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ABSTRACT 

TransRoute: a web-based vehicle route planning application is proposed in this paper. This application leverages 

existing input-output (I/O) efficient implementations of shortest path algorithms (SPAs) to implement the proposed 

system that will fundamentally address the problems experienced in moving people, goods and services from one 

location to another. A number of SPAs are evaluated using landau notations. Main functionalities of the system will be 

implemented as a web-enabled geographic information system (GIS) application based on open-source technologies 

and object-oriented software development methodology using unified modeling language. Pilot implementation is done 

based on spatial data of three selected states in Nigeria, pulled from web-based mapping tools like Google Maps and 

Microsoft Bings respectively. In conclusion, the Dijkstra's algorithm implemented with double bucket dynamic data 

structure is selected for implementing the proposed route planning system, as past research efforts has proven that it 

is the fastest with run-time improvements from O(m + n/log C) to O(m) respectively. 
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1. INTRODUCTION 

In this paper, we propose TransRoute: a web-based, 

route planning system that will leverage advanced data 

structures, shortest path algorithms, graph and network 

optimization models in routing vehicles for emergency 

response during natural disasters, fire outbreaks, health 

crisis and courier package for cost minimization in 

logistics and transport sector of the Nigerian economy, 

hence substantially helping in saving lives, increase 

bottom line of logistic firms and improve efficiency in 

service delivery.  

This work is motivated by real world problems that arise 

in emergency response, logistics, transportation 

problems, computer networks and telecommunication 

respectively that seeks to determine the optimum path. A 

plethora of route queries problems in emergency 

response, road traffic simulation, logistic planning and 

transportation sector of the economy exists, occasioned 

by high traffic congestion, inefficient route planning, bad 

roads and vehicular air pollution respectively. Despite 

heightened research interest in transportation related 

decision analysis within a GIS environment the need for 

efficient, effective and timely response to emergencies, 

facility location, network flows, vehicle routing and 

delivery of logistic package by courier firms and 

emergency response agencies like: DHL, FedEx, UPS, 

EMS, NEMA, hospitals and fire service, from source to 

their respective destinations at minimal cost and 

promptly has been a major challenge faced by these 

firms, agencies and application developers around the 

world due to its similarity to the travelling salesman 

problem (TSP) which requires that: given the cost of 

travel between n cities or stops, the objective is to 

minimize the total cost of a single route that visits all n 

cities/stops and returns to its starting point. At a glance, 

this type of problem may appear seemingly trivial, given 

the relative ease of determining the shortest possible 

route for single-stop routes using algorithms such as A*-

Search, Dijkstra, Bellman-Ford and Floyd-Warshall 

algorithms respectively. However, any given TSP route is 

actually one of many possible combinations of multiple 

single-stop routes, thus making this type of multi-stop 

routing non-deterministic polynomial time (NP) hard, 

combinatorial optimization problem that can be modeled 

using equation 1 below: 

R = N!                        (1) 

Where R is the number of unique possible TSP routes for 

a given number, N of cities/stops. Based on the above 

equation, If the starting city is fixed for all solutions, 

there are only (N-1)! possible solutions. These 

expressions make TSP routing a problem that exhibit 

extreme combinatorial explosion, hence as the number of 
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stops to be solved increases, the problem becomes 

exponentially more complex. An example of the effects of 

combinatorial explosion on search space of possible 

solutions for this type of routing problem is shown in 

Table 1.  

 

Table 1: Effects of combinatorial explosion on search 

space of possible solutions 

Number of Route 
Stops 

Number of Possible Routes 

5 120 
10 3,628,800 
15 1,307,674,368,000 
20 2,432,902,008,176,640,000 
30 2.65e+32 
40 8.16e+47 
50 3.04e+64 

 

The shortest path problem (SPP) is compounded by the 

slow and inaccurate results of current commercial 

solutions and the expansion of existing road networks, 

covering hundreds of thousands and millions of road 

junctions. Using simple approaches yields very slow 

query times, which can either be inconvenient for the 

end-users or expensive for the route service provider. 

Using advanced heuristic techniques yields inaccurate 

results. For the client, this can mean waste of time and 

money and for the service provider; the application 

development process becomes a difficult balancing act 

between speed and sub-optimality of the computed 

routes, hence the considerable interest in the 

development of more efficient and accurate route 

planning techniques leveraging robust mapping 

applications like Google maps, MapQuest and Microsoft 

Bings respectively. 

To achieve the aim of this research, a road network can 

be represented as a directed, weighted graph, G = (V, E), 

as shown in figure 1, with a vertex set V  with n vertices, 

where each vertex refers to a city and an edge set E ⊆ V 

× V with m edges, where edges connect one city to 

another city, a weight function w : E ⟶ ℝ0
+ assigns a 

non-negative weight w((u, v)) to each edge (u, v). The 

weights on the edges indicate the distance between two 

connected cities, the SPP consist of finding a directed 

path of minimum cost (length) from a specified source 

node or vertex v ∈ V to all other vertices in V in a 

directed network in which each arc (i,j) has an associated 

cost (or length) Cij. The SPP is a special case of the 

minimum-cost flow problem. This formulation assumes 

that there are no negative costs directed cycles, called 

negative cycles in the network, [1]. 

SPAs have several important variants. The s-t shortest 

path problem requires finding a single shortest-path 

between given vertices s and t; it has obvious practical 

applications like driving directions and has received a 

great deal of attention. 

 

 
Figure 1: Showing source and sink nodes for a directed, 

weighted graph 
 

It is also relatively easy, solutions in typical graphs like 

road networks visit a tiny fraction of vertices, with [2] 

observing visits to 80,000 vertices out of 32 million in 

one example [3]. A third variant, all-pairs shortest paths, 

is impractical for large graphs because of its O(V2) 

storage requirements. The origin of graph theory 

according to [4], started with the problem of Königsberg 

Bridge in 1735, [5 – 10]. This problem led to the concept 

of Eulerian graph. A graph as shown in figure 2 (a-b), is a 

pair G = (V, E), [11], [12]; where V is the set of all 

vertices and E the set of all edges; and the elements of E 

are subsets of V containing exactly 2 elements is called a 

labelled graph if each edge e = U*V is given the value 

f(U*V) = f(u)*f(v), where * is a binary operation. In 

literature one can find * to be either addition, 

multiplication, modulo addition or absolute difference, 

modulo subtraction or symmetric difference. The 

number of vertices is written asV , and the number of 

edges is written as E  . E  can range from zero to a 

maximum of V 2- V . 

 
(a) 

 
(b) 

Figure 2: Examples of graphs: (a). Directed graph 

(digraph), (b). Undirected graph 

 

The linear programming (LP) formulation [13] for the 

shortest path problem (SPP) is: 
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  Min (i,j)A di,jxi,j                                                          (2) 

subject to (i,k)A xi,k - (j,i)A xj,i = 0   i  s, t                  (3)                     

       (s,i)A xs,i  = 1                                                                       (4) 

       (j,t)A xj,t  = 1                                                                       (5) 

            0  xi,j  1                                                                          (6) 

 

There are two classes of algorithms to solve shortest 

path problems viz: Label-setting algorithm (LSA) [14 - 

16], and Label-correcting algorithm (LCA) such as [17 - 

19] graph growth algorithms with two queues (TWO-Q) 

data structures and threshold based algorithms such as: 

[20]. The LCA uses a list data structure to manage the 

scan eligible node set that needs to be examined during 

the shortest path tree building process. It is the 

variations of the list operation policy that are used to 

differentiate the LCA such as LCA with queue [21], and 

LCA with threshold lists [20]. The major feature of an 

LCA is that it cannot provide the shortest path between 

two nodes before the shortest path to every node in the 

network is identified. The necessity of this type of 

operation (referred as one-to-all search mode) makes 

the LCA more suitable in situations when many shortest 

paths from a root node need to be found. Based on 

empirical evidence the LCA is often used in 

transportation planning applications where multiple 

routes have to be identified. Both algorithms are iterative 

and assign tentative distance labels to nodes at each step, 

which are estimates of the upper bounds complexity on 

the shortest path distances. LSA designate one label as 

permanent (optimal) at each iteration. LCA consider the 

labels as temporary until the final step when they all 

become permanent. According to [22, 23] almost all SPAs 

of practical interest can be derived from one single 

prototype method viz: 

 

Step 1: Initialization: Set i = o; L(i)= 0; L(j )=   j i; P(i)= 

NULL 

Define the scan eligible node set Q = {i};  

Step 2: Node Selection: Select and remove a node (i) from 

Q. 

Step 3: Node Expansion: Scan each link emanating from 

node i. For each link a = (i, j)  

If L(i)+ ca<L(j )  

then L(j)= L(i)+ ca; P(j) = a  

Insert node j into Q  

Step 4: Stopping Rule: If Q=  then STOP 

              Otherwise: goto step 2 

 

In the view of [24], the original Dijkstra algorithm 

partitions all nodes into two sets: temporarily and 

permanently labelled nodes. At each iteration, it selects a 

temporarily labelled node with the minimum distance 

label as the next node to be scanned [14, 24]. Once a 

node is scanned, it becomes permanently labelled. A 

natural enhancement of the original Dijkstra algorithm is 

to maintain the labelled nodes in a data structure in such 

a way that the nodes are sorted by distance labels. The 

bucket data structure is just one of those structures. 

Buckets are sets arranged in a sorted fashion . Bucket k  

stores all temporarily labelled nodes whose distance 

labels fall within a certain range. Nodes contained in each 

bucket can be represented with a doubly- linked list. A 

doubly-linked list only requires O(1) time to complete an 

operation in each distance update in the bucket data 

structure. These operations include: a). checking if a 

bucket is empty; b). adding an element to a bucket; and 

c). deleting an element from a bucket, [16, 25, 26]. Table 

1 and 2 summarize the various algorithms tested and 

various SPAs runtime complexities obtained using 

Landau notation. 

The routing of vehicles or personnel in complex logistic 

systems is a task that needs to be solved in numerous 

applications, e.g., detailed models of transport networks 

or order picking areas, whose number of relevant nodes 

can easily exceed 10,000 nodes [27]. Graphs provide the 

ultimate in data structure flexibility, because they can 

model both real-world systems and abstract problems; 

hence find wide applications [28 – 34].  

Many interesting route planning problems can be 

modeled and solved by computing shortest-paths in a 

suitably modeled, weighted graph representing a 

transportation network. For large networks, the classical 

Dijkstra’s algorithm [14] to compute shortest path in 

robot path-planning [35]; logistics distribution lines [36]; 

link-state routing (LSR) protocols [37]; open-shortest 

path first (OSPF) [38] and intermediate-system-to-

intermediate-system (IS-IS) routing protocols and 

algorithms in computer and telecommunication 

networks, [39] respectively are used.  

The rest of this paper is organised as follows. Section 2 

details selected related works in the field of SPAs. 

Systems composition, methodology and architecture are 

outlined in section 3. The results of the various 

computational algorithmic simulations and software 

implementations are stated in Section 4. Discussion and 

analysis of the results obtained are discussed in section 5 

and a brief conclusion is provided in section 6.  

 

2. RELATED WORKS 

The review of related works informed the choice of 

methodologies, technologies and paradigms employed in 

the advancement of this research problem. Here we 

briefly outline the various algorithmic paradigms and 

their advancements from new design paradigms, data 

structures improvements and input restrictions so as to 

contextualize our work [34]. Considerable empirical 
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studies on the performance of shortest path algorithms 

have been reported in the literature, interested readers 

are referred to [18 - 22, 25 – 27, 34]. 

The first polynomial time, greedy-based algorithm for 

the SPA problem was conceived by [14] in 1956 and 

'published' in 1959 [1, 14, 40, 41]. The implementation 

and simplest possible description of Dijkstra’s algorithm 

has been provided in section 4 and other classical books 

such as Cormen et al [23], Sedgewick and Wayne [42], 

Aho, Hopcroft, and Ullman [43] and need no further 

description. The run time of the algorithm is dependent 

on the priority queue implementation data structure 

which is a part of the algorithm. Dijkstra’s algorithm does 

not use a min-priority queue and has a running time of 

O(|V|2) but when implemented in a Fibonacci heap, it 

runs in O(|E|+|V|log|V|), where |E| is the number of 

edges, |V| the number of vertices and O the upper bound 

running time. This makes the algorithm asymptotically 

the fastest known shortest path algorithm for directed 

graphs with unbounded non-negative weights. A 

combination of a radix heap and a previously known data 

structure called a Fibonacci heap is due to [44], [45] 

gives a bound of O(m + n/log C). The best previously 

known bounds are O(m + n log C) using Fibonacci heap 

alone and O(m log n log C) using the priority queue 

structure of Van Emde Boas et al. [46].  

In another early contribution, [47] developed a search 

strategy, called A*-Search, to solve for minimum cost 

paths, but a recent study by [48] is one of the most 

comprehensive evaluations of shortest path algorithms 

to date. They evaluated a set of 17 SPAs. In their 

experiment, they coded the 17 algorithms using C 

programming language, and tested the C programs on a 

SUN Sparc-10 workstation. One-to-all shortest paths can 

be computed by these C programs. The results of their 

studies concluded that no single algorithm consistently 

beat all others over all problem classes. Overall, they 

suggested that the Dijkstra algorithm implemented with 

a double-level bucket structure (DKD) is the best 

algorithm for networks with non-negative arc lengths. 

Using the open-source codes written by [49, 50] 

conducted an evaluation of 15 of the 17 algorithms on a 

variety of real road networks. They concluded that TWO-

Q, DKD and Dijkstra algorithm incorporating 

approximate buckets (DKA, which is a variant of the 

bucket approach than DKD) are the three fastest one-to-

all SPAs.  

In a subsequent study, [23, [50 – 52] compared these 

three algorithms for the one-to-one shortest path 

problem on 10 different road networks. They suggested 

that DKA is the best choice for the case when shortest 

paths are somewhat short and that Pallottino’s TWO-Q is 

the best choice in situations where the shortest paths are 

relatively long.  

Fu et.al [53], proposed an optimal heuristic search 

strategy to find shortest path for Vehicle Navigation 

System by physically cutting off area within which the 

shortest path is not supposed to appear, hence known as 

the restricted search strategy.  

Given the works of [3, 49 – 52] one can conclude that the 

top three candidates for SPA application on real-road 

networks are two versions of Dijkstra’s algorithm (DKA 

and DKD), and Pallottino’s TWO-Q algorithm as shown in 

table 1. Table 2 shows the performance of the SPAs. For 

the sake of this research we will analyse Dijkstra's SPA 

with double bucket [14], Hart et al A*-Search algorithm 

[47] and Fu et.al [53] restricted search heuristic 

respectively. 

 

3. SYSTEM COMPOSITION, METHODOLOGY AND 

ARCHITECTURE 

A web-based, GIS-enabled model is selected as the 

implementation approach, as we envisioned the realized 

system would be accessible online by any web user from 

any location within the geographical test area of 

Anambra, Enugu and Abuja, F.C.T. A three-tier 

architectural framework is adopted towards 

implementing the proposed system. Hence, the system 

will have-user interface, application logic, data and 

server layers respectively as shown in figure 3 and 4 

respectively. PHP which is widely used as a general-

purpose scripting language that is especially suited for 

web application development is used as the 

implementation language, alongside model-view-

controller (MVC) and Laravel code framework. It can be 

embedded in (X)HTML or XML markup languages 

respectively. It serves as a tool for creating dynamic 

data-driven web pages. Google maps mapping service is 

integrated to render spatial data into map data for route 

visualization so as to enhance user experience and look-

and-feel of the application. Apache MySQL RDBMS will be 

leveraged for the data repository implementation. 

Topology building, network creation and data cleaning 

and correction will be handled using Quantum GIS 1.6. 

Object-oriented software development methodology 

with unified modeling language (UML) architectural 

framework for designing the system components, as 

shown in Figures 5, 6, 7 and 8 respectively.   
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Figure 3: Three-tier architectural framework of TransRoute application 

 

 

 

 

 

 

 

 

Figure 4: Architectural layout of the proposed system 

 

 

 Figure 5: Class diagram of the proposed system 
 

Figure 6: Sequence diagram of the proposed system 

 
Figure 7: Use-Case diagram of the proposed system 

 
Figure 8: Data flow diagram of the proposed system 

  

https://camo.githubusercontent.com/09ed919a32a8dafb6ffccadbb127b902fa50cf2f/68747470733a2f2f7261772e6769746875622e636f6d2f616368696e6b756c73687265737468612f4e697264657a612f6d61737465722f696d616765732f757365436173652e706e67
https://camo.githubusercontent.com/e5cd8a11af574a1eb9575f5d5a26f7b226e60c6d/68747470733a2f2f7261772e6769746875622e636f6d2f616368696e6b756c73687265737468612f4e697264657a612f6d61737465722f696d616765732f6c6576656c316466642e706e67
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4. RESULTS AND SOFTWARE IMPLEMENTATION 

DETAILS 

Computer simulation run of the three selected 

algorithms were performed on Toshiba PC with Intel 

Core i5 86x 64-bit processor architecture, CPU running at 

2.50 GHZ, and 8 GB RAM memory on Windows 8.1 

platform. MATLAB software version 7.11.0 R2010b was 

used in performing the algorithm simulation so as to test 

the optimality of the three selected algorithms. The 2-D 

plot obtained is shown in figure 10. The various 

algorithms evaluated, implementation data structures 

and their run time complexities are provided in tables 1 

and 2. Algorithms 1, 2, and 3 provides details of Dijkstra, 

A*-Search and Restricted Search algorithms analyzed 

respectively.  

The SPA was implemented using PHP 2.1, Laravel 

mapping application programming interface (API) 

framework version 5.0, Google map 1.0.7 and HTML 5.0 

respectively. The choice is justified by the robust and 

scalable application development environment they 

provide. 

Algorithms of the three fastest SPAs are shown below. 

PHP code implementation of Dijkstra's SPA (the 

algorithm of choice) is also shown below with its 

different modules. 

 

Table 1: Evaluated Shortest Path Algorithms (SPAs) 

Algorithm Class Abbreviation Implementation Data Structures 

A*-Search 
ASH 
ASBD 
ASBA 

A*-Search algorithm with k-array Heap 
A*-Search algorithm  with Double Buckets 
A*-Search algorithm with Approximate Buckets data 
structures 

Bellman-Ford-Moore 
BFM 
BFP 

Bellman-Ford-Moore  
Bellman-Ford-Moore with parent- - checking 

Dijkstra 

DKQ 
DKB 
DKD 
DKA 
DKM 
DKF 
DKH 
DKR 

Dijkstra's Naive Implementation 
Dijkstra's Buckets - - Basic Implementation 
Dijkstra's Buckets - - Double Implementation 
Dijkstra's Buckets - - Approximate  
Dijkstra's Buckets - - Overflow Bag 
Dijkstra's Heap - - Fibonacci 
Dijkstra's Heap - - k- - array 
Dijkstra's Heap - - R- - Heap 

Graph Growth Model 
TQQ (Two-Q) 
 
PAP 

Graph Growth - - Gallo & Pallottino algorithm with two 
queues data structures 
Graph Growth - - Pape 

Threshold Algorithm THR Threshold Algorithm 
Topological Ordering GR1 Topological Ordering - - Basic 
Topological Ordering GR2 Topological Ordering - - Distance Updates 

Source [43] 

 

Table 2: Complexity Analysis of different shortest paths algorithms [10] 

Algorithm Negative Edge Single Source All Sources Time Complexity Space Complexity 

Dijkstra    O(|E|+ |V|log|V|) O(V2) 

Bellman-Ford    O(|V|.|E|) O(V2) 

Floyd-Warshall    O(V3) O(V3) 

A*-Search    A function of the heuristic A function of the heuristic 

Johnson's    O(V2log V + VE) A function of the heuristic 

Prim's    O (VLog|V|+ELog |V|) O(|E| + |V| 2) 

Kruskal's    O(|E| log|V|) O(|E|log|E|) 

 

Algorithm 1: Dijkstra's Algorithm 
INITIALIZATION: 
            for all v V do 
    dist[v]←∞ 
             final[v] ← false 
          pred[v]←−1 
           end for 
        dist[s] ← 0 
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    final[s] ← true 
          recent ← s 

{// vertex s is permanently labeled with 0. All other vertices are temporarily labeled with ∞. Vertex s is 
the most recent vertex to be permanently labeled //} 

 ITERATION: 
   while final[t] = false do 
      for every immediate successor v of recent do 
        if not final[v] then {// update temporary labels //} 
                     newlabel ← dist[recent] + wrecent,v 
                     if newlabel < dist[v] then 
  dist[v] ← newlabel 
  pred[v] ← recent 
  {// re-label v if there is a shorter path via vertex recent and make recent the 
  predecessor of v on the shortest path from s //} 
          end if 
                   end if 
                end for 
    let y be the vertex with the smallest temporary label, which is = ∞ 
   final[y] ← true 
             recent ← y 
            {// y, the next closest vertex to s gets permanently labeled //} 
      end while 
 
 
Algorithm 2: A*-Search Algorithm 
                f(V) = distance from S to V + estimate of the distance to D. 
                         = d(V) + h(V,D) 
                                         = d(V) + sqrt( (x(V) – x(D))2 + (y(V) – y(D))2) 
           where x(V), y(D) and x(V), y(D) are the coordinates for node V and the destination 
    node D. 
    The A* Search algorithm: 
    for each u G: 
              d[u] = infinity; 
                   parent[u] = NIL; 
                   End for 
   d[s] = 0; 
                  f(V) = 0; 
                  H = {s}; 
                        while NotEmpty(H) and targetNotFound: 
                                u = Extract_Min(H); 
                       label u as examined; 
                 for each v adjacent to u: 
           if d[v] > d[u] + w[u, v] , then 
         d[v] = d[u] + w[u, v]; 
     p[v] = u; 
   f(v) = d[v] + h(v, D); 
DecreaseKey[v, H]; 
 
 
Algorithm 3: Restricted Search Algorithm 
For each u G: 
                d[u] = infinity; 
      parent[u] = NIL; 
    End for 
                d[s] = 0; 
             H = {s}; 
   while NotEmpty(H) and targetNotFound: 
   u = Extract_Nin(H); 
              label u as examined; 
   for each v adjacent to u: 
   if outOfRange(v), then continue; 
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   if d[v] > d[u] + w[u, v], then 
   d[v] = d[u] + w[u, v]; 
   parent[v] = u; 
             DecreaseKey[v, H]; 
        Procedure outOfRange(Constraint Area A, Vertex v): 
 //A is a polygon given; 
 //v is a Vertex being checked; 
 Make a straight-line L from v to the right of v; 
 Counter = 0; 
 For each edge e of A 
 if L intersects with e 
 increase Counter by one; 
 if Counter is even 
          return true; 
       else 
return false; 
 

5. DISCUSSION OF RESULTS 

The results of the algorithm analysis and implemented 

application were verified and validated using different 

approaches. First, the algorithms were tested using real 

data. The data were transformed into MATLAB codes and 

executed on MATLAB 2010 code environment as shown 

in figure 9. The 2-D plot shown in figure 10 was obtained. 

From the plot Dijkstra and A*-search algorithms are 

observed to converge, while restricted search algorithm 

diverges. Since Dijkstra's algorithm offered better 

performance as indicated the plot it was selected as the 

algorithm of choice for implementing our application. 

The realized application user interface home screen and 

simulated runs for three selected Nigerian cities of Abuja, 

Anambra and Enugu are shown in figure 11, 12, 13 and 

14 respectively. 

 

 

 
Figure 9: MATLAB code simulation 

 
Figure 10: Run time/accuracy vs. distance plot 

 
Figure 11: Realized user interface of TransRoute 

application  
Figure 12: Route Visualization within F.C.T 
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Third-Party Package Defnition 
{ 
   "name": "laravel/laravel", 
   "description": "The Laravel Framework.", 
   "keywords": ["framework", "laravel"], 
   "license": "MIT", 
   "type": "project", 
   "require": { 
      "laravel/framework": "5.0.*", 
      "alexpechkarev/google-maps": "1.0.7", 
      "cornford/googlmapper": "2.*", 
      "guzzlehttp/guzzle": "~4.0", 
      "laravelcollective/html": "5.0" 
   }, 
   "require-dev": { 
      "phpunit/phpunit": "~4.0", 
      "phpspec/phpspec": "~2.1" 
   }, 
   "autoload": { 
      "classmap": [ 
         "database" 
      ], 
      "psr-4": { 
         "App\\": "app/" 
      } 
   }, 
   "autoload-dev": { 
      "classmap": [ 
         "tests/TestCase.php" 
      ] 
   }, 
   "scripts": { 
      "post-install-cmd": [ 
         "php artisan clear-compiled", 
         "php artisan optimize" 
      ], 
      "post-update-cmd": [ 
         "php artisan clear-compiled", 
         "php artisan optimize" 
      ], 
      "post-create-project-cmd": [ 
         "php -r \"copy('.env.example', '.env');\"", 
         "php artisan key:generate" 
      ] 
   }, 
   "config": { 
      "preferred-install": "dist" 
   } 
} 
 

Site Controller  
<?php namespace App\Http\Controllers; 
use Cornford\Googlmapper\Facades\MapperFacade as Mapper; 
use GuzzleHttp\Client; 
use Illuminate\Http\Request; 
use Illuminate\Support\Facades\URL; 
class WelcomeController extends Controller { 
   /* 
   |-------------------------------------------------------------------------- 
   | Welcome Controller 
   |-------------------------------------------------------------------------- 
   | 
   | This controller renders the "marketing page" for the application and 
   | is configured to only allow guests. Like most of the other sample 
   | controllers, you are free to modify or remove it as you desire. 
   | 
   */ 
   /** 
    * Create a new controller instance. 
    * 
    * @return void 
    */ 
   public function __construct() 
   { 
      $this->middleware('guest'); 
   } 
   /** 
    * Show the application welcome screen to the user. 
    * 
    * @return Response 
    */ 
   public function index() 
   { 
//    $client = new Client();  $response = $client-
>get('https://maps.googleapis.com/maps/api/directions/json?origin=Enugu&desti
nation=Abuja&key=AIzaSyD7aFBwZSIrS5EvwS7d71fkZYzpV4eZbts')->getBody(); 
// 
//    $obj = \GuzzleHttp\json_decode($response,true); 
// 
//    $startLat = $obj['routes'][0]['bounds']['northeast']['lat']; 
//    $startLng =$obj['routes'][0]['bounds']['northeast']['lng']; 
//    $endLat = $obj['routes'][0]['bounds']['southwest']['lat']; 
//    $endLng =$obj['routes'][0]['bounds']['southwest']['lng']; 
//    Mapper::map($startLat,$startLng)->polyline( 
//                   [ 
//                      ['latitude' => $startLat, 'longitude' => $startLng], 
//                      ['latitude' => $endLat, 'longitude' => $endLng] 
//                   ]); 
//dd(url()); 
      return view('welcome'); 
   } 
   public function test() 
   { 
      $client = new Client(); 
      $response = $client-
>get('https://maps.googleapis.com/maps/api/directions/json?origin=Enugu&destina
tion=Abuja&key=AIzaSyD7aFBwZSIrS5EvwS7d71fkZYzpV4eZbts')->getBody(); 
      $obj = \GuzzleHttp\json_decode($response,true); 
      return view('test',$obj); 
   } 
   public function search(Request $request){ 
      if ($request->has('end_location') && $request->has('start_location')) 
      { 
         $endpoints = [ 
                     'search_criteria'=> 
                        [ 
                           'start'=> $request['start_location'], 'end'=>$request['end_location'] 
                        ], 
                     ]; 
         return view('route',$endpoints); 
      }else { 
     //get data and map routes 
      //dd(base_path()); 
         return view('route'); 
      } 
   } 
} 
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Home Page – Search controls                                                       Search Result – Map View 

     
 

 

@extends('site') 

@section('content') 

    <div class="section section-basic"> 

        <div class="container"> 

            <div class="title"> 

                <h2>Routes.</h2> 

            </div> 

            {!!  Form::open(array('url' => url().'/index.php/search', 'method' => 

'POST')) !!} 

            <div id="inputs"> 

                <div class="row"> 

                    <div class="col-sm-3"> 

                        <div class="input-group"> 

                        <span class="input-group-addon"> 

                           <i class="material-icons">directions_car</i> 

                        </span> 

                            {!! Form::text('start_location','',array('class' => 'form-

control','placeholder'=>'Leaving')) !!} 

                            <label class="control-label" id="starterror" style="visibility: 

hidden">Empty input</label> 

                        </div> 

                        <div class="row"> 

                            <div class="col-sm-1"> 

                                <button id="submit" class="btn btn-primary btn-round" 

type="submit" onclick="validate(event);"> 

                                    <i class="material-icons">search</i> Search 

                                </button> 

                            </div> 

                        </div> 

                    </div> 

                    <div class="col-sm-3"> 

                        <div class="input-group"> 

                        <span class="input-group-addon"> 

                           <i class="material-icons">directions_car</i> 

                        </span> 

                            {!! Form::text('end_location',old('end_location'),array('class' 

=> 'form-control','placeholder'=>'Arriving')) !!} 

                        </div> 

                    </div> 

                    <div class="col-sm-3"> 

                        <img src="{{asset('images/nigeria_map.jpg')}}" alt="Rounded 

Image" 

                             class="img-container img-responsive"> 

                        <div>Google Maps and Nigeria Logo</div> 

 

                    </div> 

                </div> 

 

                <div class="row"> 

                    <div class="col-sm-3"> 

 

                    </div> 

                </div> 

            </div> 

 

            {!!  Form::close() !!} 

        </div> 

    </div> 

 

<script> 

    function validate(e) { 

       if(!$('#start_location').val()) 

    { 

        console.log($('#start_location')) 

        $('#starterror').visible(); 

        e.preventDefault(); 

    } 

    } 

</script> 

@endsection 

 

 

@extends('site') 

@section('content') 

    <div class="section section-tabs"> 

        <div class="container"> 

            <div class="row"> 

                <div class="col-md-8"> 

                    <div class="title"> 

                        <h3> Route : {!!  $search_criteria['start']  !!} To {!! 

$search_criteria['end']  !!}</h3> 

                    </div> 

                    <!-- Tabs with icons on Card --> 

                    <div class="card card-nav-tabs"> 

                        <div class="header header-success"> 

                            <!-- colors: "header-primary", "header-info", "header-

success", "header-warning", "header-danger" --> 

                            <div class="nav-tabs-navigation"> 

                                <div class="nav-tabs-wrapper"> 

                                   <ul class="nav nav-tabs" data-tabs="tabs"> 

                                        <li class="active"><a href="#" data-

toggle="tab">Save Route</a></li> 

                                        <li><a href="#" data-

toggle="tab">History</a></li> 

                                    </ul> 

                                </div> 

                            </div> 

                        </div> 

                        <div class="content"> 

                            <div id="map" style="height: 500px"></div> 

                        </div> 

                    </div> 

                    <!-- End Tabs with icons on Card --> 

                </div> 

                <div class="col-md-4"> 

                    <div class="title"> 

                        <h3>Advice</h3> 

                    </div> 

                    <!-- Tabs on Plain Card --> 

                    <div class="card card-nav-tabs card-plain"> 

                        <div class="header header-danger"> 

                            <!-- colors: "header-primary", "header-info", "header-

success", "header-warning", "header-danger" --> 

                            <div class="nav-tabs-navigation"> 

                                <div class="nav-tabs-wrapper"> 

                                    <ul class="nav nav-tabs" data-tabs="tabs"> 

                                        <li class="active"><a href="#home" data-

toggle="tab">Recent</a></li> 

                                        <li><a href="#history" data-

toggle="tab">New</a></li> 

                                    </ul> 

                                </div> 

                            </div> 

                        </div> 

                        <div class="content"> 

                            <div class="tab-content text-center"> 

                                <div class="tab-pane active" id="home"> 
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Database Configuration files and codes for TransRoute 

  
 

Database Configuration files and codes for TransRoute 

    
Figure 13: Route Visualization for F.C.T to         Figure 14: Route Visualization for Anambra to  

                       Enugu                                                                                 Enugu     

 

6. CONCLUSION 

Shortest path problems are one of the basic problems 

within Computer Science and specifically Operations 

Research and Programming sub-fields respectively. In 

this paper, we evaluated selected shortest path 

algorithms such as Dijkstra; A*-search; restricted search, 

Bellman-Ford; Floyd-Warshall; Gallo Pallottino graph 

growth algorithm,  et cetera and eventually selected 

Dijkstra's SPA implemented with double bucket data 

structure due to its fast and robust performance 

attributes with linear run time complexity to implement 

our route guidance application for optimal result. While 

the A*-search algorithm is the most popular heuristic 

algorithms, its computational efficiency in real 

transportation networks is bounded by a factor of 2 or 

50% saving in computational time as compared to an 

ordinary label search algorithm. This application is 

intended to be deployed in emergency response and 

logistic planning. 
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