

* Corresponding author, tel: +234 - 807 – 675 – 6975

COMPARATIVE ANALYSIS AND IMPLEMENTATION OF DIJKSTRA'S SHORTEST PATH

ALGORITHM FOR EMERGENCY RESPONSE AND LOGISTIC PLANNING

A. H. Eneh1,* and U. C. Arinze2

1,2 DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF NIGERIA, NSUKKA, ENUGU STATE, NIGERIA.
E-mail addresses: 1 agozieh.eneh@unn.edu.ng, 2 uchechukwu.arinze.pg79296@unn.edu.ng

ABSTRACT

TransRoute: a web-based vehicle route planning application is proposed in this paper. This application leverages

existing input-output (I/O) efficient implementations of shortest path algorithms (SPAs) to implement the proposed

system that will fundamentally address the problems experienced in moving people, goods and services from one

location to another. A number of SPAs are evaluated using landau notations. Main functionalities of the system will be

implemented as a web-enabled geographic information system (GIS) application based on open-source technologies

and object-oriented software development methodology using unified modeling language. Pilot implementation is done

based on spatial data of three selected states in Nigeria, pulled from web-based mapping tools like Google Maps and

Microsoft Bings respectively. In conclusion, the Dijkstra's algorithm implemented with double bucket dynamic data

structure is selected for implementing the proposed route planning system, as past research efforts has proven that it

is the fastest with run-time improvements from O(m + n/log C) to O(m) respectively.

Keywords: TransRoute, shortest path algorithms, double bucket data structure, GIS

1. INTRODUCTION

In this paper, we propose TransRoute: a web-based,

route planning system that will leverage advanced data

structures, shortest path algorithms, graph and network

optimization models in routing vehicles for emergency

response during natural disasters, fire outbreaks, health

crisis and courier package for cost minimization in

logistics and transport sector of the Nigerian economy,

hence substantially helping in saving lives, increase

bottom line of logistic firms and improve efficiency in

service delivery.

This work is motivated by real world problems that arise

in emergency response, logistics, transportation

problems, computer networks and telecommunication

respectively that seeks to determine the optimum path. A

plethora of route queries problems in emergency

response, road traffic simulation, logistic planning and

transportation sector of the economy exists, occasioned

by high traffic congestion, inefficient route planning, bad

roads and vehicular air pollution respectively. Despite

heightened research interest in transportation related

decision analysis within a GIS environment the need for

efficient, effective and timely response to emergencies,

facility location, network flows, vehicle routing and

delivery of logistic package by courier firms and

emergency response agencies like: DHL, FedEx, UPS,

EMS, NEMA, hospitals and fire service, from source to

their respective destinations at minimal cost and

promptly has been a major challenge faced by these

firms, agencies and application developers around the

world due to its similarity to the travelling salesman

problem (TSP) which requires that: given the cost of

travel between n cities or stops, the objective is to

minimize the total cost of a single route that visits all n

cities/stops and returns to its starting point. At a glance,

this type of problem may appear seemingly trivial, given

the relative ease of determining the shortest possible

route for single-stop routes using algorithms such as A*-

Search, Dijkstra, Bellman-Ford and Floyd-Warshall

algorithms respectively. However, any given TSP route is

actually one of many possible combinations of multiple

single-stop routes, thus making this type of multi-stop

routing non-deterministic polynomial time (NP) hard,

combinatorial optimization problem that can be modeled

using equation 1 below:

R = N! (1)

Where R is the number of unique possible TSP routes for

a given number, N of cities/stops. Based on the above

equation, If the starting city is fixed for all solutions,

there are only (N-1)! possible solutions. These

expressions make TSP routing a problem that exhibit

extreme combinatorial explosion, hence as the number of

Nigerian Journal of Technology (NIJOTECH)

Vol. 36, No. 3, July 2017, pp. 876 – 888

Copyright© Faculty of Engineering, University of Nigeria, Nsukka,
Print ISSN: 0331-8443, Electronic ISSN: 2467-8821

www.nijotech.com
http://dx.doi.org/10.4314/njt.v36i3.30

mailto:agozieh.eneh@unn.edu.ng
file:///C:/Users/eobe/Downloads/uchechukwu.arinze.pg79296@unn.edu.ng
http://www.nijotech.com/
http://dx.doi.org/10.4314/njt.v36i3.30

COMPARATIVE ANALYSIS AND IMPLEMENTATION OF DIJKSTRA'S SHORTEST PATH ALGORITHM FOR EMERGENCY … A. H. Eneh & U. C. Arinze

Nigerian Journal of Technology, Vol. 36, No. 2, July 2017 877

stops to be solved increases, the problem becomes

exponentially more complex. An example of the effects of

combinatorial explosion on search space of possible

solutions for this type of routing problem is shown in

Table 1.

Table 1: Effects of combinatorial explosion on search

space of possible solutions

Number of Route
Stops

Number of Possible Routes

5 120
10 3,628,800
15 1,307,674,368,000
20 2,432,902,008,176,640,000
30 2.65e+32
40 8.16e+47
50 3.04e+64

The shortest path problem (SPP) is compounded by the

slow and inaccurate results of current commercial

solutions and the expansion of existing road networks,

covering hundreds of thousands and millions of road

junctions. Using simple approaches yields very slow

query times, which can either be inconvenient for the

end-users or expensive for the route service provider.

Using advanced heuristic techniques yields inaccurate

results. For the client, this can mean waste of time and

money and for the service provider; the application

development process becomes a difficult balancing act

between speed and sub-optimality of the computed

routes, hence the considerable interest in the

development of more efficient and accurate route

planning techniques leveraging robust mapping

applications like Google maps, MapQuest and Microsoft

Bings respectively.

To achieve the aim of this research, a road network can

be represented as a directed, weighted graph, G = (V, E),

as shown in figure 1, with a vertex set V with n vertices,

where each vertex refers to a city and an edge set E ⊆ V

× V with m edges, where edges connect one city to

another city, a weight function w : E ⟶ ℝ0
+ assigns a

non-negative weight w((u, v)) to each edge (u, v). The

weights on the edges indicate the distance between two

connected cities, the SPP consist of finding a directed

path of minimum cost (length) from a specified source

node or vertex v ∈ V to all other vertices in V in a

directed network in which each arc (i,j) has an associated

cost (or length) Cij. The SPP is a special case of the

minimum-cost flow problem. This formulation assumes

that there are no negative costs directed cycles, called

negative cycles in the network, [1].

SPAs have several important variants. The s-t shortest

path problem requires finding a single shortest-path

between given vertices s and t; it has obvious practical

applications like driving directions and has received a

great deal of attention.

Figure 1: Showing source and sink nodes for a directed,

weighted graph

It is also relatively easy, solutions in typical graphs like

road networks visit a tiny fraction of vertices, with [2]

observing visits to 80,000 vertices out of 32 million in

one example [3]. A third variant, all-pairs shortest paths,

is impractical for large graphs because of its O(V2)

storage requirements. The origin of graph theory

according to [4], started with the problem of Königsberg

Bridge in 1735, [5 – 10]. This problem led to the concept

of Eulerian graph. A graph as shown in figure 2 (a-b), is a

pair G = (V, E), [11], [12]; where V is the set of all

vertices and E the set of all edges; and the elements of E

are subsets of V containing exactly 2 elements is called a

labelled graph if each edge e = U*V is given the value

f(U*V) = f(u)*f(v), where * is a binary operation. In

literature one can find * to be either addition,

multiplication, modulo addition or absolute difference,

modulo subtraction or symmetric difference. The

number of vertices is written asV , and the number of

edges is written as E . E  can range from zero to a

maximum of V 2- V .

(a)

(b)

Figure 2: Examples of graphs: (a). Directed graph

(digraph), (b). Undirected graph

The linear programming (LP) formulation [13] for the

shortest path problem (SPP) is:

COMPARATIVE ANALYSIS AND IMPLEMENTATION OF DIJKSTRA'S SHORTEST PATH ALGORITHM FOR EMERGENCY … A. H. Eneh & U. C. Arinze

Nigerian Journal of Technology, Vol. 36, No. 2, July 2017 878

 Min (i,j)A di,jxi,j (2)

subject to (i,k)A xi,k - (j,i)A xj,i = 0 i  s, t (3)

 (s,i)A xs,i = 1 (4)

 (j,t)A xj,t = 1 (5)

 0  xi,j 1 (6)

There are two classes of algorithms to solve shortest

path problems viz: Label-setting algorithm (LSA) [14 -

16], and Label-correcting algorithm (LCA) such as [17 -

19] graph growth algorithms with two queues (TWO-Q)

data structures and threshold based algorithms such as:

[20]. The LCA uses a list data structure to manage the

scan eligible node set that needs to be examined during

the shortest path tree building process. It is the

variations of the list operation policy that are used to

differentiate the LCA such as LCA with queue [21], and

LCA with threshold lists [20]. The major feature of an

LCA is that it cannot provide the shortest path between

two nodes before the shortest path to every node in the

network is identified. The necessity of this type of

operation (referred as one-to-all search mode) makes

the LCA more suitable in situations when many shortest

paths from a root node need to be found. Based on

empirical evidence the LCA is often used in

transportation planning applications where multiple

routes have to be identified. Both algorithms are iterative

and assign tentative distance labels to nodes at each step,

which are estimates of the upper bounds complexity on

the shortest path distances. LSA designate one label as

permanent (optimal) at each iteration. LCA consider the

labels as temporary until the final step when they all

become permanent. According to [22, 23] almost all SPAs

of practical interest can be derived from one single

prototype method viz:

Step 1: Initialization: Set i = o; L(i)= 0; L(j)=  j i; P(i)=

NULL

Define the scan eligible node set Q = {i};

Step 2: Node Selection: Select and remove a node (i) from

Q.

Step 3: Node Expansion: Scan each link emanating from

node i. For each link a = (i, j)

If L(i)+ ca<L(j)

then L(j)= L(i)+ ca; P(j) = a

Insert node j into Q

Step 4: Stopping Rule: If Q=  then STOP

 Otherwise: goto step 2

In the view of [24], the original Dijkstra algorithm

partitions all nodes into two sets: temporarily and

permanently labelled nodes. At each iteration, it selects a

temporarily labelled node with the minimum distance

label as the next node to be scanned [14, 24]. Once a

node is scanned, it becomes permanently labelled. A

natural enhancement of the original Dijkstra algorithm is

to maintain the labelled nodes in a data structure in such

a way that the nodes are sorted by distance labels. The

bucket data structure is just one of those structures.

Buckets are sets arranged in a sorted fashion . Bucket k

stores all temporarily labelled nodes whose distance

labels fall within a certain range. Nodes contained in each

bucket can be represented with a doubly- linked list. A

doubly-linked list only requires O(1) time to complete an

operation in each distance update in the bucket data

structure. These operations include: a). checking if a

bucket is empty; b). adding an element to a bucket; and

c). deleting an element from a bucket, [16, 25, 26]. Table

1 and 2 summarize the various algorithms tested and

various SPAs runtime complexities obtained using

Landau notation.

The routing of vehicles or personnel in complex logistic

systems is a task that needs to be solved in numerous

applications, e.g., detailed models of transport networks

or order picking areas, whose number of relevant nodes

can easily exceed 10,000 nodes [27]. Graphs provide the

ultimate in data structure flexibility, because they can

model both real-world systems and abstract problems;

hence find wide applications [28 – 34].

Many interesting route planning problems can be

modeled and solved by computing shortest-paths in a

suitably modeled, weighted graph representing a

transportation network. For large networks, the classical

Dijkstra’s algorithm [14] to compute shortest path in

robot path-planning [35]; logistics distribution lines [36];

link-state routing (LSR) protocols [37]; open-shortest

path first (OSPF) [38] and intermediate-system-to-

intermediate-system (IS-IS) routing protocols and

algorithms in computer and telecommunication

networks, [39] respectively are used.

The rest of this paper is organised as follows. Section 2

details selected related works in the field of SPAs.

Systems composition, methodology and architecture are

outlined in section 3. The results of the various

computational algorithmic simulations and software

implementations are stated in Section 4. Discussion and

analysis of the results obtained are discussed in section 5

and a brief conclusion is provided in section 6.

2. RELATED WORKS

The review of related works informed the choice of

methodologies, technologies and paradigms employed in

the advancement of this research problem. Here we

briefly outline the various algorithmic paradigms and

their advancements from new design paradigms, data

structures improvements and input restrictions so as to

contextualize our work [34]. Considerable empirical

COMPARATIVE ANALYSIS AND IMPLEMENTATION OF DIJKSTRA'S SHORTEST PATH ALGORITHM FOR EMERGENCY … A. H. Eneh & U. C. Arinze

Nigerian Journal of Technology, Vol. 36, No. 2, July 2017 879

studies on the performance of shortest path algorithms

have been reported in the literature, interested readers

are referred to [18 - 22, 25 – 27, 34].

The first polynomial time, greedy-based algorithm for

the SPA problem was conceived by [14] in 1956 and

'published' in 1959 [1, 14, 40, 41]. The implementation

and simplest possible description of Dijkstra’s algorithm

has been provided in section 4 and other classical books

such as Cormen et al [23], Sedgewick and Wayne [42],

Aho, Hopcroft, and Ullman [43] and need no further

description. The run time of the algorithm is dependent

on the priority queue implementation data structure

which is a part of the algorithm. Dijkstra’s algorithm does

not use a min-priority queue and has a running time of

O(|V|2) but when implemented in a Fibonacci heap, it

runs in O(|E|+|V|log|V|), where |E| is the number of

edges, |V| the number of vertices and O the upper bound

running time. This makes the algorithm asymptotically

the fastest known shortest path algorithm for directed

graphs with unbounded non-negative weights. A

combination of a radix heap and a previously known data

structure called a Fibonacci heap is due to [44], [45]

gives a bound of O(m + n/log C). The best previously

known bounds are O(m + n log C) using Fibonacci heap

alone and O(m log n log C) using the priority queue

structure of Van Emde Boas et al. [46].

In another early contribution, [47] developed a search

strategy, called A*-Search, to solve for minimum cost

paths, but a recent study by [48] is one of the most

comprehensive evaluations of shortest path algorithms

to date. They evaluated a set of 17 SPAs. In their

experiment, they coded the 17 algorithms using C

programming language, and tested the C programs on a

SUN Sparc-10 workstation. One-to-all shortest paths can

be computed by these C programs. The results of their

studies concluded that no single algorithm consistently

beat all others over all problem classes. Overall, they

suggested that the Dijkstra algorithm implemented with

a double-level bucket structure (DKD) is the best

algorithm for networks with non-negative arc lengths.

Using the open-source codes written by [49, 50]

conducted an evaluation of 15 of the 17 algorithms on a

variety of real road networks. They concluded that TWO-

Q, DKD and Dijkstra algorithm incorporating

approximate buckets (DKA, which is a variant of the

bucket approach than DKD) are the three fastest one-to-

all SPAs.

In a subsequent study, [23, [50 – 52] compared these

three algorithms for the one-to-one shortest path

problem on 10 different road networks. They suggested

that DKA is the best choice for the case when shortest

paths are somewhat short and that Pallottino’s TWO-Q is

the best choice in situations where the shortest paths are

relatively long.

Fu et.al [53], proposed an optimal heuristic search

strategy to find shortest path for Vehicle Navigation

System by physically cutting off area within which the

shortest path is not supposed to appear, hence known as

the restricted search strategy.

Given the works of [3, 49 – 52] one can conclude that the

top three candidates for SPA application on real-road

networks are two versions of Dijkstra’s algorithm (DKA

and DKD), and Pallottino’s TWO-Q algorithm as shown in

table 1. Table 2 shows the performance of the SPAs. For

the sake of this research we will analyse Dijkstra's SPA

with double bucket [14], Hart et al A*-Search algorithm

[47] and Fu et.al [53] restricted search heuristic

respectively.

3. SYSTEM COMPOSITION, METHODOLOGY AND

ARCHITECTURE

A web-based, GIS-enabled model is selected as the

implementation approach, as we envisioned the realized

system would be accessible online by any web user from

any location within the geographical test area of

Anambra, Enugu and Abuja, F.C.T. A three-tier

architectural framework is adopted towards

implementing the proposed system. Hence, the system

will have-user interface, application logic, data and

server layers respectively as shown in figure 3 and 4

respectively. PHP which is widely used as a general-

purpose scripting language that is especially suited for

web application development is used as the

implementation language, alongside model-view-

controller (MVC) and Laravel code framework. It can be

embedded in (X)HTML or XML markup languages

respectively. It serves as a tool for creating dynamic

data-driven web pages. Google maps mapping service is

integrated to render spatial data into map data for route

visualization so as to enhance user experience and look-

and-feel of the application. Apache MySQL RDBMS will be

leveraged for the data repository implementation.

Topology building, network creation and data cleaning

and correction will be handled using Quantum GIS 1.6.

Object-oriented software development methodology

with unified modeling language (UML) architectural

framework for designing the system components, as

shown in Figures 5, 6, 7 and 8 respectively.

COMPARATIVE ANALYSIS AND IMPLEMENTATION OF DIJKSTRA'S SHORTEST PATH ALGORITHM FOR EMERGENCY … A. H. Eneh & U. C. Arinze

Nigerian Journal of Technology, Vol. 36, No. 2, July 2017 880

User

Presentation Layer

Browser
(IE, Firefox)

Chrome

Logic Tier
HTTP

HTML

SQL

PHP Script

Web Server
(IIS, Apache) Table

Database Server

Database

Data Tier

Figure 3: Three-tier architectural framework of TransRoute application

Figure 4: Architectural layout of the proposed system

 Figure 5: Class diagram of the proposed system

Figure 6: Sequence diagram of the proposed system

Figure 7: Use-Case diagram of the proposed system

Figure 8: Data flow diagram of the proposed system

https://camo.githubusercontent.com/09ed919a32a8dafb6ffccadbb127b902fa50cf2f/68747470733a2f2f7261772e6769746875622e636f6d2f616368696e6b756c73687265737468612f4e697264657a612f6d61737465722f696d616765732f757365436173652e706e67
https://camo.githubusercontent.com/e5cd8a11af574a1eb9575f5d5a26f7b226e60c6d/68747470733a2f2f7261772e6769746875622e636f6d2f616368696e6b756c73687265737468612f4e697264657a612f6d61737465722f696d616765732f6c6576656c316466642e706e67

COMPARATIVE ANALYSIS AND IMPLEMENTATION OF DIJKSTRA'S SHORTEST PATH ALGORITHM FOR EMERGENCY … A. H. Eneh & U. C. Arinze

Nigerian Journal of Technology, Vol. 36, No. 2, July 2017 881

4. RESULTS AND SOFTWARE IMPLEMENTATION

DETAILS

Computer simulation run of the three selected

algorithms were performed on Toshiba PC with Intel

Core i5 86x 64-bit processor architecture, CPU running at

2.50 GHZ, and 8 GB RAM memory on Windows 8.1

platform. MATLAB software version 7.11.0 R2010b was

used in performing the algorithm simulation so as to test

the optimality of the three selected algorithms. The 2-D

plot obtained is shown in figure 10. The various

algorithms evaluated, implementation data structures

and their run time complexities are provided in tables 1

and 2. Algorithms 1, 2, and 3 provides details of Dijkstra,

A*-Search and Restricted Search algorithms analyzed

respectively.

The SPA was implemented using PHP 2.1, Laravel

mapping application programming interface (API)

framework version 5.0, Google map 1.0.7 and HTML 5.0

respectively. The choice is justified by the robust and

scalable application development environment they

provide.

Algorithms of the three fastest SPAs are shown below.

PHP code implementation of Dijkstra's SPA (the

algorithm of choice) is also shown below with its

different modules.

Table 1: Evaluated Shortest Path Algorithms (SPAs)

Algorithm Class Abbreviation Implementation Data Structures

A*-Search
ASH
ASBD
ASBA

A*-Search algorithm with k-array Heap
A*-Search algorithm with Double Buckets
A*-Search algorithm with Approximate Buckets data
structures

Bellman-Ford-Moore
BFM
BFP

Bellman-Ford-Moore
Bellman-Ford-Moore with parent- - checking

Dijkstra

DKQ
DKB
DKD
DKA
DKM
DKF
DKH
DKR

Dijkstra's Naive Implementation
Dijkstra's Buckets - - Basic Implementation
Dijkstra's Buckets - - Double Implementation
Dijkstra's Buckets - - Approximate
Dijkstra's Buckets - - Overflow Bag
Dijkstra's Heap - - Fibonacci
Dijkstra's Heap - - k- - array
Dijkstra's Heap - - R- - Heap

Graph Growth Model
TQQ (Two-Q)

PAP

Graph Growth - - Gallo & Pallottino algorithm with two
queues data structures
Graph Growth - - Pape

Threshold Algorithm THR Threshold Algorithm
Topological Ordering GR1 Topological Ordering - - Basic
Topological Ordering GR2 Topological Ordering - - Distance Updates

Source [43]

Table 2: Complexity Analysis of different shortest paths algorithms [10]

Algorithm Negative Edge Single Source All Sources Time Complexity Space Complexity

Dijkstra  O(|E|+ |V|log|V|) O(V2)

Bellman-Ford   O(|V|.|E|) O(V2)

Floyd-Warshall   O(V3) O(V3)

A*-Search  A function of the heuristic A function of the heuristic

Johnson's   O(V2log V + VE) A function of the heuristic

Prim's   O (VLog|V|+ELog |V|) O(|E| + |V| 2)

Kruskal's   O(|E| log|V|) O(|E|log|E|)

Algorithm 1: Dijkstra's Algorithm
INITIALIZATION:
 for all v V do
 dist[v]←∞
 final[v] ← false
 pred[v]←−1
 end for
 dist[s] ← 0

COMPARATIVE ANALYSIS AND IMPLEMENTATION OF DIJKSTRA'S SHORTEST PATH ALGORITHM FOR EMERGENCY … A. H. Eneh & U. C. Arinze

Nigerian Journal of Technology, Vol. 36, No. 2, July 2017 882

 final[s] ← true
 recent ← s

{// vertex s is permanently labeled with 0. All other vertices are temporarily labeled with ∞. Vertex s is
the most recent vertex to be permanently labeled //}

 ITERATION:
 while final[t] = false do
 for every immediate successor v of recent do
 if not final[v] then {// update temporary labels //}
 newlabel ← dist[recent] + wrecent,v
 if newlabel < dist[v] then
 dist[v] ← newlabel
 pred[v] ← recent
 {// re-label v if there is a shorter path via vertex recent and make recent the
 predecessor of v on the shortest path from s //}
 end if
 end if
 end for
 let y be the vertex with the smallest temporary label, which is = ∞
 final[y] ← true
 recent ← y
 {// y, the next closest vertex to s gets permanently labeled //}
 end while

Algorithm 2: A*-Search Algorithm
 f(V) = distance from S to V + estimate of the distance to D.
 = d(V) + h(V,D)
 = d(V) + sqrt((x(V) – x(D))2 + (y(V) – y(D))2)
 where x(V), y(D) and x(V), y(D) are the coordinates for node V and the destination
 node D.
 The A* Search algorithm:
 for each u G:
 d[u] = infinity;
 parent[u] = NIL;
 End for
 d[s] = 0;
 f(V) = 0;
 H = {s};
 while NotEmpty(H) and targetNotFound:
 u = Extract_Min(H);
 label u as examined;
 for each v adjacent to u:
 if d[v] > d[u] + w[u, v] , then
 d[v] = d[u] + w[u, v];
 p[v] = u;
 f(v) = d[v] + h(v, D);
DecreaseKey[v, H];

Algorithm 3: Restricted Search Algorithm
For each u G:
 d[u] = infinity;
 parent[u] = NIL;
 End for
 d[s] = 0;
 H = {s};
 while NotEmpty(H) and targetNotFound:
 u = Extract_Nin(H);
 label u as examined;
 for each v adjacent to u:
 if outOfRange(v), then continue;

COMPARATIVE ANALYSIS AND IMPLEMENTATION OF DIJKSTRA'S SHORTEST PATH ALGORITHM FOR EMERGENCY … A. H. Eneh & U. C. Arinze

Nigerian Journal of Technology, Vol. 36, No. 2, July 2017 883

 if d[v] > d[u] + w[u, v], then
 d[v] = d[u] + w[u, v];
 parent[v] = u;
 DecreaseKey[v, H];
 Procedure outOfRange(Constraint Area A, Vertex v):
 //A is a polygon given;
 //v is a Vertex being checked;
 Make a straight-line L from v to the right of v;
 Counter = 0;
 For each edge e of A
 if L intersects with e
 increase Counter by one;
 if Counter is even
 return true;
 else
return false;

5. DISCUSSION OF RESULTS

The results of the algorithm analysis and implemented

application were verified and validated using different

approaches. First, the algorithms were tested using real

data. The data were transformed into MATLAB codes and

executed on MATLAB 2010 code environment as shown

in figure 9. The 2-D plot shown in figure 10 was obtained.

From the plot Dijkstra and A*-search algorithms are

observed to converge, while restricted search algorithm

diverges. Since Dijkstra's algorithm offered better

performance as indicated the plot it was selected as the

algorithm of choice for implementing our application.

The realized application user interface home screen and

simulated runs for three selected Nigerian cities of Abuja,

Anambra and Enugu are shown in figure 11, 12, 13 and

14 respectively.

Figure 9: MATLAB code simulation

Figure 10: Run time/accuracy vs. distance plot

Figure 11: Realized user interface of TransRoute

application
Figure 12: Route Visualization within F.C.T

COMPARATIVE ANALYSIS AND IMPLEMENTATION OF DIJKSTRA'S SHORTEST PATH ALGORITHM FOR EMERGENCY … A. H. Eneh & U. C. Arinze

Nigerian Journal of Technology, Vol. 36, No. 2, July 2017 884

Third-Party Package Defnition
{
 "name": "laravel/laravel",
 "description": "The Laravel Framework.",
 "keywords": ["framework", "laravel"],
 "license": "MIT",
 "type": "project",
 "require": {
 "laravel/framework": "5.0.*",
 "alexpechkarev/google-maps": "1.0.7",
 "cornford/googlmapper": "2.*",
 "guzzlehttp/guzzle": "~4.0",
 "laravelcollective/html": "5.0"
 },
 "require-dev": {
 "phpunit/phpunit": "~4.0",
 "phpspec/phpspec": "~2.1"
 },
 "autoload": {
 "classmap": [
 "database"
],
 "psr-4": {
 "App\\": "app/"
 }
 },
 "autoload-dev": {
 "classmap": [
 "tests/TestCase.php"
]
 },
 "scripts": {
 "post-install-cmd": [
 "php artisan clear-compiled",
 "php artisan optimize"
],
 "post-update-cmd": [
 "php artisan clear-compiled",
 "php artisan optimize"
],
 "post-create-project-cmd": [
 "php -r \"copy('.env.example', '.env');\"",
 "php artisan key:generate"
]
 },
 "config": {
 "preferred-install": "dist"
 }
}

Site Controller
<?php namespace App\Http\Controllers;
use Cornford\Googlmapper\Facades\MapperFacade as Mapper;
use GuzzleHttp\Client;
use Illuminate\Http\Request;
use Illuminate\Support\Facades\URL;
class WelcomeController extends Controller {
 /*
 |--
 | Welcome Controller
 |--
 |
 | This controller renders the "marketing page" for the application and
 | is configured to only allow guests. Like most of the other sample
 | controllers, you are free to modify or remove it as you desire.
 |
 */
 /**
 * Create a new controller instance.
 *
 * @return void
 */
 public function __construct()
 {
 $this->middleware('guest');
 }
 /**
 * Show the application welcome screen to the user.
 *
 * @return Response
 */
 public function index()
 {
// $client = new Client(); $response = $client-
>get('https://maps.googleapis.com/maps/api/directions/json?origin=Enugu&desti
nation=Abuja&key=AIzaSyD7aFBwZSIrS5EvwS7d71fkZYzpV4eZbts')->getBody();
//
// $obj = \GuzzleHttp\json_decode($response,true);
//
// $startLat = $obj['routes'][0]['bounds']['northeast']['lat'];
// $startLng =$obj['routes'][0]['bounds']['northeast']['lng'];
// $endLat = $obj['routes'][0]['bounds']['southwest']['lat'];
// $endLng =$obj['routes'][0]['bounds']['southwest']['lng'];
// Mapper::map($startLat,$startLng)->polyline(
// [
// ['latitude' => $startLat, 'longitude' => $startLng],
// ['latitude' => $endLat, 'longitude' => $endLng]
//]);
//dd(url());
 return view('welcome');
 }
 public function test()
 {
 $client = new Client();
 $response = $client-
>get('https://maps.googleapis.com/maps/api/directions/json?origin=Enugu&destina
tion=Abuja&key=AIzaSyD7aFBwZSIrS5EvwS7d71fkZYzpV4eZbts')->getBody();
 $obj = \GuzzleHttp\json_decode($response,true);
 return view('test',$obj);
 }
 public function search(Request $request){
 if ($request->has('end_location') && $request->has('start_location'))
 {
 $endpoints = [
 'search_criteria'=>
 [
 'start'=> $request['start_location'], 'end'=>$request['end_location']
],
];
 return view('route',$endpoints);
 }else {
 //get data and map routes
 //dd(base_path());
 return view('route');
 }
 }
}

COMPARATIVE ANALYSIS AND IMPLEMENTATION OF DIJKSTRA'S SHORTEST PATH ALGORITHM FOR EMERGENCY … A. H. Eneh & U. C. Arinze

Nigerian Journal of Technology, Vol. 36, No. 2, July 2017 885

Home Page – Search controls Search Result – Map View

@extends('site')

@section('content')

 <div class="section section-basic">

 <div class="container">

 <div class="title">

 <h2>Routes.</h2>

 </div>

 {!! Form::open(array('url' => url().'/index.php/search', 'method' =>

'POST')) !!}

 <div id="inputs">

 <div class="row">

 <div class="col-sm-3">

 <div class="input-group">

 <i class="material-icons">directions_car</i>

 {!! Form::text('start_location','',array('class' => 'form-

control','placeholder'=>'Leaving')) !!}

 <label class="control-label" id="starterror" style="visibility:

hidden">Empty input</label>

 </div>

 <div class="row">

 <div class="col-sm-1">

 <button id="submit" class="btn btn-primary btn-round"

type="submit" onclick="validate(event);">

 <i class="material-icons">search</i> Search

 </button>

 </div>

 </div>

 </div>

 <div class="col-sm-3">

 <div class="input-group">

 <i class="material-icons">directions_car</i>

 {!! Form::text('end_location',old('end_location'),array('class'

=> 'form-control','placeholder'=>'Arriving')) !!}

 </div>

 </div>

 <div class="col-sm-3">

 <img src="{{asset('images/nigeria_map.jpg')}}" alt="Rounded

Image"

 class="img-container img-responsive">

 <div>Google Maps and Nigeria Logo</div>

 </div>

 </div>

 <div class="row">

 <div class="col-sm-3">

 </div>

 </div>

 </div>

 {!! Form::close() !!}

 </div>

 </div>

<script>

 function validate(e) {

 if(!$('#start_location').val())

 {

 console.log($('#start_location'))

 $('#starterror').visible();

 e.preventDefault();

 }

 }

</script>

@endsection

@extends('site')

@section('content')

 <div class="section section-tabs">

 <div class="container">

 <div class="row">

 <div class="col-md-8">

 <div class="title">

 <h3> Route : {!! $search_criteria['start'] !!} To {!!

$search_criteria['end'] !!}</h3>

 </div>

 <!-- Tabs with icons on Card -->

 <div class="card card-nav-tabs">

 <div class="header header-success">

 <!-- colors: "header-primary", "header-info", "header-

success", "header-warning", "header-danger" -->

 <div class="nav-tabs-navigation">

 <div class="nav-tabs-wrapper">

 <ul class="nav nav-tabs" data-tabs="tabs">

 <li class="active"><a href="#" data-

toggle="tab">Save Route

 <a href="#" data-

toggle="tab">History

 </div>

 </div>

 </div>

 <div class="content">

 <div id="map" style="height: 500px"></div>

 </div>

 </div>

 <!-- End Tabs with icons on Card -->

 </div>

 <div class="col-md-4">

 <div class="title">

 <h3>Advice</h3>

 </div>

 <!-- Tabs on Plain Card -->

 <div class="card card-nav-tabs card-plain">

 <div class="header header-danger">

 <!-- colors: "header-primary", "header-info", "header-

success", "header-warning", "header-danger" -->

 <div class="nav-tabs-navigation">

 <div class="nav-tabs-wrapper">

 <ul class="nav nav-tabs" data-tabs="tabs">

 <li class="active"><a href="#home" data-

toggle="tab">Recent

 <a href="#history" data-

toggle="tab">New

 </div>

 </div>

 </div>

 <div class="content">

 <div class="tab-content text-center">

 <div class="tab-pane active" id="home">

COMPARATIVE ANALYSIS AND IMPLEMENTATION OF DIJKSTRA'S SHORTEST PATH ALGORITHM FOR EMERGENCY … A. H. Eneh & U. C. Arinze

Nigerian Journal of Technology, Vol. 36, No. 2, July 2017 886

Database Configuration files and codes for TransRoute

Database Configuration files and codes for TransRoute

Figure 13: Route Visualization for F.C.T to Figure 14: Route Visualization for Anambra to

 Enugu Enugu

6. CONCLUSION

Shortest path problems are one of the basic problems

within Computer Science and specifically Operations

Research and Programming sub-fields respectively. In

this paper, we evaluated selected shortest path

algorithms such as Dijkstra; A*-search; restricted search,

Bellman-Ford; Floyd-Warshall; Gallo Pallottino graph

growth algorithm, et cetera and eventually selected

Dijkstra's SPA implemented with double bucket data

structure due to its fast and robust performance

attributes with linear run time complexity to implement

our route guidance application for optimal result. While

the A*-search algorithm is the most popular heuristic

algorithms, its computational efficiency in real

transportation networks is bounded by a factor of 2 or

50% saving in computational time as compared to an

ordinary label search algorithm. This application is

intended to be deployed in emergency response and

logistic planning.

7. REFERENCES

[1] Ahuja, R.K., and Orlin, J.B. "Graph and Network
Optimization", Journal of Optimization and
Operations Research, UNESCO-EOLSS, Vol. II, 1993.

[2] Lumsdaine, A., Gregor, D., Hendrickson, B., and Berry,
J.W. "Challenges in Parallel Graph Processing".
Parallel Processing Letters Volume 17, No. 5, p.20,
2007.

[3] Malewicz, G., Austern, M.H., Bik, A.J.C., Dehnert, J.C.,
Horn, I., Leiser, N., and Czajkowski, G. Pregel: A
System for Large-Scale Graph Processing. In
proceedings of SIGMOD’10, ACM 978-1-4503-0032-
2/10/06, Indianapolis, Indiana, USA, 2010.

COMPARATIVE ANALYSIS AND IMPLEMENTATION OF DIJKSTRA'S SHORTEST PATH ALGORITHM FOR EMERGENCY … A. H. Eneh & U. C. Arinze

Nigerian Journal of Technology, Vol. 36, No. 2, July 2017 887

[4] Singh, R.P., and Vandana. "Application of Graph
Theory in Computer Science and Engineering",
International Journal of Computer Applications,
Volume 104 – No.1, pp.10-12, 2014.

[5] George, B. "Königsberg Bridge Problem" First Draft,
UM ID# 2582042, CSCi 8701, G04

[6] http://mathforum.org/isaac/problems/
bridges1.html [Accessed: June 2, 2016].

[7] http://mathworld.wolfram.com /Koenigsberg
BridgeProblem.html [Accessed: June 6, 2016].

[8] http://en.wikipedia.org/wiki/Seven_Bridges_
of_Konigsberg [Accessed: June 1, 2016].

[9] Chartrand, G. "The Königsberg Bridge Problem: An
Introduction to Eulerian Graphs" Introductory Graph
Theory. New York: Dover, 1985.

[10] http://www.cut-the-knot.org/do_you_know/
graphs.shtm [Accessed: June 10, 2016].

[11] Schaffer, C.A. "A Practical Introduction to Data
Structures and Algorithm Analysis", Prentice Hall,
pp. 401-404, 1993.

[12] Venugopal, D. "Application of Graph Theory in
Computer Science and Engineering, International
Journal of Science, Technology & Management,
Volume No. 04, Special Issue No.1, pp.1192-1198,
2015.

[13] Dantzig, G.B. "Discrete-Variable Extremum
Problems". Operations Research, Volume 5, pp. 266–
277, 1957.

[14] Dijkstra, E.W. "A Note on Two Problems in
Connexion with Graphs", Numerische Mathematik 1.
pp. 269-271, 1959.

[15] Dantzig, G.B. "On the Shortest Route through a Road
Network". Operational Research Quarterly, 6, pp.
187–190, 1960.

[16] Whiting, P.D., Hillier, J.A. "A Method for finding the
Shortest Route through a Road Network".
Operational Research Quarterly; Vol 11, pp. 37–40,
1960.

[17] Ford, L.R. "Network Flow Theory". Technical Report
P-923, Santa Monica, CA: The Rand Corporation,
1956.

[18] Gallo, G., and Pallottino, S. "Shortest Path Methods: A
Unifying Approach". Mathematical Programming
Study, Vol. 26, pp. 38–64, 1986.

[19] Moore, E.F. "The Shortest Path through a Maze". In
Proceedings of International Symposium on
Switching Theory, 1957, Part II. Cambridge,
Massachusetts, Harvard Univ. Press. pp. 285–292.
MR 0114710.

[20] Glover, F., Klingman, D., and Philips, N. "A New
Polynomially Bounded Shortest Paths Algorithm".
Operations Research, 33, pp. 65-73, 1985.

[21] Moore, E.F. "The Shortest Path through a Maze". In
Proceedings of International Symposium on
Switching Theory, Part II, Cambridge, Massachusetts,
Harvard Univ Press, pp. 285-292, MR 0114710,1957.

[22] Gallo, G., and Pallottino, S. "Shortest Paths
Algorithms". Annals of Operations Research, Vol.13,
pp. 3-79, 1988.

[23] Cormen, T.H., Leiserson, C.E., Rivest, R.L., and
Clifford, C. "Introduction to Algorithms", 2nd ed., MIT
Press and McGraw-Hill, 2001.

[24] Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. "Network
Flows: Theory, Algorithms and Applications.
Englewood Cliffs, NJ: Prentice Hall, 1993

[25] Zhan, F. B., and Noon, C. E. "Shortest Path
Algorithms: An Evaluation Using Real Road
Networks", Transportation Science, 32.1, 65-73,
1998.

[26] Zhan, F. B. "Three Fastest Shortest Path Algorithms
On Real Road Networks", Journal of Geographic
Information and Decision Analysis, Vol.1, No.1,
pp.70-82, 1997.

[27] Gutenschwager, K., Volker, S., Radtke, A., Ulm, H.,
and Zeller, G. "The Shortest Path: Comparison of
Different Approaches and Implementations for the
Automatic Routing of Vehicles", Proceedings of the
2012 Winter Simulation Conference, IEEE, Munich,
Germany. pp. 3312-3323, 2012.

[28] Schaffer, C.A. "A Practical Introduction to Data
Structures and Algorithm Analysis", Prentice Hall,
pp. 401-404, 1998.

[29] Singh, R.P., and Vandana. "Application of Graph
Theory in Computer Science and Engineering",
International Journal of Computer Applications
(0975–8887), Vol. 104, No.1, pp. 10-12, 2014.

[30] S.G. Shrinivas et al. "Applications of Graph Theory in
Computer Science: An Overview", International
Journal of Engineering Science and Technology, Vol.
2, No.9, pp. 4610-4621, 2010.

[31] Narasingh D. "Graph Theory with Applications To
Engineering And Computer Science, Prentice Hall of
India, 1990.

[32] Venugopal, D. "Application of Graph Theory in
Computer Science and Engineering", International
Journal of Science, Technology and Management, Vol.
No. 04, Special Issue No. 01, pp.1192-1198, 2015.

[33] Tosuni, B. "Some Interesting Topics Of Graph
Theory In Modern Computer Science, European
Journal of Mathematics, Technology and Computer
Science, ISSN 1946-4690, 2005.

[34] Orlin, J.B; Madduri, K; Subramani, K and Williamson,
M. "A Faster Algorithm For The Single Source
Shortest Path Problem With Few Distinct Positive
Lengths". Journal of Discrete Algorithms - Vol. 8,
pp.189-198, 2010.

http://mathforum.org/isaac/problems/%20bridges1.html
http://mathforum.org/isaac/problems/%20bridges1.html
http://en.wikipedia.org/wiki/Seven_Bridges_%20of_Konigsberg
http://en.wikipedia.org/wiki/Seven_Bridges_%20of_Konigsberg
http://www.cut-the-knot.org/do_you_know/graphs.shtm
http://www.cut-the-knot.org/do_you_know/graphs.shtm

COMPARATIVE ANALYSIS AND IMPLEMENTATION OF DIJKSTRA'S SHORTEST PATH ALGORITHM FOR EMERGENCY … A. H. Eneh & U. C. Arinze

Nigerian Journal of Technology, Vol. 36, No. 2, July 2017 888

[35] Huijuan, W. et al. "Application of Dijkstra Algorithm
In Robot Path-Planning, Second International
Conference on Mechanic Automation and Control
Engineering (MACE), pp. 1067-1069, 2011.

[36] Liu, X-Y and Yan-Li, C. "Application of Dijkstra
Algorithm in Logistics Distribution Lines",
Proceedings of the Third International Symposium
on Computer Science and Computational Technology
(ISCSCT '10), pp. 048-050, 2010.

[37] Abujassar, S.R., and Ghanbari, M. "Efficient
Algorithms To Enhance Recovery Schema In Link
State Protocols", International Journal of Ubicomp
(IJU), Vol. 2, No. 3, 2011.

[38] Coltun, R., Ferguson, D., Moy, J.A., and Lindem.
"OSPF for IPv6". The Internet Society, OSPFv3, 2008.
Available at: https://en.wikipedia.org/wiki/Open
_Shortest_Path_First [Accessed: Wednesday, June 1,
2016 5:12:03].

 [39] Katz, D. "OSPF vs IS-IS". North American Network
Operators Group NANOG 19. Albuquerque, New
Mexico, U.S.A, 2000.

[40] Geisberger, R; and Shieferdecker, D. "Advanced
Route Planning in Transportation Networks", In
Proceedings of the 12th Workshop on Algorithm
Engineering and Experiments (ALENEX’13),
Universitat des Landes Baden Württemberg,
Germany, 2013.

[41] Erickson, J. "Algorithms, Lecture 21: Shortest
Paths" [Fa'14], p.4, 2014. Available at:
 http://www.cs.uiuc.edu/~jeffe/teaching/algorit
hms [Accessed on: June 16, 2016].

[42] Sedgewick, R., and Wayne, K. "Algorithms". Pearson
Education, 4th edition, 2011.

[43] Aho, A. V., Hopcroft, J. E., and Ullman, J. D. "Data
Structures and Algorithms", Addison-Wesley,
Reading, MA, U.S.A., 1987.

[44] Ralston, B., Tharakan, G., and Liu, C. (1994). A
Spatial Decision Support System for Transportation
Policy Analysis, Journal of Transport Geography, Vol.
2, pp. 101-110.

[45] Fredman, M.L., Tarjan, R.E. Fibonacci Heaps and
their Uses In Improved Network Optimization
Algorithms, Journal of the Association for Computing
Machinery (ACM), Vol. 34, No. 3, pp. 596–615, 1987.

[46] Van Emde Boas, P., Kaas, R., and Zijlstra, E. "Design
and Implementation of an Efficient Priority Queue".
Math. Syst. Theory 10, pp. 99-27, 1977.

[47] Hart, P. E.; Nilsson, N. J., Raphael, B. A. "Formal Basis
for the Heuristic Determination of Minimum Cost
Paths". IEEE Transactions on Systems Science and
Cybernetics SSC4 4 (2), pp. 100–107, 1968.

[48] Cherkassky, B. V., Goldberg, A. V., and Radzik, T.
"Shortest Paths Algorithms: Theory and
Experimental Evaluation". Mathematical
Programming: Series A and B, Vol.73, pp.129–174,
1993.

[49] Doran, J. "An Approach to Automatic Problem-
Solving". Machine Intelligence, Vol.1, pp. 105-127,
1967.

[50] Klein, D., and Manning, C.D. "A* parsing: Fast Exact
Viterbi Parse Selection. Proc. NAACL-HLT, 2003.

[51] Johnson, D.B. "Efficient Algorithms For Shortest
Paths In Sparse Networks, Journal of the Association
of Computing Machinery (ACM), Vol. 24, pp. 1-13,
1977.

[52] Black, P.E. "Johnson's Algorithm, Dictionary of
Algorithms and Data Structures", National Institute
of Standards and Technology, U.S.A., 2004.

[53] Fu, L., Sun, D. and Rilett, L.R. "Heuristic Shortest
Path Algorithms For Transportation Applications:
State Of The Art". Computers and Operations
Research, Vol. 33, pp. 3324–3343, 2006.

https://en.wikipedia.org/wiki/Open
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms

