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ABSTRACT 

The assumed deflection shapes used in the approximate methods such as in the Galerkin’s method were normally 

formulated by inspection and sometimes by trial and error, until recently, when a systematic method of constructing such 

a function in the form of Characteristic Orthogonal Polynomial (COPs) was developed by Bhat in 1985. In the vibrational 

analyses of orthotropic rectangular plates with different boundary conditions, the study used the characteristic 

orthogonal polynomial theory to obtain satisfactory approximate shape functions for these plates. These functions were 

applied to Galerkin indirect varational method to obtain new set of fundamental natural frequencies for these plates. The 

results were reasonable when compared with those in the previous work. All round simply supported thin rectangular 

plate (SSSS), rectangular clamped plated (CCCC) and rectangular plate with one edge clamped and all others edges simply 

supported (CSSS) gave 5.172, 9.429 and 6.202 natural frequencies in rad /sec respectively at 0.05%, 0.0% and 22.93% 

difference with the previous[3] results5.170rad/sec, 9.429rad/sec and 8.048rad/sec  for SSSS, CCCC and CSSS. For others 

like: rectangular plate with one edge simply supported and all other edges clamped (CCSC), rectangular plate simply 

supported at two opposite sides and clamped at the others (CSCS) and rectangular plate clamped at two adjacent sides 

and simply supported at the others (CCSS) with no available results, their natural frequencies obtained are 8.041rad/sec, 

6.272rad/sec and 7.106rad/sec respectively. 

 

Keywords: Fundamental natural frequency, Free Vibration, Reinforced Concrete Slab, Characteristic Orthogonal 

Polynomial 

 

1. INTRODUCTION 

In recent years, lightweight structures have been widely 

used in many engineering fields, and hence vibration 

analysis of differently shaped plates has been studied 

extensively owing to its practical applications. The 

applications of composite materials in engineering 

structures require information about the vibration 

characteristics of anisotropic materials. The free 

vibration of orthotropic plates is an important area of 

such behaviour. Orthotropic materials have extensive 

application in the modern technology, such as in modern 

missiles, spacecrafts, nuclear reactors, and printed circuit 

boards. Their high strength along with small specific 

mass make the composite materials ideal for applications 

in spacecrafts, vehicle systems, nuclear reactors, etc. 

Most of the applications subject the composite materials 

to dynamic loading. It is known that the orthotropic 

materials exhibit a different dynamic response when 

compared with that of similar isotropic structures. 

Man, equipment and facilities including various types of 

machines (technological loads) are the source of impact 

and dynamic loads. Wind and earthquake loads are not to 

be mentioned here, but it should be noted that even 

weak wind pressures could be the excitor to facilities and 

indirectly make unpleasant noises and vibrations [1]. 

The analysis of structural vibration is necessary in order 

to calculate the natural frequencies of a structure, and 

the response to the expected excitation. In this way it can 

be determined whether a particular structure will fulfill 

its intended function and, in addition, the results of the 

dynamic loadings acting on a structure can be predicted, 

such as the dynamic stresses, fatigue life and noise levels. 

Hence the integrity and usefulness of a structure can be 

maximized and maintained. Reinforced concrete slabs, 

exhibit force due to mass of inertia; thus, they are 

susceptible to free vibration. 
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2. BACKGROUND OF STUDY 

Euler [2] performed a free vibration analysis of plate 

problems and indicated the first impetus to a 

mathematical statement of plate problems. The 

governing equation for a thin rectangular plate subjected 

to direct compressive forces Nx, was derived by Navier 

[3]. 

Thompson and Dahleh [4] noted that all systems 

possessing mass and elasticity are capable of free 

vibration, or vibration that takes place in the absence of 

external excitation.  

Xiang et al [5] used the two –dimensional polynomials as 

the admissible functions to study the vibrations of 

rectangular Mindlin plates with elastic edge supports by 

the Ritz method and the same problems were 

investigated by Gorman [6] using the superposition 

method. 

Malaikah et al [7] investigated the effect of the embedded 

steel bars in the concrete cylinders on the dynamic 

modulus of concrete. Their work revealed that the 

presence of the single bar made the specimen less 

susceptible to micro cracking. 

Leissa [8] presented analytic solutions of natural 

frequencies of the various types of plates and the 

corresponding mode shapes based on trigonometric 

functions. 

Structural engineers have long been trying to develop 

solutions using the full potential of composing materials 

[9]. These have been the structural solution progress 

directly towards increase in materials science 

knowledge. Thus, the constituent materials of reinforced 

concrete slabs (and in this case rectangular plates) using 

characteristic orthogonal polynomial of various shape 

functions would not bean exception in predicting the 

dynamic regime of structural elements. It is therefore 

believed herein that investigating this will suggest a safe, 

economical and aesthetic reinforced concrete slab 

design. Before, the analysis for natural frequency of thin 

rectangular plate (reinforced concrete slabs) taking into 

account of the shape functions has been verified; thus 

making work in this regard demanding. 

 

2.1 Dynamic Equation for Orthotropic Plates Using 

Galerkin’s Method 

The governing differential equation for free motion of 

orthotropic plates are given in Equation (1) as in [3]: 
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The flexural rigidities of orthotropic plates (two way 

reinforced slabs) are given as [3]: 
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In (1) to (6), and    are modulus of elasticity and 

Poisson's ratio for concrete, respectively. Es is the 

modulus of elasticity for steel; and Ixs, Iys are the 

moments of inertia of steel bars about the x and y axes, 

respectively. Then Galerkin equation  was given as [3]: 
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 Where, w = w(x, y) is an unknown, P is a given load 

term defined also in the domain , D** is the Flexural 

rigidity of orthotropic plates. For free vibration, the 

external exciting force P = 0. In the dynamic regime, the 

forcing function of the governing differential equation 

becomes [3]: 

P = P(x,y,t ) h
   

   
 (x,y,t) …        (8) 

Thus, the differential Equation (7) becomes, 
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Equation (9) is the differential equation of forced, 

undamped motion of plate. Thus, for natural or free 

vibrations, P(x, y, t) is set equal to zero, and equation (9) 

becomes: 
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In non dimensional form, x = aR, y = bQ, then: 
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Equation (  ) is the Galerkin’s natural frequency of 

orthotropic rectangular plate.  

Note: Deflection, w, must satisfy the boundary conditions 

at the plate edge (these conditions practically do not 

differ from those in the case of static equilibrium) and 

the initial conditions given in section 3 [3]: 

 

3. METHODOLOGY 

3.1 Characteristic Orthogonal Polynomial Shape Function 

Consider a rectangular plate of dimension a along x and b 

along y, then uniform. If the deflection pattern of the 
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plate along x is represented by a beam strip qualitatively, 

the beam function along x is taken as f(x) and along y as g 

(y). The solution for a prismatic beam of constant EI and 

length spanning along x is [11]. 

    ( )  ∑     
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and along  y as 

w   G(y)  ∑  y
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In (13) and (14), Xm and Yn are constant parameters in x 

and y directions respectively. m and n are series to 

infinity limit. Thus, the displacement function for the 

rectangular plate is therefore assumed as a product of 

two functions; one of which is a pure function of x and 

the other is of y, so that: 
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Expressing Equations (12), (13), (14) and (15) in the 

form of non-dimensional parameters, say R and   for x 

and y directions respectively: 
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Then, Equations (12),(13) and (15) become: 
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Since Equation (  )  which is orthotropic plate’s 

equation in free vibration regime is a fourth order 

differential and the density of the plate is constant, then, 

the value of m and n in Equation (23) must be equal to 4. 

Expanding Equation (21), (22) and (23) to 4th series we 

obtain: 
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Equation (26) is a 25 terms equation to maximum power 

of 8 with several unknowns. The coefficients Am and Bn of 

the series are determined from the boundary conditions 

at the edges of the plate. For the beams, the moment 

along x and y directions are given as [12]: 
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Expressing (27) and (28) in terms ofR and   we obtain: 
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(a)  All Round Simply Supported Thin Rectangular Plate 

(SSSS) 

Figure 1 shows a thin rectangular with all edges R = 0, a; 

and   = 0, b are simply supported. 

The boundary conditions are: deflections and moments 

at all edges are zero, slope at all edges except Q = b is 

zero. 

With these conditions, we obtained displacement 

function as: 

 (   )      (        )(        )         (  ) 

 (   )   (        )(          )            (  ) 

 

(b) All Round Clamped Thin Rectangular Plate (CCCC) 

Figure 2 shows a rectangular with such edges such 

thatR= 0, 1; and = 0, 1 are clamped. 

The boundary conditions are: deflections at all edges are 

zero, slope at all edges is zero. With these conditions, we 

obtain displacement function as: 
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Figure 1: SSSS – Thin Rectangular Plate 

 
Figure 2: Rectangular Plate Clamped 

 
Figure 3: CSSS – Thin Rectangular Plate 

 
Figure 4: CCSC – Thin Rectangular Plate 

 
Figure 5: CSCS – Thin Rectangular 

 
Figure 6: CCSS – Thin 
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(c) Thin Rectangular Plate with One Edge Clamped and all 

Others Edges Simply Supported (CSSS) 

The boundary conditions are: deflections at all edges are 

zero, slope at edge (Q = 0)is zero; Moment at all edges 

except (Q = 0) is zero. 

With these conditions, we obtain displacement function 

as: 

 (R  )        

     (R   R  R )(              )              (  ) 

 (   )   (        )(              )   (  ) 

 

(d) Thin Rectangular Plate With One Edge Simply 

Supported and all Other Edges Clamped (CCSC) 

The boundary conditions are: deflections at all edges are 

zero, slope at all edges (except Q = 1) is zero and 

Moment at Q = 1 is zero 

We obtain displacement function as 

 (R  )       

     (R
   R    R )(     

          )                                  (  ) 
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(e) Thin Rectangular Plate Simply Supported at Two 

Opposite Edges and Clamped on the Other Two 

(CSCS) 

Figure 5 shows a thin rectangular plate simply supported 

at two opposite sides and clamped at the others. The 

boundary conditions are: deflections at all edges are 

zero, slope at edge (Q = 0 or b) is zero, Moment at edge 

(R = 0 or b) is zero. With these conditions, we obtain 

displacement function as: 

 (   )      (R   R  R )(         )       (  ) 

 (   )   (R   R  R )(         )             (  ) 

 

(f) Thin Rectangular Plate Clamped at Two Adjacent 

Edges and Simply Supported at the Other Two (CCSS) 

Figure 6 shows a thin rectangular plate clamped at two 

adjacent sides and simply supported at the others. The 

boundary conditions are: deflections at all edges are 

zero, slope at edges (R = 0; Q = 0) are zero; Moment at 

edges (R = a, and Q = b) are zero. 

With these conditions, we obtain displacement function 

as:  

 (R  )        
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                    )                                                           (  ) 

Where K =      

 (   )   (              )(              )  (  ) 

 

 

 



DYNAMICS OF RECTANGULAR ORTHOTROPIC PLATES USING CHARACTERISTIC ORTHOGONAL POLYNOMIAL –  GALERKIN’S METHODS     N. N. Osadebe, et al 

 

Nigerian Journal of Technology  Vol. 36, No. 1, January 2017          54 

4. ANALYSIS OF FUNDAMENTAL NATURAL FREQUENCY 

EQUATIONS OF ORTHOTROPIC PLATES 

 

4.1. SSSS – Thin Plates 

From Equation (32) the shape function for SSSS is given 

as: 

   (        )(        )               (  ) 

Putting Equation (43) into Equation (11) for a thin 

rectangular orthotropic plate under free vibration 

according to Galerkin’s Method  we have: 
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Solving the integrand we obtain 
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4.2 CCCC Thin Plates 

From Equation (34), the shape function for CCCC is given 

as: 
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Substituting Equation (46) in Equation (11) and solving 

the integrand give:  
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4.3 CSSS Thin Plates 

From Equation (36), the shape function for CSSS is given 

as: 
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Substituting Equation (48) in Equation (11) and solving 

the integrand give: 
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4.4 CCSC Thin Plate 

From Equation (38), the shape function for CCSC is given 

as: 
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Substituting Equation (50) in Equation (11) and solving 

the integrand give: 
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4.5 CSCS Thin Plates 

From Equation (40), the shape function for CSCS is given 

as: 
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Substituting Equation (52) in Equation (11) and solving 

the integrand give: 
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4.6 CCSS Thin Plates 

From Equation (42), the shape function for CCSS is given 

as: 

    (             )(           )          (  ) 

Substituting Equation (54) in Equation (11) and solving 

the integrand give: 
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5 RESULTS 

In the preliminary design of a doubly reinforced concrete 

slab of arbitrary support conditions, the following 

physical and geometric properties are  provided: fcu  = 

  M a   c = 0.20, 12mm diameter mild steel spaced 

150mm each ways at the top and bottom. Modulus of 

elasticity of steel, Es = 205,000N/mm2 Thickness of slab, 

h      mm  Density of reinforced concrete      

2563Kg/m3 = 0.000002563Kg/mm3, a = 5000mm, for 

b/a = 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0; cover to all 

reinforcement, c = 25mm. 

It is required to determine the fundamental frequency of 

the slab. 

 

5.1 Solution 

The results are computed from Equations (45), (47), 

(49), (51), (53) and (55) 

From Neville [10], 

       (   )
                                            (  ) 

Where, f’c and Ec are the characteristic strength and 

modulus of elasticity of the concrete respectively. Thus, 

the moment of inertia at the X and y directions are given 

as: 

I    I      Ad                                            (  a) 
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But, Svx and Svy are the number of the reinforcements 

perpendicular to x and y directions respectively;  sy and 

 sx are diameters of steel in those directions respectively. 

IX’X’ = Moment of Inertia of an Area, for steel about an 

axis, xx-axis, Iy’y’ = Moment of Inertia of an Area, for steel 

about an axis, yy, A = Area of steel, d = centroid of a 

lamina about xx and yy-axis respectively. h = centroid of 

a lamina about xx and yy axis. Ixs and Iys are moment of 
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inertia of steels bars about x and y directions 

respectively. 

Tables 1, 2 and 3 show the results of the fundamental 

frequencies obtained for doubly reinforced sections or 

reinforced concrete slabs (orthotropic rectangular 

plates) respectively. The results of earlier works [8] 

were also obtained using the procedure developed in 

this work and are compared with the analytical results 

also obtained herein. 

 

6. DISCUSSION OF RESULTS 

In Table 1, the results of the fundamental natural 

frequencies for SSSS and CCCC plates for aspect ratios: 

            from the literature and the present 

study are (12.082 – 5.170 rad/sec and 12.089 – 5.173 

rad/sec); and (23.955 – 9.430 rad/sec and 23.956 – 

9.430 rad/sec) respectively. The differences are 

marginal: 0.05% and 0% for SSSS and CCCC plates 

respectively. This shows that the shape functions derived 

using this characteristic orthogonal polynomials 

approach is adequate. 

For CSSS plate, the fundamental frequencies obtained for 

aspect ratios:    
 

 
     ranges from 16.862 rad/sec - 

6.202 rad/sec. whereas, the literature results for this 

range of aspect ratios are: 19.502 rad/sec - 8.048 

rad/sec. The results of study differ from the literature 

values with an average difference of 19%. However, a 

close observation of the natural frequency value for SSSS 

and CCCC for this range of aspect ratios in this 

presentation. Hence the results obtained herein are very 

reliable and gives a better application than earlier works 

as found in the literature. 

The CSSS plate that has three edges simply supported 

and one edge fixed is expected to have natural frequency 

values that are a little over those of SSSS plate and values 

lesser than those of the CCCC plate. This scenario is 

demonstrated with the present formulation results in 

Table 2. Hence, the present results are very reliable over 

the literature results. 

Table 3 give the values of natural frequencies for CCSC, 

CSCS, and CCSS plates for aspect ratios:            . 

No available studies for these plates have been carried 

out earlier. 

 

7. CONCLUSIONS 

The conclusion from this study is summarized below: 

(a) Fundamental natural frequency of plates varies with 

the plate’s edge conditions  Clamped edges of plate 

tend to give higher frequency and stiffness, as well as 

very small period of oscillation, while simply 

supported edges possess lower frequency and 

stiffness with marginal high period of oscillation. 

(b) SSSS, CSSS, CSCS, CCSS, CCSC and CCCC plates are in 

the ascending order of plates’ frequency and 

stiffness. 

(c) The characteristic orthogonal polynomial based 

derived shape functions for rectangular plates are 

satisfactory in approximating the deformed shape of 

thin rectangular plates of various boundary 

conditions.  

(d) An indirect variation principle (based on Galerkin’s 

method) can be used in confidence to satisfactorily 

analyze real time rectangular thin plates of various 

boundary conditions under in- plane loadings. 

 
Table 1: Fundamental Natural Frequencies  of SSSS and CCCC Thin Rectangular Orthotropic Plates 

 Simply Supported all round (SSSS)   (rad/sec) all round Clamped Plate (CCCC)   (rad/sec) 

b/a Leissa [1969] Present Study % Diff Leissa [1969] Present Study % Diff 
0.5 12.082294 12.089119 0.06 23.955080 23.956242 0.11 
0.6 9.294095 9.299012 0.05 17.853305 17.854125 0.08 
0.7 7.596308 7.600141 0.05 14.241131 14.241764 0.06 
0.8 6.504117 6.507281 0.05 11.999870 12.000374 0.05 
0.9 5.729505 5.732241 0.05 10.476999 10.477434 0.04 
1.0 5.170286 5.172742 0.05 9.429502 9.429892 0.04 

 
Table 2 Fundamental Natural Frequencies of CSSS Thin 

Rectangular Orthotropic Plate 

 
Different support condition (CSSS) 

  (rad/sec) 
b/a Leissa [1969] Present Study % Diff 
0.5 19.502173 16.861613 -13.54 
0.6 14.998937 12.528553 -16.47 
0.7 12.204807 9.903814 -18.85 
0.8 10.368122 8.226532 -20.66 
0.9 9.034632 7.046468 -22.01 
1.0 8.047780 6.202358 -22.93 

 

Table 3: Fundamental Natural Frequencies of CCSC, CSCS 
and CCSS Thin Rectangular Orthotropic Plates 

b/a 

CCSC 
 (rad/sec) 
Present 
Study 

CSCS  (rad/sec) 
Present Study 

CCSS 
 (rad/sec) 
Present Study 

0.5 18.019769 23.088498 17.394250 

0.6 13.915458 16.785503 13.141580 

0.7 11.511431 12.957086 10.596813 

0.8 10.033191 10.525836 8.994340 

0.9 9.034668 8.809916 7.885202 

1.0 8.041400 6.272057 7.105523 
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8. RECOMMENDATIONS 

The following recommendations are made based on this 

study: 

(a) The fundamental natural frequencies formulated in 

this study for SSSS, CSSS, CSCS, CCSS, CCSC and 

CCCC plates should be adopted for the structural 

design of these plates. 

(b) Future research work should consider applying 

Rayleigh – Ritz direct variational method to the 

shape functions formulated in this study for SSSS, 

CSSS, CSCS, CCSS, CCSC and CCCC plates. 

(c) Future studies can employ the shape function 

presented herein and the Galerkin’s method to 

analyze plate. 

(d) Future studies should use the shape function used 

herein and Galerkin’s method to analyze plate on 

elastic foundation. 

(e) It is suggested that further work in this area should 

consider the application of the characteristic 

orthogonal polynomials to analyze plates on other 

boundary conditions such as free ends. 
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