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ABSTRACT 
In this paper, we review some commonly used data structures and algorithms. We then review two important 

problems: the creation of the vector-space model that is widely used in the design of information retrieval systems, 

and the mining of frequent itemsets using the apriori algorithm. We consider two variations of the apriori algorithm: 

the first is the classical algorithm which computes candidate k-itemsets by first joining frequent (k-1)-itemsets to 

themselves, and applying the apriori property to prune the generated candidate k-itemsets; the second avoids the join 

stage in the classical algorithm, and instead, generates candidate k-itemsets directly from rows of the transactions 

database, followed by application of the apriori property to prune each itemset so determined. Finally, we illustrate 

appropriate data structures and algorithms that when put together, provide efficient implementations of our solution 

to the problems mentioned. 
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1. INTRODUCTION 

An algorithm is a problem-solving method, 

implemented in a computer as a program. Most 

algorithms make use of data structures, which are 

essentially an organization of data in a form that is 

suitable for use by algorithms. The complexity of an 

algorithm is directly related to how much computing 

resources – principally processor time and/or memory 

requirements – are required to solve the problem. In 

problem-solving using a computer, a programmer 

chooses from a number of different algorithms which, 

when put together following a particular logic, lead to 

the solution of the problem. 

Several algorithms are usually available to solve a 

problem, with some more complex than others. For 

small problems (that do not require much computing 

resources), it may not matter much which algorithms 

are chosen as the gain in time or the reduction in 

memory requirements for the most efficient algorithms 

might be negligible. Hence, the programmer may 

choose to use less efficient or effective algorithms for 

such problems, especially if they are relatively easy to 

implement. 

For large, complex problems however, it is necessary to 

choose algorithms that manage space and/or time well, 

otherwise the running program may run out of memory 

required to do its computations, or the computations 

may take too long to arrive at a solution. Carefully 

designed algorithms may reduce resource use by 

several orders of magnitude over poorly designed ones. 

And well-designed algorithms pay off far better than 

more sophisticated hardware (faster processors, larger 

memories).  Hence, for large problems, it is much better 

to invest on efficient algorithms than on sophisticated 

hardware [1, 2]. 

In this paper, we review a number of widely used data 

structures and algorithms, highlighting their relative 

strengths and weaknesses. We then review two 

important processor- and memory-intensive problems, 

and the algorithms used to solve them. The problems 

addressed are: (1) the generation of document 

representations using the vector-space model that is 

widely used in information retrieval, and (2) 

generation of frequent itemsets in association rule 

mining using the apriori algorithm. The problem of 

generating frequent itemsets is considered from two 

perspectives: one is the classical apriori algorithm that 

has been widely studied [3–8] and involves an 

expensive join stage, and the other, a join-less apriori 

algorithm [9] that avoids the join stage in the classical 

algorithm. Finally, we illustrate and explain our choice 

and use of data structures and algorithms used in our 

design to develop programs that solve the stated 

problems. 
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2. REVIEW OF RELATED LITERATURE 

2.1 Data Structures 

Arrays. One of the most fundamental data structures, 

an array is a fixed collection of homogeneous data. One 

great strength of arrays is their flexibility in terms of 

accessing the members of the array. Access to array 

members is random in the sense that the same effort is 

required to access different members of the array. Two 

key problems with static arrays are (1) the need to 

know the size of the array before it is defined, and (2) 

poor or no direct support for inserting and deleting 

items in and from an array. 

Records. Unlike arrays that hold homogeneous data, a 

record can hold data of the same, different, or mixed 

types. 

Dynamic Data Structures. There are several situations 

in problem solving when it is not known at the time 

program code is developed, how much memory would 

be required to hold available data, and this information 

only becomes known at run time. Static arrays are not 

very useful in such situations. Instead, the memory 

required to hold such data must be allocated 

dynamically, at run time. 

Linked lists. Linked lists are a typical example of a data 

structure in which required memory is commonly 

determined and allocated dynamically at run time. A 

linked list is a self-referent structure, and comprises a 

collection of items where each item is part of a node (a 

record) that also contains a link to a node of the same 

type. For each item that needs to be added to a linked 

list, the required memory for the node is dynamically 

allocated, data stored in the node, and the node 

chained, or linked, to the rest of the list. 

One advantage of a linked list over an array is the fact 

that the operations of inserting and deleting nodes 

nodes are trivial. However, the nodes on a linked list 

can only be accessed sequentially by following the links. 

Typically, a reference to the first node (i.e., the head) of 

the list is used to access the list; any other node on the 

list can be accessed by following the links that exist 

between nodes. This sequential mode of access to data 

in a linked list means that access to linked list data is 

much slower than access to array data. 

Trees and Graphs. These are other examples of data 

structures whose memory requirements are commonly 

allocated dynamically. Several programming problems 

require data to be stored in trees. A tree is a collection 

of vertices (nodes) and edges, with an edge connecting 

two adjacent nodes. A path in a tree is a list of distinct 

vertices with each set of successive nodes linked by an 

edge. Trees are a specialization of the more general 

graph data structure. In a tree, there is exactly one path 

between any pair of vertices; if there is more than one 

path between any two nodes, or no path between some 

pair of nodes, then we have a graph, not a tree. Graphs 

support other features that are not supported in trees, 

including the following: multiple edges between nodes; 

self-loops, i.e., edges that connect vertices to 

themselves; cyclic paths, i.e., paths with the first and 

last vertices being the same; and support for direction, 

i.e, different interpretations given to a directed edge 

from node x to node y, and a directed edge from node y 

to node x. This paper is limited to the use of trees, and 

so the rest of the discussion does not involve the more 

general topic of graphs. 

Most tree processing algorithms assume that the tree is 

rooted, i.e., one of the nodes of the tree is designated as 

the root of the tree. Every node in a rooted tree is the 

root of a subtree consisting of the node and the nodes 

below it. Every node (except the root node) in a rooted 

tree has exactly one node above it, called its parent. The 

nodes directly below a node are called its children. 

Nodes with no children are leaf, or terminal, nodes, 

whilst nodes with one or more child(ren) are internal, 

or non-terminal, nodes. A rooted tree may be ordered, 

i.e., each internal node is connected to a sequence of 

disjoint trees, or unordered, i.e., the order of the nodes 

below internal nodes is not important. 

An important class of rooted, ordered trees – (M-ary) 

tree – comprises a fixed number, M, of child nodes in a 

fixed order, for every internal node. Binary trees are an 

important example of M-ary trees, consisting of two 

types of nodes: external nodes with no children, or 

internal nodes with exactly two child nodes called the 

left child and right child respectively. A very widely 

used type of binary tree is the binary search tree. In a 

binary search tree (BST), the value of the controlling 

data (or key) of every node in the left subtree is smaller 

than the key of the node; likewise, the value of the key 

of every node in the right subtree is larger than the key 

of the node. 

How is a tree traversed in order to access the data that 

is stored on its nodes? This is done via the root node, 

but the process is more complicated than in a linked list 

because decisions need to be made on which of the 

multiple links from a node to its children should be 

followed next. Linked lists can be traversed in-order by 

processing a node as it is encountered until we reach 

the end of the list, or in reverse order by moving to the 

end of the list before processing the nodes that were 

encountered before getting to the end of the list. With 

regards to binary trees, there are three commonly used 

approaches to traverse the tree: pre-order, in-order, 

and post-order traversal. In pre-order traversal, for 
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each node encountered starting from the root, we 

process that node's data, followed by the left subtree, 

and then the right subtree. In in-order traversal, for 

each node encountered starting from the root, we 

process the left subtree, followed by the node's data, 

and then the right subtree. In post-order traversal, for 

each node encountered starting from the root, we 

process the left subtree, followed by the right subtree, 

and then the node's data. 

 

2.2 Algorithms 

Sorting Algorithms. The need to have data arranged in a 

given order is common, not only for presentation, but 

also as a requirement for some other algorithms that 

require the data they operate on to be sorted. Several 

sorting algorithms, for example, selection sort, 

insertion sort, bubble sort, shellsort, mergesort and 

quicksort, have been devised and studied extensively 

[1, 10]. Sorting algorithms can be computationally very 

expensive, and so any data structure that presents data 

that can be accessed in some order without explicitly 

invoking a sort algorithm can be very useful. 

Search Algorithms. The need to determine the presence 

or absence of a given data item on a list is common in 

programming. Like with sorting, several search 

algorithms like key-indexed search, sequential search 

and binary search have been developed and studied 

extensively [1, 2]. Search algorithms work by looking 

for the presence or absence of a key from given data, 

where key values could be the data, or some other 

representation of the data. For example, in searching 

for employee records that comprise several fields, the 

key in one application could be employee ID to enable 

search based on employee ID, or employee name for 

search based on the names of employees. 

Key-indexed search is an ideal that cannot be met in 

most situations because of heavy memory 

requirements. In the approach, every search-able item 

maps to a unique position in an array, and searching for 

an item is as simple as consulting the corresponding 

array index to determine whether or not the item is 

present in the array. 

Sequential search on the other hand, involves searching 

the contents of a list, one after another until a decision 

can be made whether or not the item is present on the 

list. If the list is already sorted, then the conclusion that 

the item searched for is absent from the list can be 

made as soon as an item larger than the item searched 

for is encountered; if the list is not sorted however, then 

every item on the list must be examined before it can be 

concluded that the item searched for is not on the list. 

Binary search is a very efficient search algorithm with 

worst case performance of O(log2(N)) for a list 

comprising N items. Binary search uses the divide-and-

conquer approach on a sorted list as follows: the list is 

divided into two parts, and a determination is made 

whether the key, if present on the list, would be on the 

first or the second half. The section of the list that 

cannot contain the key is then discarded, and the 

algorithm concentrates on the part that may contain 

the key. Although binary search is quite fast, the 

algorithm suffers from the problem that the list must 

already be sorted, and sorting can be expensive as 

pointed out above. 

BSTs naturally provide an efficient search mechanism 

with similar performance to binary search, but without 

the additional cost of first sorting data. Starting from 

the root node of a BST, the search algorithm recursively 

searches the left subtree if the key is smaller than the 

key of the current node, and the right subtree if the key 

is larger. 

Hashing is an extension of key-indexed search. The 

approach involves the creation of a hash table that 

results in substantial reduction of the search space, 

hence improving on search performance. A hash table 

is typically an array with size proportional to the 

number of distinct items that are actually stored. 

Instead of using key values as array indices directly, a 

hash function is used to compute the hash table index 

from the key. If the number of items stored is small 

relative to the total number of possible keys and the 

values stored all hash to different keys, then the search 

is effectively the same as key-indexed search. In 

practice in most cases though, the number of available 

items is much larger than the size of the hash table, and 

inevitably, collisions occur wherein different items hash 

to the same hash table address. The hash algorithm 

must therefore include a collision-resolution stage. 

There are two common approaches to handling 

collisions: separate chaining and open addressing. In 

separate chaining, a dynamic data structure like a 

linked list is used to store all items that hash to the 

same hash table index. Ideally, the same number of 

items should hash to each hash table address. Searching 

an item on a hash table using separate chaining 

involves computing the hash value of the item to 

determine its index on the hash table. The search is 

then localized to the items that hash to that index. 

Open addressing works if it is possible to estimate in 

advance the number of elements to be put in the hash 

table. In the approach, enough contiguous memory is 

made available to hold all the keys with some room to 

spare. In case of a collision when the hash table is being 

created, the next available unused cell is used to store 
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the item involved in the collision. Similarly at search 

time, the hash of the item searched for is computed, and 

three options must then be examined. If the computed 

index refers to an empty cell, then the item is not on the 

list; if the index refers to the search item, then the item 

is on the list and has just been found; if the index 

contains a value other than the search item, the 

algorithm must probe further to the right of the 

computed index until the item searched for is found, or 

up to the next available empty cell before it can 

conclude that the item is not on the list. This probing is 

necessary because of the possibility that the item 

searched for could have experienced collision when the 

hash table was created, and so was stored at the next 

available empty cell. 

 

2.3 The Vector-space Model (VSM) 

The field of information retrieval (IR) [11 – 15] 

addresses the need to find unstructured documents 

that meet some information need, from a large 

document collection. IR is different from, and much 

more difficult than, database search because IR 

documents lack the structure that database attributes 

provide to database files, which attributes serve as 

search keys in database search. IR search is based on 

the examination of the tokens (e.g., words in text 

documents) that make up documents. The design of IR 

systems involves two phases: an off-line phase in which 

all the documents are parsed to obtain index terms 

which are subsequently used to represent the 

documents in the collection; and an on-line phase in 

which some information need is met, for example, by 

retrieving documents from the collection when a user 

provides a query. 

The approach that an IR system uses to generate 

relevant documents in response to a query is 

important, and various models, including Boolean 

retrieval and the vector space model have been 

designed for this [16 – 26]. Of the various models 

developed, the vector-space model (VSM) is probably 

the most successful and is widely used not only in 

search systems, but also in many other areas. For 

example, [21] describes an architecture that uses VSM 

representation to efficiently learn high quality word 

vectors from a 1.6 billion words data set. For another 

example, the VSM which was first developed to 

represent documents as a ‘bag of words’ with little 

regard to text semantics, is now increasingly used to 

capture semantics (see [23] for example, for a survey of 

approaches in doing this). 

In the VSM, each document is represented as an N-

dimensional vector with each dimension representing 

an index term with a weight determined from 

computations based on the frequency of occurrence of 

the terms within the document and across the 

document collection. In the model, the similarity 

between two documents is determined by computing 

the similarity between corresponding document 

vectors. Hence, for example, when a user in an IR 

system issues a query, the documents that are returned 

are those that are most similar to the query vector. 

We now explain the philosophy behind the 

computation of document term weights, as this 

determines which statistics must be collected as the 

document collection is parsed during off-line 

processing. Assignment of term weights assumes that 

the importance of a term within a document is 

proportional to the term frequency (TF), i.e., the 

number of occurrences of the term within that 

document, and inversely proportional to its document 

frequency (DF), i.e., the number of documents that 

contain the term, hence the commonly cited term 

frequency × inverse document frequency (TF × IDF, i.e., 

TF × 1/DF) metric used to describe the VSM. Hence, as 

the document collection is parsed, the various index 

terms are identified, and for each term, statistics 

collected on the following: total number of terms in the 

collection, identities of and number of documents that 

contain each term, and the number of occurrence of 

each term in each document. 

It is noteworthy that the off-line processing described 

above that is required in the construction of the VSM 

for a large document collection places significant 

demands on both RAM and the processor. It is thus 

important to be prudent in the choice of data structures 

and algorithms used, if the process is to be scalable to 

large document collections. 

 

2.4 Mining Frequent Itemsets Using the Apriori 

Algorithm 

Data mining [6, 7, 27–30] aims to find useful patterns in 

large data collections. One important data mining task 

is association rule mining, [6, 31, 32] a technique to 

discover interesting correlations among a large set of 

data items. The end result of association rule mining is 

a set of association rules – implications with one or 

more items at the antecedent, and one or more at the 

consequent of the rule. For large data collections 

however, the number of possible association rules is too 

large to be useful. Association rule mining therefore 

makes use of rule interestingness measures to 

determine which of the numerous possible rules should 

be considered useful. 

Two common rule interestingness measures are 
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support and confidence [6], which respectively 

estimate the usefulness and certainty of discovered 

rules. To illustrate the meanings of these metrics, we 

consider a common application of association rule 

mining, namely market basket analysis. Market basket 

analysis analyzes customer buying habits by finding 

associations between the different items that 

customers place in their shopping baskets. By 

considering the universe as comprising the set of items 

available in a store and using a boolean variable to 

indicate the presence or absence of an item, each 

shopping basket can be represented using a boolean 

vector of values assigned to these variables. These 

vectors can thus be analyzed to discover buying 

patterns, expressed as association rules, that show 

items that are frequently purchased together. An 

association rule similar to the following, for example, 

could be discovered [6]: 

computer ⇒ antivirus_software [support = 2%, 

confidence = 60%] 

The interpretation of the 2% support is that computers 

and antivirus software are purchased together for 2% 

of the transactions analyzed. The confidence score of 

60% indicates that 60% of the purchases that involved 

computers also involved antivirus software. 

A set of items is referred to as an itemset, and an 

itemeset that contains k items is referred to as a 

k-itemset. Hence, in association rule mining, the 

objective is first to determine frequent itemsets whose 

support count is greater than a specified minimum 

threshold – and then generate association rules for 

those frequent itemsets that meet a specified minimum 

confidence score. 

Given a database D of transactions T, with each 

transaction comprising an itemset, an association rule 

A ⇒ B for the database is valid if A⊂T, B⊂T, A∩B=φ, 

and A∪B and P(B/A) meet some minimum support and 

confidence thresholds respectively.  

A major challenge in determining frequent itemsets 

from a large dataset is the generation of a huge number 

of itemsets that may not meet the minimum support 

threshold. Take for example, a 100-itemset {a1, a2, ..., 

a100}. This itemset, contains 100
1

100
=







 frequent 1-

itemsets,









2

100 frequent 2-itemsets, etc., for a total of 

about 1.27 ⨯ 1030 itemsets [6], many of which may not 

be frequent. This amount of data is too much to 

compute or store, and much of it may not be frequent. 

For association rule mining to scale up to large datasets 

therefore, efficient algorithms must be used that 

drastically reduce the space and/or time complexities, 

and the apriori algorithm is one such algorithm. The 

algorithm makes use of the apriori property which 

states that all nonempty subsets of a frequent itemset 

must also be frequent. This property is based on the 

observation that if an itemset is not frequent and 

another item added to it, then the resulting itemset 

cannot be more frequent than the former. 

The Classical Apriori Algorithm. The classical apriori 

algorithm [6] starts by scanning the transactions 

database and determining all frequent 1-itemsets. The 

frequent 1-itemsets are then joined to each other to 

determine candidate 2-itemsets, and the database 

scanned again to determine frequent 2-itemsets from 

the candidate 2-itemsets. The process continues until 

no further frequent itemsets are generated. At the join 

stage when candidate k-itemsets are generated, the 

potentially huge number of infrequent and useless 

itemsets that are generated is substantially reduced by 

applying the apriori property to prune every candidate 

k-itemset with one or more infrequent (k-1)-itemsets. 

Another factor that adds to the complexity of the 

classical apriori algorithm is the need to determine if 

itemsets are join-able before the join is effected. Given 

frequent (k-1)-itemsets Lk-1 with items  l1, l2, … lk-1, two 

itemsets lI, and lJ of Lk-1 are joinable if their first k-2 

items are common (i.e., (lI[1] = lJ[1]) ∧ (lI[2] = lJ[2]) ∧ … ∧ 

(lI[k-2] = lJ[k-2]) ∧ (lI[k-1] < lJ[k-1]), where li[j] is the jth item 

in itemset li).  

The Join-less Apriori Algorithm [9] modified the apriori 

algorithm to avoid the join stage of the classical 

algorithm. In the kth database scan of the join-less 

apriori algorithm, all k-1 subsets of every transaction 

with length l (l ≥ k) are determined, and the apriori 

propertey applied to prune every candidate k-itemset 

with one or more infrequent (k-1)-itemsets. 

We next illustrate the working of both the classical and 

joinless apriori algorithms. Consider the transactions 

database D, Table 1, and the minimum support count to 

be 3. The steps required to generate frequent itemsets 

using the classical and joinless apriori algorithms are 

illustrated in Tables 2 and 3 respectively. 

 

Table 1: Sample transactions database 

TID Items TID Items 

T001 A,B,C,E T005 B,C 

T002 B,C T006 A,B,C 

T003 A,B,D T007 A,B,C,E 

T004 A,C T008 A,B,E 
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Table 2: Mechanics of the classical apriori algorithm applied to the database in Figure 1 

Step 1a: Scan database D for count of each candidate 1-itemset C1 
Step 1b: Compare C1 itemsets with minimum support & generate L1 

 

Scan D to get 
candidate 1-
itemset 
counts 

C1 
Itemsets 

Support 
Compare C1 
support count 
with 
minimum 
support 

L1 
Itemsets 

Support 

{A} 
{B} 
{C} 
{D} 
{E} 

6 
7 
6 
1 
3 

{A} 
{B} 
{C} 
{E} 

6 
7 
6 
3 

Step 2a: Join L1 to itself and use the Apriori property to generate candidate 2-itemsets C2 
Step 2b: Scan database D for count of each C2 
Step 2c: Compare C2 itemsets with minimum support & generate L2 

Join(L1, L1) & 
apply Apriori 

Itemset 

Scan D to get 
candidate 2-
itemset 
counts 

C2 
itemsets 

Support 

Compare C2 
support count 
with 
minimum 
support 

L2 
Itemsets 

Support 

{A,B} 
{A,C} 
{A,E} 
{B,C} 
{B,E} 
{C,E} 

{A,B} 
{A,C} 
{A,E} 
{B,C} 
{B,E} 
{C,E} 

5 
4 
3 
5 
3 
2 

{A,B} 
{A,C} 
{A,E} 
{B,C} 
{B,E} 

5 
4 
3 
5 
3 

Step 3a: Join L2 to itself and use the Apriori property to generate candidate 2-itemsets C3 
Step 3b: Scan database D for count of each C3 
Step 3c: Compare C3 itemsets with minimum support & generate L3 

Join(L2, L2) & 
apply Apriori 

Itemset Scan D to get 
candidate 3-
itemset 
counts 

C3 
Itemsets 

Support 
Compare C3 
support count 
with 
minimum 
support 

L3 
Itemsets 

Support 

{A,B,C} 
{A,B,E} 

{A,B,C} 
{A,B,E} 

3 
3 

{A,B,C} 
{A,B,E} 

3 
3 

 
 
 
3. DESIGN OF DATA STRUCTURES FOR THE VECTOR 

SPACE MODEL AND APRIORI ALGORITHMS 

Before presenting the data structures that were used in 

our implementations, we give general principles that 

guided our choices. The first observation is that 

because the amount of data required is generally 

unknown until run time, the required memory to hold 

the data needs to be allocated dynamically; that leaves 

us with linked lists and BSTs. We next need to decide 

when to choose BSTs and when to choose linked lists. 

The choice was guided by an examination of the costs 

involved, as summarized below. 

 

Unsorted linked list. Cost of inserting a node is low, as 

we just insert at the head of the list. However, search 

cost is high because of the sequential access to nodes, 

especially if the item searched for is not on the list. 

Search cost may be unacceptably high if the list is very 

long. 

 

Sorted linked list. Cost of inserting a node is higher than 

for an unsorted list, since we need to first traverse the 

list up to the suitable position before adding a new 

item. On the other hand, search cost is lower on average 

than for an unsorted list. Nevertheless, search cost may 

still be unacceptably high if the list is very long 

 

Binary Search Tree. Cost of inserting a node is low, as 

we can quickly find the insertion position by visiting 

the corresponding subtrees. Similarly, search cost is 

very low. A BST should therefore be the data structure 

of choice if there is need to carry out a search on the 

data. 
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Table 3: Mechanics of the joinless apriori algorithm applied to the database in Table 1 

Step 1a: Scan database D for count of each candidate 1-itemset C1 
Step 1b: Compare C1 itemsets with minimum support & generate L1 

 
Scan D to get 
candidate 1-itemset 
counts 

C1 
Itemset
s 

Suppo
rt 

Compare 
C1 
support 
count 
with 
minimum 
support 

L1 
Itemset
s 

Suppo
rt 

{A} 
{B} 
{C} 
{D} 
{E} 

6 
7 
6 
1 
3 

{A} 
{B} 
{C} 
{E} 

6 
7 
6 
3 

Step 2a: Scan database D for transactions >= 2 
Step 2b: Determine 2-itemset subsequences and apply Apriori property to get C2 
Step 2c: Count each subsequence to determine support count for C2 
Step 2d: Compare C2 itemsets with minimum support & generate L2 

Scan D for 
transactio
ns 
with 2 or  
more 
items 

Transacti
on 

Generate 
2-itemset  
subsequenc
es 
& apply 
Apriori 

Generated C2 itemsets 
C2 
Itemset 

Suppo
rt 

Compare 
C2 
support 
count 
with 
minimum 
support 

L2 
Itemset
s 

Suppo
rt 

{A,B,C,E} 
{B,C} 
{A,B,D} 
{A,C} 
{B,C} 
{A,B,C} 
{A,B,C,E} 
{A,B,E} 

{A,B}{A,C}{A,E}{B,C}{B,E}{C,E} 
{B,C} 
{A,B} 
{A,C} 
{B,C} 
{A,B}{A,C}{B,C} 
{A,B}{A,C}{A,E}{B,C}{B,E}{C,E} 
{A,B}{A,E}{B,E} 

{A,B} 
{A,C} 
{A,E} 
{B,C} 
{B,E} 
{C,E} 

5 
4 
3 
5 
3 
2 

{A,B} 
{A,C} 
{A,E} 
{B,C} 
{B,E} 

5 
4 
3 
5 
3 

Step 3a: Scan database D for transactions >= 3 
Step 3b: Determine 3-itemset subsequences and apply Apriori property to get C3 
Step 3c: Count each subsequence to determine support count for C3 
Step 3d: Compare C3 itemsets with minimum support & generate L3 

Scan D for 
transactio
ns 
with 3 or 
more 
items 

Transacti
on  Generate 

3-itemset  
subsequenc
es 
& apply 
Apriori 

Generated C3 itemsets 
C3 
Itemset 

Suppo
rt 

Compare 
C3 
support 
count 
with 
minimum 
support 

L3 
Itemset
s 

Suppo
rt 

{A,B,C,E} 
{A,B,D} 
{A,B,C} 
{A,B,C,E} 
{A,B,E} 

{A,B,C}{A,B,E} 
 
{A,B,C} 
{A,B,C}{A,B,E} 
{A,B,E} 

{A,B,C} 
{A,B,E} 

3 
3 

{A,B,C} 
{A,B,E} 

3 
3 

 
3.1. Creating the Vector-space Model 

Key objectives in the creation of the VSM are first, the 

creation of an inverted file, which comprises a 

dictionary of index terms, and for each index term, a list 

of the documents (i.e., the postings list) that the term 

occurs in, and second, the creation of document vectors 

for each document in the collection. Corresponding 

term and document statistics are also collected as 

follows: 

Term statistics: For each term, statistics on term 

frequency across the collection (TF), list of documents 

containing the term, and for each such document, the 

document term frequency (DTF), i.e., the number of 

terms in the document. 

Document statistics: For each document containing a 

given term, statistics on the number of terms in the 

document, the list of terms that constitute the 

document, and for each such term, the frequency of the 

term in the document.  

A key concern in building the VSM model is the need for 

handling the large amount of data that need to be 

tracked. In [33], this difficulty is overcome by parsing 

the document collection in batches: for each batch of 

say, 10,000 documents, we process the inverted file and 

document vectors in RAM, dump the processed data 

onto secondary storage, and then free the RAM to 

process the next batch. This approach makes it possible 

to create the VSM for large document collections even 
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on computers with only a moderate amount of RAM. 

We summarize the steps involved in the processing in 

Figure 1. 

 

3.2. Choice of Data Structures for the Vector-space Model 

Dictionary. Obvious candidates for data structure to 

represent the dictionary are a linked list or a binary 

search tree (BST). But because of the need to search the 

data structure to update term statistics or to create a 

new node for each new term, a BST, ordered by the 

string representing each term, was used. Every node of 

the tree comprises the following data fields: term, term 

ID, term frequency (i.e., number of occurrences across 

the document collection), the document frequency (i.e., 

number of documents containing the term). 

 

The inverted file. As with the dictionary, the inverted 

file needs to be searched during document parsing, and 

so a BST is used to hold its data. Every node of this tree 

comprises fields for the term, term ID, term frequency 

and document frequency. Additionally, there is a linked 

list to all the documents that the term belongs to. Each 

node in this linked list comprises fields for the 

document ID and the frequency of that term in the 

document. We note that a linked list is good enough for 

the document list because (1) the parsed document set 

is normally already arranged in order of document ID, 

and any BST created to track documents containing the 

term would degenerate into a linked list; and (2) no 

search is required on this document list. 

 

Documents list. Required document statistics are also 

collected as each document is parsed. A linked list is 

used to represent the various documents parsed. Again, 

because there is no need to search this list, and the 

documents are already arranged in document ID order, 

the choice of linked list is appropriate. Each node on 

this list comprises fields for the document ID and the 

number of terms in the document. Additionally, each 

node maintains a linked list of terms that are found in 

the document. This linked list tracks corresponding 

term IDs and their corresponding frequencies in the 

document. For ease of processing, terms are added to 

this list in term ID order. 

 
Current document. As each document is parsed, its 
terms are read into two BSTs: curDocDictNodeAlpha 
and curDocDictNodeTID. These BSTs have identical 
nodes with fields for the term, term ID, and term 
frequency across the document collection, updated for 
each term parsed. The only difference between these 
two BSTs is that the former is ordered by term name 
and the latter by term ID. As each term is parsed, the 
term frequency on these BSTs and the document list are 
updated.

 

 
Figure 1: Vector-space Model – Generation of Postings and Document Files 

 
 
 
 

Parsing document collection 
for each document 

for each term in document 

drop word if found in stop-list 

stem the word 

add stemmed word to dictionary 

update inverted file 

update document list 

if batch is full 

save postings file 

save document vectors 

release memory 

continue with next document 

save dictionary and unsaved postings and document files 
 

Merging of postings files 
read first postings batch 

while more postings files 

read next postings file 

for each term in postings file 

 update first postings file 

 

Merging of document files 

This is done simply by concatenating the various document vector files created 
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Figure 2: Data structures used in constructing the vector-space model 

 
Then, at the end of each document parsed: 

curDocDictNodeAlpha is used to update the document 

frequencies of corresponding terms in both the 

dictionary BST and the inverted file, while 

curDocDictNodeTID is used to maintain the terms 

linked list in documents list. The advantage of using 

curDocDictNodeTID over curDocDictNodeAlpha in the 

second case is that the terms are accessed in term ID 

order, the same order we would like them in the 

document vector. The data structures used are 

summarized in Figure 2. 

 

3.3. Frequent Itemsets Mining using the Apriori 

Algorithm 

At the k-th stage of the apriori algorithm, the basic data 

required for the discovery of frequent k-itemsets is the 

count of k-itemsets in the transactions database. The 

process involves discovering itemsets, and for each 

itemset, updating its count statistics if it has been seen 

before, or to allocate space and initialise its count if it is 

discovered for the first time. But as pointed out earlier, 

the number of k-itemsets is potentially huge, and so it is 

important to reduce the search space during the 

itemset search. Secondly, the number of itemsets even 

in a reduced search space could still be huge, and so 

whatever data structure is used to store itemsets, the 

search algorithm should be optimal and efficient. Third, 

in the expensive join stage of the classical apriori 



 AN OVERVIEW OF DATA STRUCTURES AND ALGORITHMS: CASE STUDY OF USE IN THE VECTOR-SPACE MODEL AND …           D. L. Nkweteyim 

 

Nigerian Journal of Technology,       Vol. 36, No. 4, October, 2017          1200 

algorithm, it is important to be able to organize the 

itemsets as well as the terms constituting the itemsets 

to be joined in a manner that minimizes the number of 

computations to be done. Finally, the generation of 

subsets from itemsets must be efficient. This is because 

the apriori property which requires generation of 

subsets is applied so many times in the mining process. 

 

3.4 Choice of Data Structures for Frequent Itemsets 

Mining using the Apriori Algorithm 

Figure 3 illustrates the data structure used to store 

itemsets. The data structure is a hash table, with each 

entry in the table comprising a node with a pointer to a 

BST. Use of a hash table reduces the search space for 

itemsets by limiting search for all itemsets that hash to 

the same value to the corresponding hash table entry. 

 

 
Figure 3: Hash table to store candidate and frequent 

itemsets: (a) table skeleton; (b) node details. 
 

The node at each hash table cell keeps track of the 

following statistics for the corresponding itemsets: 

distinct_itemsets – the number of distinct itemsets, and 

itemset_cnt – the cumulative total of all the itemsets. 

The pointer itemset_ptr links to a binary search tree 

that holds all itemsets that hash to the same value. 

Every node on the itemsets BST keeps track of the 

following data: a k-itemset stored in a dynamically 

allocated array that holds the itemset data, and cnt, the 

number of occurences of the k-itemset. 

The join step at stage k of the classical apriori 

algorithm requires joining the frequent (k-1)-itemsets 

vector to itself. It helps the computation if the items in 

each itemset are arranged in lexicographic order. To 

achieve this need, (1) the itemsets in the transaction 

database are pre-arranged to be in lexicographic order, 

and (2) the itemsets to be joined are read from the BST 

in-order, into a linked list, before the join operation. 

This is important  as it ensures that the items in each 

itemset on the list are in lexicographic order, a required 

condition for the joining of itemsets. 

 

4. CONCLUSION 

In this paper, we have reviewed some of the most 

commonly used data structures and highlighted 

performance issues related to their use. We have also 

reviewed two important problems: generation of the 

vector-space model for document representations, and 

mining of frequent itemsets using the apriori algorithm. 

Finally, we have illustrated our choices of data 

structures and algorithms used in our implementations 

of solutions to the two classes of problems mentioned. 
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