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ABSTRACT 

In this work, we have investigated the well pressure distribution in a bounded circular reservoir under the condition of 

constant pressure outer boundaries.  The diffusivity equation was used in the analysis. The finite element technique, 

using Lagrange quadratic shape elements was employed to carry out the analysis over the cross-section of the reservoir 

which involves discretizing the domain into finite element, analysing these finite element, assembling the results from the 

analysis of the analysed finite element, imposing the boundary conditions and finally, getting the results that represent 

the entire domain. The results obtained where shown in a log log plot (dimensionless pressure against dimensionless 

time) for dimensionless radii of 1 to 1,000,000 in log cycles. It was shown that the relationship between dimensionless 

pressure and dimensionless time was linear whose slope was zero. The result obtained at the wellbore was compared 

with the results obtained by Van Everdigen and Hurst. It was shown that there was a strong positive correlation between 

the results. The result obtained from the analysis also shows the pressure variation outside wellbore of the same 

reservoir. It is important to note that solutions from existing literature only state the pressure at the wellbore at a 

particular time but this work predicts the pressure variation in the entire reservoir from the wellbore to the external 

boundary at the same time. 

 

Keywords: Reservoir, Constant Terminal Rate, Dimensionless Variables, Diffusivity Equation, Wellbore And Weak 

Formulation. 

 

Nomenclature 
English Letters 

B  Formation volume factor, RB/STB 
c  Compressibility, psia-1 

h  Thickness, ft 

K  Stiffness matrix 

M  Mass matrix 
n  Number of elements 

P  Pressure, psi 

DP  Dimensionless pressure 



DP  Dimensionless pressure rate 

iP   Initial reservoir pressure, psi 

Q  Terminal flow rate 

q  Volumetric flow rate, STB/D 

r  Radius, ft 

Dr  Dimensionless radius 

er  External radius, ft 

eDr  Dimensionless externalradius 

wr  Wellbore radius, ft 

s  Time step, hr 

t  Time, hr 

Dt  Dimensionless time 

w  Weight function 

  For all 
 
Greek letters 

t  Time increment, hr 
  Family of approximation 

  Porosity, fraction 

k  Permeability, md 
  Viscosity, cp 

  Pi 
  Interpolation function 

 

1. INTRODUCTION 

There are several methods of evaluating the reservoir 

parameters [1]. It was shown that solutions to 

differential equations describing flow in petroleum 

reservoir for given initial and boundary conditions can 

be expressed compactly using dimensionless variables 

and parameters. Several of these solutions are important 

in reservoir engineering applications [2–7]. Transient 

pressure response for a well producing from a finite 

reservoir of circular, square, and rectangular drainage 

shapes has been studied by [2, 8–14] among others. 

Everdingen And Hurst [2] presented the solution to the 

diffusivity equation in eq. (8) in the form of infinite 

series of exponential terms and Bessel functions. The 

authors evaluated this series for several values of
eDr  

over a wide range of values for Dt . Chatas [15] and Well 
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[16] conveniently tabulated these solutions for the 

following two cases: Infinite-acting reservoir and Finite-

radial reservoir. 

Mishra and Ramey [17] presented a build-up derivative 

type curve for a well with storage and skin, and 

producing from the centre of a closed, circular reservoir. 

Their type-curve applies for large producing times. The 

work by [18] presents drawdown and build-up pressure 

derivative type-curves for a well producing at a constant 

rate from the centre of a finite, circular reservoir. The 

outer boundary may be closed, or at a constant pressure. 

The differences between the responses for a well in a 

closed, circular reservoir (fully developed field), and a 

well in a circular reservoir with a constant-pressure 

outer boundary (active edge water drive system, or 

developed five-spot fluid-injection pattern) were 

discussed. Design relations were developed to estimate 

the time period which corresponds to infinite-acting 

radial flow, or to a semi-log straight line on a pressure vs. 

logarithm of time graph. Producing time effects on build-

up responses were studied using the slope of a 

dimensionless build-up graph proposed in [19]. 

In all the literatures reviewed so far, the researchers 

focused on predicting the wellbore pressure [2, 15, 16], 

etc. Sometimes, it is important to know the pressure 

history outside the reservoir is scarce in the literature. 

This study therefore seeks to look at the reservoir 

pressure both within and outside the wellbore of a 

bounded circular reservoir. 

 

2. THEORY 

The law of conservation of mass, Darcy’s law and the 

equation of state has been combined to obtain the 

following partial differential equation: 

   

   
 

 

 

  

  
 

   

 .       

  

  
            

with the assumptions that compressibility, c is small and 

independent of pressure, P; permeability, k, is constant 

and isotropic; viscosity, ,   is independent of pressure; 

porosity, ,  is constant; and that certain terms in the 

basic differential equation (involving pressure gradients 

squared) are negligible. This equation is called the 

diffusivity equation and the term 
   

 .       
 is the inverse 

of the diffusivity constant,.  

In this work, the diffusivity equation was analysed for 

bounded circular reservoirs, the case in which the well is 

assumed to be located in the centre of a cylindrical 

reservoir under the condition of constant external 

boundary. 

 

3. GOVERNING EQUATION 
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Initial and boundary conditions: 

i.     at t                                                       

ii. ( 
  

  
)
  

 
   

    
for  .                                      

iii. ( 
  

  
)
  

                                                          

The above equations incorporate physical parameters 

such as permeability, and it would be futile to solve this 

problem for a particular combination of values for these 

parameters. Dimensionless variables are designed to 

eliminate the physical parameters that affect 

quantitatively, but not qualitatively, the reservoir 

response. The above equations are in Darcy units, and 

the dimensionless terms will render the system of units 

employed irrelevant. For this line source model, 3 

dimensionless variables are required. In US Oilfield units, 

distance, time and pressure are replaced as follows: 

Dimensionless time: 

   
 .         

     
 

                          

Dimensionless distance:   

   
 

  
 
                                               

Dimensionless pressure: 

   
  

   .     

                              

By defining dimensionless variables this way, it is 

possible to create an analytical model of the well and 

reservoir, or theoretical ‘type-curve’, that provides a 

‘global’ description of the pressure response that is 

independent of the flow rate or actual values of the well 

and reservoir parameters. 

Eq.1 can be transformed by substituting the following 

dimensionless variables in Eqs. 5-7 into eq. 1 and this 

becomes: 

    

   
  

 

  

   

   
  

   

   
                             

and the initial and boundary conditions becomes: 

1. Dimensionless initial condition (uniform 

pressure in the reservoir): 

     ,                                   

2. Dimensionless inner boundary condition 

(constant rate at the wellbore): 
   

   
  ,                                     

3. Dimensionless Outer Boundary Conditions: 

Constant pressure outer boundary 

       ,                                         

Eq. 8 can also be written in a condensed form as: 
 

  

 

   
(  

   

   
)  
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4. FINITE ELEMENT FORMULATION 

4.1 Weak Formulation 

In the development of the weak form, we assumed a 

quadratic element mesh and placed it over the domain 

and apply the following steps: 

From eq. 12, we have: 
   

   
  

 

  

 

   
(  

   

   
)                           

Multiply eq. 13 by the weight w  function and integrate 

the final equation over the domain. 

∫ 

 

 

[
   

   
  

 

  

 

   
(  

   

   
)]                 

Eq. 14 becomes, 

∫∫ ∫  

  

    

   

 

 

 

 

[
   

   
  

 

  

 

   
(  

   

   
)]                   

Integrating eq. 15 with respect to z , then,  over the 

limits, we have: 

∫  

    

     

 [
   

   
  

 

  

 

   
(  

   

   
)]                 

Eq. 16 can be exploded into: 

∫  

    

    

   

   
       ∫  

    

    

 

   
(  

   

   
)                

Integrating eq. 17 by part, we have: 

∫   

    

    

  

   

   

   
      [  

   

   
]
    

    

 ∫    

    

    

   

   
    

                                                                         

Grouping eq. 18 into linear and bilinear components, we 

have: 

∫   

    

    

  

   

   

   
     ∫    

    

    

   

   
      [  

   

   
]
    

    

                                                                                                  

∫   

    

    

  

   

   

   
     ∫    

    

    

   

   
            

          

Where      
   

   
  

 

5. INTERPOLATION FUNCTION 

The weak form in eq. 20 requires that the approximation 

chosen for PD should be at least quadratic in Dr  so that 

there are no terms in eq. 20 that are identically zero. 

Since the primary variable is simply the function itself, 

the Lagrange family of interpolation functions is 

admissible. We proposed that DP  is the approximation 

over a typical finite element domain by the expression: 

     ,     ∑   

 

   

      
      and     

             

Substituting eq. 21 into eq. 20, we have: 

∫   
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Factor out    ∑    
 
    

∑   

 

   

 ∫   
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∫   

    

    

  
   

    

   
                                                        

where    ̇   
   

   
 

In matrix form we can represent the semi-discrete finite 

element model as thus, 

|   
 |{  }  |   

 |{ ̇  }  {  
 }          

Where 

   
  ∫   

    

    

   
 

   

   
 

   
                     

   
  ∫   

    

    

  
   

                             

Using Quadratic Lagrange Interpolation functions for a 

quadratic element: 

      
 

  
                                 

      
 

  
                                

      
  

  
      (          

)               

The coefficient matrix can be easily derived by 

substituting the Lagrange interpolation functions into 

eq. 25 respectively. The matrices are shown below: 

[  ]

 
 

  
[

                       
                             

                        

]      

Also, the mass matrices can be easily derived by 

substituting the Lagrange interpolation functions into 

eq. 26 respectively. The matrices are shown below: 

[  ]  
 

  
[

               
                 

                   

]          

Using four quadratic elements, 

                                              

In this analysis, we have withheld the computational 

details of the shape assembly of the finite element 
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analysis (FEA) used. However, the authors would be glad 

to interact with researchers who may want to refer to the 

computational mathematics involved. 

 

6. TIME APPROXIMATION 

For a given time step s, eq. 24will be written as 

|   
 |{  }  |   

 |{ ̇  }  {  
 }                            

For the next time step s+1, eq. 24 becomes 

|   
 |{  }    |   

 |{ ̇  }   
 {  

 }              

Multiply eq.33 by  1  and eq. 34 by , then we add 

the two resulting equations, 

[   
 ] [     { ̇  }   { ̇  }   

]

 [   
 ] [     {   }   {   }   

]

      {  
 }  {  

 }                            

The   family of interpolation for time consideration is 

given as: 

     { ̇  }   { ̇  }   
 

{   }   
 {   } 

     

        

Substitute eq.36 into eq.35 and using the Crank-

Nicholson Scheme where    
 ⁄ , 

[[   
 ]  

     

 
 [   

 ]] {   }   

 [[   
 ]  

     

 
 [   

 ]] {   } 

 
     

 
[{  

 }  {  
 }   ]                   

From the initial condition given in eq. 9 for a constant 

terminal rate case, it implies that when 0s , all 

dimensionless pressure in the reservoir will be zero. 

Also, the flow rate was constant at the wellbore all 

through operation. This means that [{  
 }  

{  
 }   ].Hence, eq. 37 becomes: 
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Where  ̅  
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{   } 

    { ̅  
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7. RESULTS AND DISCUSSION 

The steady state condition applies, after the transient 

period, to a well-draining a cell which has a completely 

open outer boundary. It is assumed that, for a constant 

rate of production, fluid withdrawal from the well will be 

exactly balanced by fluid entry across the outer 

boundary and therefore, 

      onstant at   i. e. , .          ,       and
  

 t
       and    

This condition is appropriate when pressure is being 

maintained in the reservoir due to either natural water 

influx or artificially by the injection of some displacing 

fluid. The semi-steady state flow equations are 

frequently applied when the rate, and consequently the 

position of the no-flow boundary surrounding a well, is 

slowly varying functions of time. If the production rate of 

an individual well is changed, for instance, due to closure 

for repair or increasing the rate to obtain a more even 

fluid withdrawal pattern throughout the reservoir, there 

will be a brief period when transient flow conditions 

prevail followed by stabilized flow for the new 

distribution of individual well rates. 

Thus, this solution of the diffusivity equation models 

radial flow of slightly compressible liquid in a 

homogeneous reservoir of uniform thickness; reservoir 

at uniform pressure before production; unchanging 

pressure at the outer boundary; and production at 

constant rate from a single well (centred in the 

reservoir) with wellbore radius. 

The results obtained from this analysis were shown in 

the form of graphs of dimensionless pressure against 

dimensionless time. This was shown in Fig. 1. Fig. 1 is a 

log log plot of dimensionless pressure against 

dimensionless time. The graph shows for different 

dimensionless radii ranging between 1 and 1000000 in 

log cycles. It was seen from the graph that the 

dimensionless pressure history of the reservoir was not 

captured at the initial stage between the dimensionless 

time of zero and the respective dimensionless times in 

Fig. 1. This was due to the fact that, within these regions, 

the reservoir was at the infinite acting state. After these 

infinite acting period, it was observed that the 

dimensionless pressure increases and later becomes 

uniform became the withdrawn fluid has been 

completely replaced. This condition remains throughout 

the entire life of the reservoir presumably. 

To test for the degree of accuracy of the results, a 

percentage error computation was done between the 

FEM and the results published by [2]. Table 1 shows 

the percentage error between the FEM solutions and 

the Van Everdigen and Hurst solutions to show the 

level of discrepancies between the two results. It was 

shown that there was a strong correlation between 

the two results. 
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Fig. 1: Log-Log plot of PD against tD for various rD in the infinite acting regime 

 

Table 1: Percentage error of FEM and Van Everdigen 

4,5.1  nreD
 4n reD  ,2  4n reD  ,5.2  4n reD  ,3  4n reD  ,5.3  4n reD  ,4  4,6  nreD

 

Dt  % error Dt  % error Dt  % error Dt  % error Dt  % error Dt  % error Dt  % error 

0.05 0.4348 0.2 0.0000 0.3 0.0000 0.5 0.1621 0.5 0.4839 1 0.0000 4 0.2353 

0.055 0.4167 0.22 0.0000 0.35 0.0000 0.55 0.1563 0.6 0.4511 1.2 0.1167 4.5 0.1515 

0.06 0.0000 0.24 0.0000 0.4 0.0000 0.6 0.0000 0.7 0.4255 1.4 0.1105 5 0.1470 

0.07 0.0000 0.26 0.0000 0.45 0.0000 0.7 0.0000 0.8 0.2699 1.6 0.0000 5.5 0.1431 

0.08 0.0000 0.28 0.0000 0.5 0.0000 0.8 0.0000 0.9 0.3876 1.8 0.1014 6 0.1397 

0.09 1.0274 0.3 0.0000 0.55 0.0000 0.9 0.0000 1 0.2488 2 0.0000 6.5 0.1368 

0.1 0.0000 0.35 0.0000 0.6 0.0000 1 0.0000 1.2 0.2331 2.2 0.0951 7 0.1342 

0.12 0.0000 0.4 0.0000 0.7 0.0000 1.2 0.0000 1.4 0.1106 2.4 0.0000 7.5 0.1319 

0.14 0.0000 0.45 0.1748 0.8 0.1374 1.4 0.0000 1.6 0.1058 2.6 0.5425 8 0.1300 

0.16 0.0000 0.5 0.0000 0.9 0.1325 1.6 0.1079 1.8 0.1019 2.8 0.0000 8.5 0.1281 

0.18 0.0000 0.55 0.0000 1 0.0000 1.8 0.0000 2 0.0988 3 0.0000 9 0.1266 

0.2 0.0000 0.6 0.0000 1.2 0.1227 2 0.0000 2.2 0.1921 3.4 0.0000 10 0.1238 

0.22 0.0000 0.65 0.0000 1.4 0.0000 2.2 0.0000 2.4 0.0939 3.8 0.0000 12 0.1200 

0.24 0.0000 0.7 0.0000 1.6 0.0000 2.4 0.0000 2.6 0.0920 4.5 0.0000 14 0.1174 

0.26 0.0000 0.75 0.0000 1.8 0.0000 2.6 0.0000 2.8 0.0904 5 0.0000 16 0.0578 

0.28 0.0000 0.8 0.0000 2 0.0000 2.8 0.0000 3 0.0000 5.5 0.0000 18 0.1144 

0.3 0.0000 0.85 0.0000 2.2 0.0000 3 0.0000 3.5 0.0864 6 0.0755 20 0.1135 

0.35 0.0000 0.9 0.0000 2.4 0.0000 3.5 0.0000 4 0.0845 7 0.0742 22 0.1129 

0.4 0.0000 0.95 0.0000 2.6 0.0000 4 0.0000 5 0.0000 8 0.0000 24 0.1125 

0.45 0.0000 1 0.0000 2.8 0.0000 4.5 0.0000 6 0.0000 9 0.0000 26 0.1123 

0.5 0.0000 1.2 0.0000 3 0.0000 5 0.0000 7 0.0000 10 0.0000 28 0.0561 
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Table 2: Dimensionless Pressure Distribution for 5.1eDr , 4n  and 005.0t  

     rD 

tD 1 1.0625 1.1250 1.1875 1.2500 1.3125 1.3750 1.4375 1.5000 

0.050 0.229 0.174 0.127 0.091 0.063 0.041 0.025 0.011 0.000 

0.055 0.241 0.183 0.137 0.099 0.070 0.046 0.028 0.013 0.000 

0.060 0.249 0.192 0.145 0.107 0.076 0.051 0.031 0.015 0.000 

0.070 0.266 0.209 0.160 0.121 0.087 0.060 0.037 0.018 0.000 

0.080 0.282 0.224 0.174 0.133 0.098 0.068 0.043 0.020 0.000 

0.090 0.295 0.237 0.187 0.144 0.107 0.075 0.048 0.023 0.000 

0.100 0.307 0.249 0.198 0.154 0.115 0.082 0.052 0.025 0.000 

0.120 0.328 0.269 0.216 0.170 0.129 0.092 0.059 0.029 0.000 

0.140 0.344 0.284 0.231 0.183 0.140 0.101 0.065 0.032 0.000 

0.160 0.356 0.297 0.243 0.194 0.149 0.108 0.069 0.034 0.000 

0.180 0.367 0.307 0.252 0.202 0.156 0.113 0.073 0.036 0.000 

0.200 0.375 0.315 0.260 0.209 0.161 0.117 0.076 0.037 0.000 

0.220 0.381 0.321 0.265 0.214 0.166 0.121 0.078 0.038 0.000 

0.240 0.386 0.326 0.270 0.218 0.169 0.123 0.080 0.039 0.000 

0.260 0.390 0.330 0.274 0.221 0.172 0.125 0.082 0.040 0.000 

0.280 0.393 0.333 0.277 0.224 0.174 0.127 0.083 0.040 0.000 

0.300 0.396 0.335 0.279 0.226 0.176 0.128 0.084 0.041 0.000 

0.350 0.400 0.340 0.283 0.229 0.179 0.131 0.085 0.042 0.000 

0.400 0.402 0.342 0.285 0.231 0.180 0.132 0.086 0.042 0.000 

0.450 0.404 0.343 0.286 0.232 0.181 0.133 0.086 0.042 0.000 

0.500 0.405 0.344 0.287 0.233 0.182 0.133 0.087 0.042 0.000 

0.600 0.405 0.345 0.287 0.233 0.182 0.133 0.087 0.043 0.000 

0.800 0.405 0.345 0.288 0.234 0.182 0.134 0.087 0.043 0.000 

 

Table 3: Dimensionless Pressure Distribution for 10eDr , 4n  and 05.0t  

  rD 

tD 1.0000 2.1250 3.2500 4.3750 5.5000 6.6250 7.7500 8.8750 10.0000 

10 1.639 0.923 0.547 0.327 0.191 0.107 0.055 0.023 0.000 

12 1.719 0.999 0.615 0.384 0.235 0.139 0.076 0.032 0.000 

14 1.719 0.999 0.615 0.384 0.235 0.139 0.076 0.032 0.000 

16 1.845 1.120 0.725 0.479 0.311 0.195 0.112 0.050 0.000 

18 1.896 1.170 0.770 0.518 0.343 0.219 0.128 0.058 0.000 

20 1.941 1.213 0.811 0.553 0.372 0.241 0.142 0.065 0.000 

25 2.032 1.302 0.892 0.624 0.430 0.285 0.171 0.079 0.000 

30 2.099 1.367 0.952 0.676 0.474 0.318 0.193 0.089 0.000 

35 2.149 1.415 0.996 0.715 0.506 0.342 0.209 0.097 0.000 

40 2.186 1.451 1.029 0.744 0.530 0.360 0.221 0.103 0.000 

45 2.213 1.477 1.054 0.766 0.547 0.374 0.230 0.107 0.000 

50 2.234 1.497 1.072 0.782 0.560 0.383 0.236 0.110 0.000 

55 2.249 1.511 1.085 0.793 0.570 0.391 0.241 0.113 0.000 

60 2.260 1.522 1.095 0.802 0.577 0.396 0.245 0.114 0.000 

65 2.268 1.530 1.103 0.809 0.583 0.400 0.247 0.116 0.000 

70 2.274 1.536 1.108 0.813 0.587 0.403 0.249 0.117 0.000 
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  rD 

tD 1.0000 2.1250 3.2500 4.3750 5.5000 6.6250 7.7500 8.8750 10.0000 

80 2.282 1.544 1.115 0.819 0.592 0.407 0.252 0.118 0.000 

90 2.286 1.548 1.119 0.823 0.594 0.409 0.253 0.119 0.000 

100 2.289 1.550 1.121 0.825 0.596 0.410 0.254 0.119 0.000 

110 2.290 1.552 1.122 0.826 0.597 0.411 0.254 0.119 0.000 

120 2.291 1.552 1.123 0.826 0.597 0.411 0.255 0.119 0.000 

130 2.291 1.553 1.123 0.827 0.598 0.412 0.255 0.119 0.000 

140 2.291 1.553 1.123 0.827 0.598 0.412 0.255 0.119 0.000 

160 2.292 1.553 1.124 0.827 0.598 0.412 0.255 0.119 0.000 

 

The results presented in Fig. 1 are the dimensionless 

pressure at the wellbore at different dimensionless 

time for the case of constant pressure outer boundary 

condition. When a reservoir is opened for production, 

a pressure disturbance is created in the reservoir from 

the wellbore. This disturbance is not only felt at the 

wellbore but it travels through the entire reservoir 

formation to the external boundary. Therefore, Tables 

2 and 3 shows the dimensionless pressure at different 

points within and outside the wellbore of the reservoir 

against their corresponding dimensionless time. 

 

8. CONCLUSION 

This paper has been able to present the pressure 

distribution across a bounded circular reservoir 

assumed to have constant terminal rate at the 

wellbore. The diffusivity equation was used to analyse 

the pressure in the system. It was shown from Figs. 1 

that the dimensionless pressure increases drastically 

immediately this flow regime is attained. But as time 

increases, the dimensionless pressure variation 

flattens out asymptotically. The results obtained from 

this analysis showed that there was a strong 

correlation with the results obtained from the Van 

Everdigen and Hurst. It is important to note that the 

Van Everdigen and Hurst solutions only state the 

pressure at the wellbore at a particular time but this 

work predicts the pressure variation in the entire 

reservoir from the wellbore to the external boundary 

at the same time. These where shown in Tables 2 and 

3 and it was noticed that the pressure decreases from 

the wellbore to the external boundary of the reservoir. 

Therefore the Finite element method has been used to 

approximate not only the values of the wellbore 

pressures for bounded circular reservoirs but also 

pressure outside the wellbore to the external reservoir 

boundaries. 

 

 

 

9. REFERENCES 

[1] Razminia K., Hashemi A., and Razminia A. A Least 
Squares Approach to Estimating the Average 
Reservoir Pressure. Iranian J. Oil & Gas Sci. Technol. 
2(1), 22–32. 2013. 

[2] Van Everdingen, A. F. and Hurst, W. The Application 
of the Laplace Transformation to Flow Problems in 
Reservoir. Trans., AIME 186, 305-324.1949. 

[3] Essa K. S. M., Mina A. N., and Higazy M. Analytical 
Solution of Diffusion Equation in Two Dimensions 
Using Two Forms of Eddy Diffusivities. Rom. J. Phys. 
56, 1228–1240. 2011. 

[4] Oane M., Medianu R., Georgescu G., ToaderD., and 
Peled A. The determination of two photon thermal 
fields in laser-two-layer solids weak interactions 
using Green function method. Rom. Rep. Phys. 65, 
997–1005. 2013. 

[5] Timofte C. Homogenization Results for Hyperbolic-
Parabolic Equations, Rom. Rep. Phys. 62, 229–238. 
2010. 

[6] Earlougher, R.C., Jr., Ramey, H.J., Jr., Miller, F.G., and 
Mueller, T. D. Pressure Distributions in Rectangular 
Reservoirs. J. Pet. Tech., 199-208. 1968. 

[7] Momoniat E., McIntyre R. and Ravindran R. 
Numerical inversion of a Laplace transform solution 
of a diffusion equation with a mixed derivative 
term. Appl. Math. Comput. 209(2), 222–229. 2009. 

[8] Miller, C.C., Dyes, A.B., and Hutchinson, C.A., Jr. The 
Estimation of Permeability and Reservoir Pressure 
from Bottom-Hole Pressure Build-Up 
Characteristics. Trans., AIME 189, 91-104. 1950. 

[9] Aziz, K. and Flock, D. L. Unsteady State Gas Flow – 
Use of Drawdown Data in the Rediction of Gas Well 
Behaviour. J. Can. Pet. Tech., 2 (l), 9-15. 1963. 

[10] Earlougher R. C. Jr. Advances in Well Test Analysis, 
Monogragh Series, SPE, Dallas. 1977. 



ANALYSIS OF PRESSURE VARIATION OF FLUID IN BOUNDED CIRCULAR RESERVOIRS UNDER THE ….  I. D. Erhunmwun & J. A. Akpobi 

 

Nigerian Journal of Technology  Vol. 36, No. 1 January 2017          468 

[11] Ramey, H.J., Jr. and Cobb, W. M. A General Pressure 
Build-up Theory for a Well in a Closed Drainage 
Area. J. Pet. Tech., 1493 -1505. 1971. 

[12] Kumar, A. and Ramey, H. J., Jr. Well-Test Analysis for 
a Well in a Constant-Pressure Square. Soc. Pet. Eng. 
J., 107-116. 1974. 

[13] Cobb, W.M. and Smith, J. T. An Investigation of 
Pressure Build-up Tests in Bounded Reservoirs," J. 
Pet. Tech. Vol 27, No. 8, 1975, pp. 991 – 997. 

[14] Chen, H.K. and Brigham, W. E. Pressure Build-up for 
a Well with Storage and Skin in a Closed Square. J. 
Pet. Tech., 141-146. 1978. 

[15] Chatas, A. T. A Practical Treatment of Non-steady-
state Flow Problems in Reservoir Systems. J. Pet. 
Eng., B-44–56. 1953. 

[16] John L. Well Testing, Soc. Pet. Eng. of AIME, New 
York. 1982. 

[17] Mishra, S. and Ramey, H. J., Jr. A New Derivative 
Type-Curve for Pressure Build-up Analysis with 
Boundary Effects. Proc., 12th Workshop on 
Geothermal Reservoir Engineering at Stanford 
Univ., Stanford, CA, 45-47. 1987. 

[18] Ambastha, K., Anil and Henry J. Ramey, Jr. Well-Test 
Analysis for a Well in a Finite, Circular Reservoir. 
Proc., 13th Workshop on Geothermal Reservoir 
Engineering at Stanford Univ., Stanford, Califonia, 
53-57. 1988. 

[19] Agarwal, R. G. A New Method to Account for 
Producing Time Effects when Drawdown Type 
Curves are Used to Analyse Pressure Build-up and 
Other Test Data, paper SPE 9289 presented at the 
55th Annual Meeting of SPE of AIME in Dallas, TX, 
21-24. 1980. 

 

 


