWM. If k is the number of voltage level 

synthesized, per half-cycle, the frequency and 

amplitude modulation indices expressions, [40], [48], 

are given as: 

)1(
m

c
f

f

f
M =  

)2(
)1( −

=
kA

A
M

c

m
a

 
Figure 4 shows the general structure of the proposed 

switching scheme for the cascaded multilevel inverter 

shown in Figure 1. It consists of the base switching 

signal, module signal equalizing generator and gating 

signal sequence generators. 
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3.1 Base Switching Signal Generator3.1 Base Switching Signal Generator3.1 Base Switching Signal Generator3.1 Base Switching Signal Generator

 

The Base Switching Signal Generator comprises of n 

modulators; each synthesizing the respective base 

firing pulses. Each base signal generator receives a 

common single-carrier triangular wave, T, a rectified 

reference signal, two common square wave signals at 

fundamental frequency and with 50% pulse width, a 

and b. PWM signals, ,4,3,2,1,, =ivu
ii

are obtained by 

the comparison of the reference waveform of each 

module with the carrier waveform. Considering the 

uppermost H-bridge inverter unit cell in figure 1, the 

logic expressions for the base signal 
44

vandu are: 
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where ABS is the mathematical/logical absolute value. 

Similar logic expressions can be derived for the base 

signals of the other cascaded modules. 
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Figure. 4: Switching patterns of the proposed modulation strategy. 
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3.23.23.23.2    Module Signal Equalizing GeneratorModule Signal Equalizing GeneratorModule Signal Equalizing GeneratorModule Signal Equalizing Generator    

Precisely, this generator ensures that in a particular 

H-bridge module, all the four power switches receive 

averagely equal gating pulses. In other words, 

equalization of switching/conduction losses among 

the power switches of a given H-bridge module is 

accomplished within this generator. Each sub-

generator is fed with the two corresponding PWM 

signals from the base switching signal generator and 

two common square wave signals at half the 

fundamental frequency and with 50% pulse width, c 

and d. Taking the uppermost H-bridge inverter unit 

cell in figure 1, the logic expressions for this generator 

corresponding to this module are:  

( )[ ] )5(..444 dacvuY ++=     

( )[ ] )6(..444 cadvuZ ++=  

    

3.3.3.3.3.3.3.3. Gating Signal Sequence GeneratorGating Signal Sequence GeneratorGating Signal Sequence GeneratorGating Signal Sequence Generator    

For long operating-time expectancy and also to 

modularize the inverter system, it is important to 

equally share the overall output power among the 

cascaded modules. This is the key issue the proposed 

modulation scheme in figure 3 covers. The sequence 

generator ensures that all similar generated switching 

signals in section 3.1, in the n cascaded modules, are 

made to appear in each of the gating pulses of all 

similar power switches in the cascaded structure in a 

well defined sequence. This generator is made up of n 

sub-generators and each of these sub-generators 

comprises of three Signal Sequencing Circuits. Each of 

the signal sequencing circuit is an array of logic AND 

and OR operations. Referring to figure 4, the inputs to 

this generator are: all the generated waveforms from 

the module signal equalizing generator in section 3.2, 

four square wave signals with 50% pulse width and at 

frequencies of
4

m
f

( A, B) and
8

m
f

( C, D). Considering 

figures 4, the input-output relations in each of the 

signal sequencing circuits for the 4th H-bridge cell can 

be derived from equations (6) and (8) as 
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Therefore, the switching patterns of the proposed 

modulation strategy are typified in figure 5.  

It can be observed from the proposed switching 

waveforms in figure 5 that the concept and 

implementation of proposed switching technique 

makes the average switching waveform of all the 

switches in the cascaded H-bridges to be the same. As 

a result, the four CHB inverter cells operate in a 

balanced condition with the same power-handling 

capability and switching losses. Moreover, it is 

interesting that at the elapse of every fundamental 

period, the sequence of output voltage synthesis in 

each of the four cascaded inverter cells is left-shifting; 

yet the overall cascaded inverter output voltage 

waveform remains the same. In other words, their 

respective synthesized output voltage waveforms are 

dynamically exchanging positions periodically, so that 

at the elapse of every fundamental period, 4th module 

becomes the third module, 3rd module becomes the 

2nd module, 2nd module becomes the first module 

and 1st module becomes the 4th module, as seen from 

the output terminals of the cascaded inverter units. 

 

4. SIMULATION AND EXPERIMENTAL RESULTS4. SIMULATION AND EXPERIMENTAL RESULTS4. SIMULATION AND EXPERIMENTAL RESULTS4. SIMULATION AND EXPERIMENTAL RESULTS    

4.1 Simulation Results4.1 Simulation Results4.1 Simulation Results4.1 Simulation Results    

Validity of the proposed switching scheme in section 3 

is first verified through simulation study carried out in 

MATLAB/SIMULINK environment. The fundamental 

frequency switching pulses and their multiples are 

derived from the base input sinusoidal wave signal. 

The PWM signals are obtained from the comparison of 

the reference waveforms of each module with the 

single-carrier signal. The final sequenced gating pulses 

are generated from the implementation of the logic 

AND and OR operations given in equations (6) and 

(7). For a fundamental and carrier frequencies of 

50Hz, and 3kHz, figure 6 shows the simulated 

waveforms of the output voltages and load current for 

an RL load. The simulation parameters are: 9.0=
a

M ; 

VV
S

200= , Ω=60R , mHL 100= . Shown in Figure 7 is 

the power profile of the cascaded inverter system. 

Obviously, this figure depicts equal power handling 

capability among the cascaded inverter units. 

Displayed in Figure 8 is the corresponding harmonic 

profile of the CHB inverter output voltage. 

4.2 Experimental Results4.2 Experimental Results4.2 Experimental Results4.2 Experimental Results    

Following the simulation results, a laboratory 

prototype of the cascaded multilevel PWM inverter is 

built and implemented using the proposed switching 

strategy. Table 1 gives the prototype specifications 

and parameters. 
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Table 1: Prototype specification. 

Power switches: IGBT EUPEC BSM 75 GB,  120DLC 

(600V, 75A) 

 
R = 60Ω , L = 100mH 

 

The triangular carrier wave at switching frequency of 

3KHz and the base sinusoidal reference signal at 

fundamental frequency of 50Hz were generated using 

IC TL084. Also, all the base square waves: a, b, c, d, A, 

B, C and D were generated using 4027 dual J-K flip-

flop CMOS IC connected in toggle mode and clocked as 

earlier indicated in Figure 4. The base switching signal 

and gating signal sequence generators were 

implemented using comparators and basic CMOS logic 

gates. Figure 9 shows experimental waveforms of 

some gating signals showing equal average switching 

pulses as earlier predicted. Figure 10 shows the 

experimental waveforms of modules 1 and 2 

individual output voltages; while the overall load 

voltage and current are shown in Figure 11. 

 

Figure. 5: Switching patterns of the proposed modulation strategy. 
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Figure 6: Simulated output voltages and load current 

 

 
Figure 7: Power profile of CHB inverter under the proposed control strategy 
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Figure 8: Harmonic profile of the CHB inverter output voltage. 

    

 

 
Figure 9: Experimental Gate signals. 

CH1: ga1, CH2: gb1, CH3: gc1, CH4: gd1. 

 
Figure 10: Experimental module voltages. 

CH2: v1, CH4: v2, 

 
Figuer 11: Experimental waveforms of the output voltage 

and load current 

 

For the specified R-L load in Table 1, Table 2 gives the 

measured parameters of the implemented prototype.   

 

Table 2: Parameters of the implemented prototype. 

Output voltage (rms): 565.7V 

Load current (rms): 7.07A 

Measured output power: 4KW 

 

5. 5. 5. 5. CONCLUSIONCONCLUSIONCONCLUSIONCONCLUSION    

Presented in this paper is a new switching scheme for 

CHB multilevel inverter modules. A 4-cell cascaded 

structure has been used to exemplify the proposed 

switching technique. It has been shown that the 

modulation method adopted makes it possible to 

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-1000

0

1000

T i m e  ( s )

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

H a r m o n i c  o r d e r

F u n d a m e n t a l  ( 5 0 H z )  =  7 6 5 . 7  ,  T H D =  1 4 . 6 1 %

M
 a

 g
  (

 %
  o

 f 
 F

 u
 n

 d
 a

 m
 e

 n
 t

 a
 l 

)



HHHHYBRID YBRID YBRID YBRID MMMMODULATION ODULATION ODULATION ODULATION SSSSCHEME FCHEME FCHEME FCHEME FOR OR OR OR CCCCASCADED ASCADED ASCADED ASCADED HHHH----BBBBRIDGE RIDGE RIDGE RIDGE IIIINVERTER NVERTER NVERTER NVERTER CCCCELLSELLSELLSELLS                    C. I. OdehC. I. OdehC. I. OdehC. I. Odeh    

 

Nigerian Journal of Technology, Nigerian Journal of Technology, Nigerian Journal of Technology, Nigerian Journal of Technology,         Vol. 34, No. 1, January 2015Vol. 34, No. 1, January 2015Vol. 34, No. 1, January 2015Vol. 34, No. 1, January 2015                    201201201201 

generate equal average switching signal patterns in all 

the constituting power semiconductor switches. 

Hence, equal switching losses among the power 

switches have been achieved for CHB inverter units. 

Accomplished also in this work is the equal power 

handling capability of all the four CHB inverter cells. 

With the proposed switching strategy, the overall 

synthesized output voltage achieved a harmonic 

profile of 14.61% total harmonic distortion, THD. The 

performance of the proposed inverter topology has 

been presented through simulations and experiments 

on a 4kW rated prototype of the 9-level cascaded 

multilevel inverter for an R-L load; results have been 

adequately presented. 
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