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ABSTRACT 

In this work, the Fourier transform method has been applied to the determination of stresses induced by infinitely 

long line loads on semi-infinite homogeneous elastic soils. Airy’s stress functions of the Cartesian coordinates 

system were used to express the governing equations of plane strain elasticity for a semi-infinite homogeneous soil 

as a biharmonic problem. The fourth order partial differential equation was then solved by an exponential Fourier 

transform technique, with respect to the space valuable x where x; and the resulting solutions made subject 

to the stress – boundary conditions. The stresses obtained were found to be exactly identical with solutions 

obtained by integrating Boussinesq’s solutions for a point load which are available in the technical literature. The 

stresses determined in the present study were also exactly identical with the Flamant’s solution for the same 

problem; obtained by assuming a stress function in terms of the cylindrical coordinates. 

 

Keywords: Fourier transform method, Airy’s stress function, plane strain elasticity, line load, biharmonic 

problems. 

 

1. INTRODUCTION 

The determination of the distribution of stresses in 

semi-infinite elastic soils due to distributed loads on 

the boundary is a problem of the theory of elasticity. 

Consequently, solutions are obtained by the 

simultaneous application of the requirements for 

differential equations of equilibrium of an 

infinitesimal element, the stress-strain laws and the 

strain-displacement equations [1]. There are two basic 

approaches used in solving this problem in general, 

namely: stress-based approach and displacement 

based approach. 

Analytical closed form expressions for the stress fields 

induced in a semi-infinite elastic soil by a line load of 

infinite extent acting normal to the plane surface have 

been obtained by Flamant and presented in the 

technical literature [2 – 4]. Analytical expressions for 

the stress fields can also be obtained by integrating 

Boussinesq’s solutions for the point load applied on 

the surface of a semi-infinite linear elastic soil. 

Solutions originally obtained by Cummings [5] and 

Gray [6] have been presented by Timoshenko [7], New 

mark [8], Hall [14] and Forster and Fergus [10]. 

Flamant considered the problem of a vertical line load 

on a homogeneous, isotropic, linear elastic soil half 

space as the two dimensional equivalent of 

Boussinesq’s point load problem. He then considered 

it as the superposition of an infinite number of point 

loads uniformly distributed along the y axis as shown 

in Figure 1. He obtained the stresses in the xz plane as: 

[11, 12] 

    
  

 

  

  
 

  

  
cos                                               

    
  

 

  

  
 

  

  
cos                                               

       
  

 

   

  
 

  

  
cos                                               

On the basis of Flamant’s solutions, many other 

solutions for stresses due to distributed strip loads as 

shown in Figure 2 have been obtained using the 

principle of superposition. An example is the case of 
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uniform load of intensity p on a strip of width 2a [13], 

[3], for which the stresses are: 

 
Figure  : Flamant’s problems 

 

 
Figure 2: Strip load on an elastic half space soil 
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In the centre of the plane for 0,x  2 1    and 

the stresses become: 
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The variations of the stresses xx and zz with depth 

are shown in Figure 2.  

 
Figure 3: Distribution of xx and zz on the centre of a 

strip footing 

Both stresses xx and zz tend to zero as the depth 

increases (z), but the horizontal normal stress 

tends towards zero much faster than the vertical 

normal stress [6, 13]. The elastic stress distribution on 

a typical retaining wall as shown in Figure 4 is another 

important application of stress analysis, as presented 

in Verruijt [3]. 

 

 
Figure 4: Strip load next to a smooth rigid wall 

 

The stresses are, from [3]: 

        ,    
  

 
(tan  

 

 
 

  

     
)
 
                       

        ,    
  

 
(tan  

 

 
 

  

     
)
 
                      

The total elastic lateral force Pe, on a wall of height H 

is: 
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For a very deep wall, H>>a, then: 
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For a very shallow wall, H<<a, then 
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2. GOVERNING EQUATIONS 

The equations governing the determination of stress 

fields in a loaded linear elastic soil of semi-infinite 

extent are derived from considerations of the 

differential equations of equilibrium, the strain-

displacement relationships (kinematic 

considerations), stress-strain laws and strain-

compatibility relations [1]. The differential equations 
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of equilibrium are given in the absence of body forces 

as 
    

  
 

    

  
                                                       

    

  
 

    

  
                                                       

 

In (18) and (19), xx, zz are normal stresses, xz is the 

shear stress, and x, z are Cartesian coordinate axes. 

The strain-displacement equations, derived from 

geometrical considerations, for linear infinitesimal 

behaviour are: 
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wherexx, zz are normal strains, xz is the shear strain, 

and u, w are displacement components in the x and z 

coordinate directions respectively. 

The plane strain conditions are applied (assumed) as: 
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whereyy is the normal strain and yz and yx are shear 

strains and this implies that 

                                                                     

                                                                

where is the Poisson’s ratio,yz and yx are shear 

stresses on the yz and yx coordinate planes, 

respectively. 

The stress-strain laws for plane strain conditions are 

   
 

 
                                       

   
 

 
                                     

    
 

 
    

      

 
                                            

Where E and G are called the modulus of elasticity and 

the shear modulus, respectively. The three in plane 

strains were obtained from two displacements and are 

not completely independent of each other. The strain 

compatibility equation is given as: 

     
   

 
     
   

 
     
    

                                           

The governing equations of plane strain elasticity 

given in Equations (8) – (26) are statically 

indeterminate since there are three stress 

components xx, zz  and xz and only two equations of 

equilibrium. Hence, we need to impose the additional 

constraint that the strains determined from the stress-

strain law are compatible. Compatibility is ensured by 

defining stress functions that satisfy the plane-strain 

elasticity problem, in this case. Airy’s stress function 

(x, z) is derived such that the stress fields are 

obtained as: 

   
   

   
            

   

   
              

   

     
                

Airy’s stress functions can be shown to satisfy the 

stress compatibility condition if: 
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4 is the biharmonic operator, while 2 is the two 

dimensional Laplacian operator. 

 

3. METHODOLOGY AND RESULTS 

Consider a line load on a semi-infinite elastic soil with 

the coordinate axes defined as shown in Figure 5. 

 
Figure5: Line load of uniform intensity on a semi-infinite 

elastic soil 
 

For plane strain deformation, the displacement field is 

      ,   ,           ,              ,             

Where ux = u, uy, = v and uz = w  are the displacement 

components in the x, y and z coordinate axes 

respectively. 

 he stress field in the soil is given by the Airy’s stress 

function (x, z) defined by 

    
   

   
             

   

   
            

   

     
               

Where  satisfies the biharmonic equation on the xz 

coordinate plane 
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We apply the exponential Fourier transform method 

to solve the biharmonic equation for (x, z). Applying 

the exponential Fourier transform with respect to the 

space variable x, to the biharmonic equation, we have 

 

√  
∫ (
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where  is the Fourier transform parameter and 

  √   is the imaginary number. By the linearity 

property of the exponential Fourier transform, we 

obtain: 
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Simplifying Equation (35) becomes: 
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Where (, z) is the exponential Fourier transform of 

the Airy’s stress function (x, z), then we obtain 

Equation (38). 

   

   
    

   

   
                                                   

Thus Equation (38) is a fourth order ordinary 

differential equation in (, z). 

We solve using the method of auxiliary 

(characteristic) polynomials to obtain the 

characteristic polynomial as 

                                                      

where    ,    exp                                                  

The roots are  

                                                            

        twice 

Hence, 
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wherec1, c2, c3 and c4 are the four constants of 

integration. For bounded solutions of (, z) as  

z, we have c3 = c4 = 0. 

Hence, 

   ,     c  c   exp  |  |                                           

By inversion we obtain, the solution for (z, x) in the 

domain variables as: 
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From the Airy stress functions 
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When stresses are given on the xy coordinate plane (z 

= 0), we let the stress boundary conditions to be 

     ,                                                                   

     ,                                                                         

In (52) and (53), f1(x) and f2(x) are known functions 

of x. Then the exponential Fourier transforms of the 

stress boundary conditions become: 
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By inversion, 
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From Equations (29) and (31) we have: 
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Comparing Equations (56) and (58) and Equations 

(57)and (59) we obtain: 

        ̅                                                                     
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Solving, 
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We now consider the case of a uniformly distributed 

normal line load p per unit length acting on the y axis 

(at x = 0). Then: 

                                                          

                                                                                     
 

Where  is the Dirac delta function. 

Hence,  
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An interesting application of the line load solution is in 

determining the elastic lateral stress distribution on a 

rigid retaining wall due to a line load applied parallel 

to the wall on the backfill surface as shown in Figure 6. 

 
Figure 4: Line load applied on the surface of a backfill 

supported by a wall 
 

By considering the problem of two line loads of equal 

intensity acting at x a   and ,x a   on an elastic 

half space soil and the conditions on the axis of 

symmetry 0,x   the distribution of horizontal stress 

on the rigid wall is given from Flamant’s solution 

derived in this study using the Fourier transform 

method by: 

       
 

 

    

        
                                                      

The maximum value of xx occurs at 0.577 ,z a  and 

the maximum value is: 

        .    
 

 
                                                         

The resultant lateral force is: 
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Table 1 shows the distribution of v with depth z and 

obtained in this study and comparison with the 

solution by Das. 

 

Table 1: Variation of          with x/z 

x/z (Das, [2]) 
   

   
  Present study 

0 0.637 0.637 
0.1 0.624 0.624 
0.2 0.589 0.589 
0.3 0.536 0.536 
0.4 0.473 0.473 
0.5 0.407 0.407 
0.6 0.344 0.344 
0.7 0.287 0.287 
0.8 0.237 0.237 
0.9 0.194 0.194 
1.0 0.159 0.159 
1.5 0.060 0.060 
2.0 0.025 0.025 
3.0 0.006 0.006 

 

4. DISCUSSIONS AND CONCLUSIONS 

The stresses induced in a semi-infinite linear elastic 

soil due to an infinitely long line load of intensity p has 

been obtained using Airy’s stress function and the 

exponential Fourier transform method. The stresses 

obtained were found to be exactly identical with 

classical solutions obtained by Flamant. The stresses 

determined in this work were also identical with 

solutions found in the technical literature obtained by 

integrating Boussinesq’s solution for a point load.  he 

effectiveness and accuracy of the exponential Fourier 

transform technique is thus illustrated. The stresses 

from the infinite line load were observed to be 

effectively distributed in only one horizontal direction, 

as opposed to two for the point load. The vertical 

stresses under the line of application of the load 

decrease with the first power of the depth, and at any 

depth, the vertical stresses are distributed more 

widely than for the case of point load. It was observed 

further that the vertical stress distributionzz is 

independent of the Poisson’s ratio, . 

The distribution of stresses xx, zz and xz determined 

in this study are applied in evaluating the response of 

a soil to a surface loading by a long narrow footing, 

which can be idealized as an infinitely long line 

loading on a semi-infinite elastic soil. The expressions 

are simpler to use than those expressions for 

rectangular strip loads. 
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