

* Author’s phone number: +237 – 675 – 229 – 038

AN OVERVIEW OF DATA STRUCTURES AND ALGORITHMS: CASE STUDY OF USE IN
THE VECTOR-SPACE MODEL AND MINING OF FREQUENT ITEMSETS

USING THE APRIORI ALGORITHM

D. L. Nkweteyim
DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF BUEA, BUEA, CAMEROON

E-mail address: nkweteyim.denis@ubuea.cm

ABSTRACT
In this paper, we review some commonly used data structures and algorithms. We then review two important

problems: the creation of the vector-space model that is widely used in the design of information retrieval systems,

and the mining of frequent itemsets using the apriori algorithm. We consider two variations of the apriori algorithm:

the first is the classical algorithm which computes candidate k-itemsets by first joining frequent (k-1)-itemsets to

themselves, and applying the apriori property to prune the generated candidate k-itemsets; the second avoids the join

stage in the classical algorithm, and instead, generates candidate k-itemsets directly from rows of the transactions

database, followed by application of the apriori property to prune each itemset so determined. Finally, we illustrate

appropriate data structures and algorithms that when put together, provide efficient implementations of our solution

to the problems mentioned.

Keywords: data structures, algorithms, vector-space model, frequent itemsets mining, apriori algorithm.

1. INTRODUCTION

An algorithm is a problem-solving method,

implemented in a computer as a program. Most

algorithms make use of data structures, which are

essentially an organization of data in a form that is

suitable for use by algorithms. The complexity of an

algorithm is directly related to how much computing

resources – principally processor time and/or memory

requirements – are required to solve the problem. In

problem-solving using a computer, a programmer

chooses from a number of different algorithms which,

when put together following a particular logic, lead to

the solution of the problem.

Several algorithms are usually available to solve a

problem, with some more complex than others. For

small problems (that do not require much computing

resources), it may not matter much which algorithms

are chosen as the gain in time or the reduction in

memory requirements for the most efficient algorithms

might be negligible. Hence, the programmer may

choose to use less efficient or effective algorithms for

such problems, especially if they are relatively easy to

implement.

For large, complex problems however, it is necessary to

choose algorithms that manage space and/or time well,

otherwise the running program may run out of memory

required to do its computations, or the computations

may take too long to arrive at a solution. Carefully

designed algorithms may reduce resource use by

several orders of magnitude over poorly designed ones.

And well-designed algorithms pay off far better than

more sophisticated hardware (faster processors, larger

memories). Hence, for large problems, it is much better

to invest on efficient algorithms than on sophisticated

hardware [1, 2].

In this paper, we review a number of widely used data

structures and algorithms, highlighting their relative

strengths and weaknesses. We then review two

important processor- and memory-intensive problems,

and the algorithms used to solve them. The problems

addressed are: (1) the generation of document

representations using the vector-space model that is

widely used in information retrieval, and (2)

generation of frequent itemsets in association rule

mining using the apriori algorithm. The problem of

generating frequent itemsets is considered from two

perspectives: one is the classical apriori algorithm that

has been widely studied [3–8] and involves an

expensive join stage, and the other, a join-less apriori

algorithm [9] that avoids the join stage in the classical

algorithm. Finally, we illustrate and explain our choice

and use of data structures and algorithms used in our

design to develop programs that solve the stated

problems.

Nigerian Journal of Technology (NIJOTECH)

Vol. 36, No. 4, October 2017, pp. 1191 – 1201

Copyright© Faculty of Engineering, University of Nigeria, Nsukka,
Print ISSN: 0331-8443, Electronic ISSN: 2467-8821

www.nijotech.com

http://dx.doi.org/10.4314/njt.v36i4.28

http://www.nijotech.com/
http://dx.doi.org/10.4314/njt.v36i4.28

 AN OVERVIEW OF DATA STRUCTURES AND ALGORITHMS: CASE STUDY OF USE IN THE VECTOR-SPACE MODEL AND … D. L. Nkweteyim

Nigerian Journal of Technology, Vol. 36, No. 4, October, 2017 1192

2. REVIEW OF RELATED LITERATURE

2.1 Data Structures

Arrays. One of the most fundamental data structures,

an array is a fixed collection of homogeneous data. One

great strength of arrays is their flexibility in terms of

accessing the members of the array. Access to array

members is random in the sense that the same effort is

required to access different members of the array. Two

key problems with static arrays are (1) the need to

know the size of the array before it is defined, and (2)

poor or no direct support for inserting and deleting

items in and from an array.

Records. Unlike arrays that hold homogeneous data, a

record can hold data of the same, different, or mixed

types.

Dynamic Data Structures. There are several situations

in problem solving when it is not known at the time

program code is developed, how much memory would

be required to hold available data, and this information

only becomes known at run time. Static arrays are not

very useful in such situations. Instead, the memory

required to hold such data must be allocated

dynamically, at run time.

Linked lists. Linked lists are a typical example of a data

structure in which required memory is commonly

determined and allocated dynamically at run time. A

linked list is a self-referent structure, and comprises a

collection of items where each item is part of a node (a

record) that also contains a link to a node of the same

type. For each item that needs to be added to a linked

list, the required memory for the node is dynamically

allocated, data stored in the node, and the node

chained, or linked, to the rest of the list.

One advantage of a linked list over an array is the fact

that the operations of inserting and deleting nodes

nodes are trivial. However, the nodes on a linked list

can only be accessed sequentially by following the links.

Typically, a reference to the first node (i.e., the head) of

the list is used to access the list; any other node on the

list can be accessed by following the links that exist

between nodes. This sequential mode of access to data

in a linked list means that access to linked list data is

much slower than access to array data.

Trees and Graphs. These are other examples of data

structures whose memory requirements are commonly

allocated dynamically. Several programming problems

require data to be stored in trees. A tree is a collection

of vertices (nodes) and edges, with an edge connecting

two adjacent nodes. A path in a tree is a list of distinct

vertices with each set of successive nodes linked by an

edge. Trees are a specialization of the more general

graph data structure. In a tree, there is exactly one path

between any pair of vertices; if there is more than one

path between any two nodes, or no path between some

pair of nodes, then we have a graph, not a tree. Graphs

support other features that are not supported in trees,

including the following: multiple edges between nodes;

self-loops, i.e., edges that connect vertices to

themselves; cyclic paths, i.e., paths with the first and

last vertices being the same; and support for direction,

i.e, different interpretations given to a directed edge

from node x to node y, and a directed edge from node y

to node x. This paper is limited to the use of trees, and

so the rest of the discussion does not involve the more

general topic of graphs.

Most tree processing algorithms assume that the tree is

rooted, i.e., one of the nodes of the tree is designated as

the root of the tree. Every node in a rooted tree is the

root of a subtree consisting of the node and the nodes

below it. Every node (except the root node) in a rooted

tree has exactly one node above it, called its parent. The

nodes directly below a node are called its children.

Nodes with no children are leaf, or terminal, nodes,

whilst nodes with one or more child(ren) are internal,

or non-terminal, nodes. A rooted tree may be ordered,

i.e., each internal node is connected to a sequence of

disjoint trees, or unordered, i.e., the order of the nodes

below internal nodes is not important.

An important class of rooted, ordered trees – (M-ary)

tree – comprises a fixed number, M, of child nodes in a

fixed order, for every internal node. Binary trees are an

important example of M-ary trees, consisting of two

types of nodes: external nodes with no children, or

internal nodes with exactly two child nodes called the

left child and right child respectively. A very widely

used type of binary tree is the binary search tree. In a

binary search tree (BST), the value of the controlling

data (or key) of every node in the left subtree is smaller

than the key of the node; likewise, the value of the key

of every node in the right subtree is larger than the key

of the node.

How is a tree traversed in order to access the data that

is stored on its nodes? This is done via the root node,

but the process is more complicated than in a linked list

because decisions need to be made on which of the

multiple links from a node to its children should be

followed next. Linked lists can be traversed in-order by

processing a node as it is encountered until we reach

the end of the list, or in reverse order by moving to the

end of the list before processing the nodes that were

encountered before getting to the end of the list. With

regards to binary trees, there are three commonly used

approaches to traverse the tree: pre-order, in-order,

and post-order traversal. In pre-order traversal, for

 AN OVERVIEW OF DATA STRUCTURES AND ALGORITHMS: CASE STUDY OF USE IN THE VECTOR-SPACE MODEL AND … D. L. Nkweteyim

Nigerian Journal of Technology, Vol. 36, No. 4, October, 2017 1193

each node encountered starting from the root, we

process that node's data, followed by the left subtree,

and then the right subtree. In in-order traversal, for

each node encountered starting from the root, we

process the left subtree, followed by the node's data,

and then the right subtree. In post-order traversal, for

each node encountered starting from the root, we

process the left subtree, followed by the right subtree,

and then the node's data.

2.2 Algorithms

Sorting Algorithms. The need to have data arranged in a

given order is common, not only for presentation, but

also as a requirement for some other algorithms that

require the data they operate on to be sorted. Several

sorting algorithms, for example, selection sort,

insertion sort, bubble sort, shellsort, mergesort and

quicksort, have been devised and studied extensively

[1, 10]. Sorting algorithms can be computationally very

expensive, and so any data structure that presents data

that can be accessed in some order without explicitly

invoking a sort algorithm can be very useful.

Search Algorithms. The need to determine the presence

or absence of a given data item on a list is common in

programming. Like with sorting, several search

algorithms like key-indexed search, sequential search

and binary search have been developed and studied

extensively [1, 2]. Search algorithms work by looking

for the presence or absence of a key from given data,

where key values could be the data, or some other

representation of the data. For example, in searching

for employee records that comprise several fields, the

key in one application could be employee ID to enable

search based on employee ID, or employee name for

search based on the names of employees.

Key-indexed search is an ideal that cannot be met in

most situations because of heavy memory

requirements. In the approach, every search-able item

maps to a unique position in an array, and searching for

an item is as simple as consulting the corresponding

array index to determine whether or not the item is

present in the array.

Sequential search on the other hand, involves searching

the contents of a list, one after another until a decision

can be made whether or not the item is present on the

list. If the list is already sorted, then the conclusion that

the item searched for is absent from the list can be

made as soon as an item larger than the item searched

for is encountered; if the list is not sorted however, then

every item on the list must be examined before it can be

concluded that the item searched for is not on the list.

Binary search is a very efficient search algorithm with

worst case performance of O(log2(N)) for a list

comprising N items. Binary search uses the divide-and-

conquer approach on a sorted list as follows: the list is

divided into two parts, and a determination is made

whether the key, if present on the list, would be on the

first or the second half. The section of the list that

cannot contain the key is then discarded, and the

algorithm concentrates on the part that may contain

the key. Although binary search is quite fast, the

algorithm suffers from the problem that the list must

already be sorted, and sorting can be expensive as

pointed out above.

BSTs naturally provide an efficient search mechanism

with similar performance to binary search, but without

the additional cost of first sorting data. Starting from

the root node of a BST, the search algorithm recursively

searches the left subtree if the key is smaller than the

key of the current node, and the right subtree if the key

is larger.

Hashing is an extension of key-indexed search. The

approach involves the creation of a hash table that

results in substantial reduction of the search space,

hence improving on search performance. A hash table

is typically an array with size proportional to the

number of distinct items that are actually stored.

Instead of using key values as array indices directly, a

hash function is used to compute the hash table index

from the key. If the number of items stored is small

relative to the total number of possible keys and the

values stored all hash to different keys, then the search

is effectively the same as key-indexed search. In

practice in most cases though, the number of available

items is much larger than the size of the hash table, and

inevitably, collisions occur wherein different items hash

to the same hash table address. The hash algorithm

must therefore include a collision-resolution stage.

There are two common approaches to handling

collisions: separate chaining and open addressing. In

separate chaining, a dynamic data structure like a

linked list is used to store all items that hash to the

same hash table index. Ideally, the same number of

items should hash to each hash table address. Searching

an item on a hash table using separate chaining

involves computing the hash value of the item to

determine its index on the hash table. The search is

then localized to the items that hash to that index.

Open addressing works if it is possible to estimate in

advance the number of elements to be put in the hash

table. In the approach, enough contiguous memory is

made available to hold all the keys with some room to

spare. In case of a collision when the hash table is being

created, the next available unused cell is used to store

 AN OVERVIEW OF DATA STRUCTURES AND ALGORITHMS: CASE STUDY OF USE IN THE VECTOR-SPACE MODEL AND … D. L. Nkweteyim

Nigerian Journal of Technology, Vol. 36, No. 4, October, 2017 1194

the item involved in the collision. Similarly at search

time, the hash of the item searched for is computed, and

three options must then be examined. If the computed

index refers to an empty cell, then the item is not on the

list; if the index refers to the search item, then the item

is on the list and has just been found; if the index

contains a value other than the search item, the

algorithm must probe further to the right of the

computed index until the item searched for is found, or

up to the next available empty cell before it can

conclude that the item is not on the list. This probing is

necessary because of the possibility that the item

searched for could have experienced collision when the

hash table was created, and so was stored at the next

available empty cell.

2.3 The Vector-space Model (VSM)

The field of information retrieval (IR) [11 – 15]

addresses the need to find unstructured documents

that meet some information need, from a large

document collection. IR is different from, and much

more difficult than, database search because IR

documents lack the structure that database attributes

provide to database files, which attributes serve as

search keys in database search. IR search is based on

the examination of the tokens (e.g., words in text

documents) that make up documents. The design of IR

systems involves two phases: an off-line phase in which

all the documents are parsed to obtain index terms

which are subsequently used to represent the

documents in the collection; and an on-line phase in

which some information need is met, for example, by

retrieving documents from the collection when a user

provides a query.

The approach that an IR system uses to generate

relevant documents in response to a query is

important, and various models, including Boolean

retrieval and the vector space model have been

designed for this [16 – 26]. Of the various models

developed, the vector-space model (VSM) is probably

the most successful and is widely used not only in

search systems, but also in many other areas. For

example, [21] describes an architecture that uses VSM

representation to efficiently learn high quality word

vectors from a 1.6 billion words data set. For another

example, the VSM which was first developed to

represent documents as a ‘bag of words’ with little

regard to text semantics, is now increasingly used to

capture semantics (see [23] for example, for a survey of

approaches in doing this).

In the VSM, each document is represented as an N-

dimensional vector with each dimension representing

an index term with a weight determined from

computations based on the frequency of occurrence of

the terms within the document and across the

document collection. In the model, the similarity

between two documents is determined by computing

the similarity between corresponding document

vectors. Hence, for example, when a user in an IR

system issues a query, the documents that are returned

are those that are most similar to the query vector.

We now explain the philosophy behind the

computation of document term weights, as this

determines which statistics must be collected as the

document collection is parsed during off-line

processing. Assignment of term weights assumes that

the importance of a term within a document is

proportional to the term frequency (TF), i.e., the

number of occurrences of the term within that

document, and inversely proportional to its document

frequency (DF), i.e., the number of documents that

contain the term, hence the commonly cited term

frequency × inverse document frequency (TF × IDF, i.e.,

TF × 1/DF) metric used to describe the VSM. Hence, as

the document collection is parsed, the various index

terms are identified, and for each term, statistics

collected on the following: total number of terms in the

collection, identities of and number of documents that

contain each term, and the number of occurrence of

each term in each document.

It is noteworthy that the off-line processing described

above that is required in the construction of the VSM

for a large document collection places significant

demands on both RAM and the processor. It is thus

important to be prudent in the choice of data structures

and algorithms used, if the process is to be scalable to

large document collections.

2.4 Mining Frequent Itemsets Using the Apriori

Algorithm

Data mining [6, 7, 27–30] aims to find useful patterns in

large data collections. One important data mining task

is association rule mining, [6, 31, 32] a technique to

discover interesting correlations among a large set of

data items. The end result of association rule mining is

a set of association rules – implications with one or

more items at the antecedent, and one or more at the

consequent of the rule. For large data collections

however, the number of possible association rules is too

large to be useful. Association rule mining therefore

makes use of rule interestingness measures to

determine which of the numerous possible rules should

be considered useful.

Two common rule interestingness measures are

 AN OVERVIEW OF DATA STRUCTURES AND ALGORITHMS: CASE STUDY OF USE IN THE VECTOR-SPACE MODEL AND … D. L. Nkweteyim

Nigerian Journal of Technology, Vol. 36, No. 4, October, 2017 1195

support and confidence [6], which respectively

estimate the usefulness and certainty of discovered

rules. To illustrate the meanings of these metrics, we

consider a common application of association rule

mining, namely market basket analysis. Market basket

analysis analyzes customer buying habits by finding

associations between the different items that

customers place in their shopping baskets. By

considering the universe as comprising the set of items

available in a store and using a boolean variable to

indicate the presence or absence of an item, each

shopping basket can be represented using a boolean

vector of values assigned to these variables. These

vectors can thus be analyzed to discover buying

patterns, expressed as association rules, that show

items that are frequently purchased together. An

association rule similar to the following, for example,

could be discovered [6]:

computer ⇒ antivirus_software [support = 2%,

confidence = 60%]

The interpretation of the 2% support is that computers

and antivirus software are purchased together for 2%

of the transactions analyzed. The confidence score of

60% indicates that 60% of the purchases that involved

computers also involved antivirus software.

A set of items is referred to as an itemset, and an

itemeset that contains k items is referred to as a

k-itemset. Hence, in association rule mining, the

objective is first to determine frequent itemsets whose

support count is greater than a specified minimum

threshold – and then generate association rules for

those frequent itemsets that meet a specified minimum

confidence score.

Given a database D of transactions T, with each

transaction comprising an itemset, an association rule

A ⇒ B for the database is valid if A⊂T, B⊂T, A∩B=φ,

and A∪B and P(B/A) meet some minimum support and

confidence thresholds respectively.

A major challenge in determining frequent itemsets

from a large dataset is the generation of a huge number

of itemsets that may not meet the minimum support

threshold. Take for example, a 100-itemset {a1, a2, ...,

a100}. This itemset, contains 100
1

100
=







 frequent 1-

itemsets,









2

100 frequent 2-itemsets, etc., for a total of

about 1.27 ⨯ 1030 itemsets [6], many of which may not

be frequent. This amount of data is too much to

compute or store, and much of it may not be frequent.

For association rule mining to scale up to large datasets

therefore, efficient algorithms must be used that

drastically reduce the space and/or time complexities,

and the apriori algorithm is one such algorithm. The

algorithm makes use of the apriori property which

states that all nonempty subsets of a frequent itemset

must also be frequent. This property is based on the

observation that if an itemset is not frequent and

another item added to it, then the resulting itemset

cannot be more frequent than the former.

The Classical Apriori Algorithm. The classical apriori

algorithm [6] starts by scanning the transactions

database and determining all frequent 1-itemsets. The

frequent 1-itemsets are then joined to each other to

determine candidate 2-itemsets, and the database

scanned again to determine frequent 2-itemsets from

the candidate 2-itemsets. The process continues until

no further frequent itemsets are generated. At the join

stage when candidate k-itemsets are generated, the

potentially huge number of infrequent and useless

itemsets that are generated is substantially reduced by

applying the apriori property to prune every candidate

k-itemset with one or more infrequent (k-1)-itemsets.

Another factor that adds to the complexity of the

classical apriori algorithm is the need to determine if

itemsets are join-able before the join is effected. Given

frequent (k-1)-itemsets Lk-1 with items l1, l2, … lk-1, two

itemsets lI, and lJ of Lk-1 are joinable if their first k-2

items are common (i.e., (lI[1] = lJ[1]) ∧ (lI[2] = lJ[2]) ∧ … ∧

(lI[k-2] = lJ[k-2]) ∧ (lI[k-1] < lJ[k-1]), where li[j] is the jth item

in itemset li).

The Join-less Apriori Algorithm [9] modified the apriori

algorithm to avoid the join stage of the classical

algorithm. In the kth database scan of the join-less

apriori algorithm, all k-1 subsets of every transaction

with length l (l ≥ k) are determined, and the apriori

propertey applied to prune every candidate k-itemset

with one or more infrequent (k-1)-itemsets.

We next illustrate the working of both the classical and

joinless apriori algorithms. Consider the transactions

database D, Table 1, and the minimum support count to

be 3. The steps required to generate frequent itemsets

using the classical and joinless apriori algorithms are

illustrated in Tables 2 and 3 respectively.

Table 1: Sample transactions database

TID Items TID Items

T001 A,B,C,E T005 B,C

T002 B,C T006 A,B,C

T003 A,B,D T007 A,B,C,E

T004 A,C T008 A,B,E

 AN OVERVIEW OF DATA STRUCTURES AND ALGORITHMS: CASE STUDY OF USE IN THE VECTOR-SPACE MODEL AND … D. L. Nkweteyim

Nigerian Journal of Technology, Vol. 36, No. 4, October, 2017 1196

Table 2: Mechanics of the classical apriori algorithm applied to the database in Figure 1

Step 1a: Scan database D for count of each candidate 1-itemset C1
Step 1b: Compare C1 itemsets with minimum support & generate L1

Scan D to get
candidate 1-
itemset
counts

C1
Itemsets

Support
Compare C1
support count
with
minimum
support

L1
Itemsets

Support

{A}
{B}
{C}
{D}
{E}

6
7
6
1
3

{A}
{B}
{C}
{E}

6
7
6
3

Step 2a: Join L1 to itself and use the Apriori property to generate candidate 2-itemsets C2
Step 2b: Scan database D for count of each C2
Step 2c: Compare C2 itemsets with minimum support & generate L2

Join(L1, L1) &
apply Apriori

Itemset

Scan D to get
candidate 2-
itemset
counts

C2
itemsets

Support

Compare C2
support count
with
minimum
support

L2
Itemsets

Support

{A,B}
{A,C}
{A,E}
{B,C}
{B,E}
{C,E}

{A,B}
{A,C}
{A,E}
{B,C}
{B,E}
{C,E}

5
4
3
5
3
2

{A,B}
{A,C}
{A,E}
{B,C}
{B,E}

5
4
3
5
3

Step 3a: Join L2 to itself and use the Apriori property to generate candidate 2-itemsets C3
Step 3b: Scan database D for count of each C3
Step 3c: Compare C3 itemsets with minimum support & generate L3

Join(L2, L2) &
apply Apriori

Itemset Scan D to get
candidate 3-
itemset
counts

C3
Itemsets

Support
Compare C3
support count
with
minimum
support

L3
Itemsets

Support

{A,B,C}
{A,B,E}

{A,B,C}
{A,B,E}

3
3

{A,B,C}
{A,B,E}

3
3

3. DESIGN OF DATA STRUCTURES FOR THE VECTOR

SPACE MODEL AND APRIORI ALGORITHMS

Before presenting the data structures that were used in

our implementations, we give general principles that

guided our choices. The first observation is that

because the amount of data required is generally

unknown until run time, the required memory to hold

the data needs to be allocated dynamically; that leaves

us with linked lists and BSTs. We next need to decide

when to choose BSTs and when to choose linked lists.

The choice was guided by an examination of the costs

involved, as summarized below.

Unsorted linked list. Cost of inserting a node is low, as

we just insert at the head of the list. However, search

cost is high because of the sequential access to nodes,

especially if the item searched for is not on the list.

Search cost may be unacceptably high if the list is very

long.

Sorted linked list. Cost of inserting a node is higher than

for an unsorted list, since we need to first traverse the

list up to the suitable position before adding a new

item. On the other hand, search cost is lower on average

than for an unsorted list. Nevertheless, search cost may

still be unacceptably high if the list is very long

Binary Search Tree. Cost of inserting a node is low, as

we can quickly find the insertion position by visiting

the corresponding subtrees. Similarly, search cost is

very low. A BST should therefore be the data structure

of choice if there is need to carry out a search on the

data.

 AN OVERVIEW OF DATA STRUCTURES AND ALGORITHMS: CASE STUDY OF USE IN THE VECTOR-SPACE MODEL AND … D. L. Nkweteyim

Nigerian Journal of Technology, Vol. 36, No. 4, October, 2017 1197

Table 3: Mechanics of the joinless apriori algorithm applied to the database in Table 1

Step 1a: Scan database D for count of each candidate 1-itemset C1
Step 1b: Compare C1 itemsets with minimum support & generate L1

Scan D to get
candidate 1-itemset
counts

C1
Itemset
s

Suppo
rt

Compare
C1
support
count
with
minimum
support

L1
Itemset
s

Suppo
rt

{A}
{B}
{C}
{D}
{E}

6
7
6
1
3

{A}
{B}
{C}
{E}

6
7
6
3

Step 2a: Scan database D for transactions >= 2
Step 2b: Determine 2-itemset subsequences and apply Apriori property to get C2
Step 2c: Count each subsequence to determine support count for C2
Step 2d: Compare C2 itemsets with minimum support & generate L2

Scan D for
transactio
ns
with 2 or
more
items

Transacti
on

Generate
2-itemset
subsequenc
es
& apply
Apriori

Generated C2 itemsets
C2
Itemset

Suppo
rt

Compare
C2
support
count
with
minimum
support

L2
Itemset
s

Suppo
rt

{A,B,C,E}
{B,C}
{A,B,D}
{A,C}
{B,C}
{A,B,C}
{A,B,C,E}
{A,B,E}

{A,B}{A,C}{A,E}{B,C}{B,E}{C,E}
{B,C}
{A,B}
{A,C}
{B,C}
{A,B}{A,C}{B,C}
{A,B}{A,C}{A,E}{B,C}{B,E}{C,E}
{A,B}{A,E}{B,E}

{A,B}
{A,C}
{A,E}
{B,C}
{B,E}
{C,E}

5
4
3
5
3
2

{A,B}
{A,C}
{A,E}
{B,C}
{B,E}

5
4
3
5
3

Step 3a: Scan database D for transactions >= 3
Step 3b: Determine 3-itemset subsequences and apply Apriori property to get C3
Step 3c: Count each subsequence to determine support count for C3
Step 3d: Compare C3 itemsets with minimum support & generate L3

Scan D for
transactio
ns
with 3 or
more
items

Transacti
on Generate

3-itemset
subsequenc
es
& apply
Apriori

Generated C3 itemsets
C3
Itemset

Suppo
rt

Compare
C3
support
count
with
minimum
support

L3
Itemset
s

Suppo
rt

{A,B,C,E}
{A,B,D}
{A,B,C}
{A,B,C,E}
{A,B,E}

{A,B,C}{A,B,E}

{A,B,C}
{A,B,C}{A,B,E}
{A,B,E}

{A,B,C}
{A,B,E}

3
3

{A,B,C}
{A,B,E}

3
3

3.1. Creating the Vector-space Model

Key objectives in the creation of the VSM are first, the

creation of an inverted file, which comprises a

dictionary of index terms, and for each index term, a list

of the documents (i.e., the postings list) that the term

occurs in, and second, the creation of document vectors

for each document in the collection. Corresponding

term and document statistics are also collected as

follows:

Term statistics: For each term, statistics on term

frequency across the collection (TF), list of documents

containing the term, and for each such document, the

document term frequency (DTF), i.e., the number of

terms in the document.

Document statistics: For each document containing a

given term, statistics on the number of terms in the

document, the list of terms that constitute the

document, and for each such term, the frequency of the

term in the document.

A key concern in building the VSM model is the need for

handling the large amount of data that need to be

tracked. In [33], this difficulty is overcome by parsing

the document collection in batches: for each batch of

say, 10,000 documents, we process the inverted file and

document vectors in RAM, dump the processed data

onto secondary storage, and then free the RAM to

process the next batch. This approach makes it possible

to create the VSM for large document collections even

 AN OVERVIEW OF DATA STRUCTURES AND ALGORITHMS: CASE STUDY OF USE IN THE VECTOR-SPACE MODEL AND … D. L. Nkweteyim

Nigerian Journal of Technology, Vol. 36, No. 4, October, 2017 1198

on computers with only a moderate amount of RAM.

We summarize the steps involved in the processing in

Figure 1.

3.2. Choice of Data Structures for the Vector-space Model

Dictionary. Obvious candidates for data structure to

represent the dictionary are a linked list or a binary

search tree (BST). But because of the need to search the

data structure to update term statistics or to create a

new node for each new term, a BST, ordered by the

string representing each term, was used. Every node of

the tree comprises the following data fields: term, term

ID, term frequency (i.e., number of occurrences across

the document collection), the document frequency (i.e.,

number of documents containing the term).

The inverted file. As with the dictionary, the inverted

file needs to be searched during document parsing, and

so a BST is used to hold its data. Every node of this tree

comprises fields for the term, term ID, term frequency

and document frequency. Additionally, there is a linked

list to all the documents that the term belongs to. Each

node in this linked list comprises fields for the

document ID and the frequency of that term in the

document. We note that a linked list is good enough for

the document list because (1) the parsed document set

is normally already arranged in order of document ID,

and any BST created to track documents containing the

term would degenerate into a linked list; and (2) no

search is required on this document list.

Documents list. Required document statistics are also

collected as each document is parsed. A linked list is

used to represent the various documents parsed. Again,

because there is no need to search this list, and the

documents are already arranged in document ID order,

the choice of linked list is appropriate. Each node on

this list comprises fields for the document ID and the

number of terms in the document. Additionally, each

node maintains a linked list of terms that are found in

the document. This linked list tracks corresponding

term IDs and their corresponding frequencies in the

document. For ease of processing, terms are added to

this list in term ID order.

Current document. As each document is parsed, its
terms are read into two BSTs: curDocDictNodeAlpha
and curDocDictNodeTID. These BSTs have identical
nodes with fields for the term, term ID, and term
frequency across the document collection, updated for
each term parsed. The only difference between these
two BSTs is that the former is ordered by term name
and the latter by term ID. As each term is parsed, the
term frequency on these BSTs and the document list are
updated.

Figure 1: Vector-space Model – Generation of Postings and Document Files

Parsing document collection
for each document

for each term in document

drop word if found in stop-list

stem the word

add stemmed word to dictionary

update inverted file

update document list

if batch is full

save postings file

save document vectors

release memory

continue with next document

save dictionary and unsaved postings and document files

Merging of postings files
read first postings batch

while more postings files

read next postings file

for each term in postings file

 update first postings file

Merging of document files

This is done simply by concatenating the various document vector files created

 AN OVERVIEW OF DATA STRUCTURES AND ALGORITHMS: CASE STUDY OF USE IN THE VECTOR-SPACE MODEL AND … D. L. Nkweteyim

Nigerian Journal of Technology, Vol. 36, No. 4, October, 2017 1199

Figure 2: Data structures used in constructing the vector-space model

Then, at the end of each document parsed:

curDocDictNodeAlpha is used to update the document

frequencies of corresponding terms in both the

dictionary BST and the inverted file, while

curDocDictNodeTID is used to maintain the terms

linked list in documents list. The advantage of using

curDocDictNodeTID over curDocDictNodeAlpha in the

second case is that the terms are accessed in term ID

order, the same order we would like them in the

document vector. The data structures used are

summarized in Figure 2.

3.3. Frequent Itemsets Mining using the Apriori

Algorithm

At the k-th stage of the apriori algorithm, the basic data

required for the discovery of frequent k-itemsets is the

count of k-itemsets in the transactions database. The

process involves discovering itemsets, and for each

itemset, updating its count statistics if it has been seen

before, or to allocate space and initialise its count if it is

discovered for the first time. But as pointed out earlier,

the number of k-itemsets is potentially huge, and so it is

important to reduce the search space during the

itemset search. Secondly, the number of itemsets even

in a reduced search space could still be huge, and so

whatever data structure is used to store itemsets, the

search algorithm should be optimal and efficient. Third,

in the expensive join stage of the classical apriori

 AN OVERVIEW OF DATA STRUCTURES AND ALGORITHMS: CASE STUDY OF USE IN THE VECTOR-SPACE MODEL AND … D. L. Nkweteyim

Nigerian Journal of Technology, Vol. 36, No. 4, October, 2017 1200

algorithm, it is important to be able to organize the

itemsets as well as the terms constituting the itemsets

to be joined in a manner that minimizes the number of

computations to be done. Finally, the generation of

subsets from itemsets must be efficient. This is because

the apriori property which requires generation of

subsets is applied so many times in the mining process.

3.4 Choice of Data Structures for Frequent Itemsets

Mining using the Apriori Algorithm

Figure 3 illustrates the data structure used to store

itemsets. The data structure is a hash table, with each

entry in the table comprising a node with a pointer to a

BST. Use of a hash table reduces the search space for

itemsets by limiting search for all itemsets that hash to

the same value to the corresponding hash table entry.

Figure 3: Hash table to store candidate and frequent

itemsets: (a) table skeleton; (b) node details.

The node at each hash table cell keeps track of the

following statistics for the corresponding itemsets:

distinct_itemsets – the number of distinct itemsets, and

itemset_cnt – the cumulative total of all the itemsets.

The pointer itemset_ptr links to a binary search tree

that holds all itemsets that hash to the same value.

Every node on the itemsets BST keeps track of the

following data: a k-itemset stored in a dynamically

allocated array that holds the itemset data, and cnt, the

number of occurences of the k-itemset.

The join step at stage k of the classical apriori

algorithm requires joining the frequent (k-1)-itemsets

vector to itself. It helps the computation if the items in

each itemset are arranged in lexicographic order. To

achieve this need, (1) the itemsets in the transaction

database are pre-arranged to be in lexicographic order,

and (2) the itemsets to be joined are read from the BST

in-order, into a linked list, before the join operation.

This is important as it ensures that the items in each

itemset on the list are in lexicographic order, a required

condition for the joining of itemsets.

4. CONCLUSION

In this paper, we have reviewed some of the most

commonly used data structures and highlighted

performance issues related to their use. We have also

reviewed two important problems: generation of the

vector-space model for document representations, and

mining of frequent itemsets using the apriori algorithm.

Finally, we have illustrated our choices of data

structures and algorithms used in our implementations

of solutions to the two classes of problems mentioned.

5. REFERENCES

[1] R. Sedgewick, Algorithms in C, Parts 1-4:
Fundamentals, Data Structures, Sorting, Searching,
3rd edition. Reading, Mass: Addison-Wesley
Professional, 1997.

[2] R. Neapolitan and K. Naimipour, Foundations of
Algorithms, 4th edition. Sudbury, Mass: Jones &
Bartlett Learning, 2009.

[3] R. Agrawal, T. Imieliński, and A. Swami, “Mining
Association Rules Between Sets of Items in Large
Databases,” in Proceedings of the 1993 ACM
SIGMOD International Conference on Management
of Data, New York, NY, USA, 1993, pp. 207–216.

[4] R. Agrawal and R. Srikant, “Fast Algorithms for
Mining Association Rules in Large Databases,” in
Proceedings of the 20th International Conference
on Very Large Data Bases, San Francisco, CA, USA,
1994, pp. 487–499.

[5] H. Mannila, H. Toivonen, and A. I. Verkamo,
“Efficient Algorithms for Discovering Association
Rules,” in Proceedings of the 3rd International
Conference on Knowledge Discovery and Data
Mining, Seattle, WA, 1994, pp. 181–192.

[6] I. Han and M. Kamber, “Data mining concepts and
techniques,” Morgan Kaufinann, 2006.

[7] I. H. Witten, E. Frank, and M. A. Hall, Data Mining:
Practical Machine Learning Tools and Techniques,
3rd edition. Burlington, MA: Morgan Kaufmann,
2011.

[8] J. Dongre, G. L. Prajapati, and S. V. Tokekar, “The
role of Apriori algorithm for finding the
association rules in Data mining,” in 2014
International Conference on Issues and Challenges
in Intelligent Computing Techniques (ICICT),
2014, pp. 657–660.

[9] D. L. Nkweteyim and S. C. Hirtle, “A New Joinless
Apriori Algorithm for Mining Association Rules,”
presented at the 5th International Workshop on
Pattern Recognition in Information Systems

 AN OVERVIEW OF DATA STRUCTURES AND ALGORITHMS: CASE STUDY OF USE IN THE VECTOR-SPACE MODEL AND … D. L. Nkweteyim

Nigerian Journal of Technology, Vol. 36, No. 4, October, 2017 1201

(PRIS-2004), 2005, pp. 234–243.

[10] T. W. Parsons, Introduction to Algorithms in
Pascal, 1st edition. New York: Wiley, 1994.

[11] R. Baeza-Yates and B. Ribeiro-Neto, Modern
Information Retrieval, 1st edition. New York :
Harlow, England: Addison Wesley, 1999.

[12] R. R. Korfhage, Information Storage and Retrieval,
1st edition. New York: Wiley, 1997.

[13] D. A. Grosman and O. Frieder, Information
Retrieval - Algorithms and Heuristics. Springer,
1998.

[14] M. Sanderson and W. B. Croft, “The History of
Information Retrieval Research,” Proc. IEEE, vol.
100, no. Special Centennial Issue, pp. 1444–1451,
May 2012.

[15] S. Rueger and G. Marchionini, Multimedia
Information Retrieval, 1st edition. San Rafael,
Calif.: Morgan and Claypool Publishers, 2010.

[16] W. S. Cooper, “Getting Beyond Boole,” Inf Process
Manage, vol. 24, no. 3, pp. 243–248, May 1988.

[17] C. D. Manning, P. Raghavan, and H. Schütze,
Introduction to Information Retrieval. Cambridge
University Press, 2008.

[18] G. Salton, A. Wong, and C. S. Yang, “A Vector Space
Model for Automatic Indexing,” Commun ACM, vol.
18, no. 11, pp. 613–620, Nov. 1975.

[19] G. Salton, Automatic Text Processing: The
Transformation, Analysis, and Retrieval of
Information by Computer. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc.,
1989.

[20] G. Salton and M. J. McGill, Introduction to Modern
Information Retrieval. New York, NY, USA:
McGraw-Hill, Inc., 1986.

[21] T. Mikolov, K. Chen, G. Corrado, and J. Dean,
“Efficient estimation of word representations in
vector space,” ArXiv Prepr. ArXiv13013781, 2013.

[22] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and
J. Dean, “Distributed Representations of Words
and Phrases and their Compositionality,” in

Advances in Neural Information Processing
Systems 26, C. J. C. Burges, L. Bottou, M. Welling, Z.
Ghahramani, and K. Q. Weinberger, Eds. Curran
Associates, Inc., 2013, pp. 3111–3119.

[23] P. D. Turney and P. Pantel, “From Frequency to
Meaning: Vector Space Models of Semantics,”
ArXiv10031141 Cs, Mar. 2010.

[24] S. Sharma and V. Gupta, “Recent developments in
text clustering techniques,” Recent Dev. Text Clust.
Tech., vol. 37, no. 6, 2012.

[25] P. P. Senellart and V. D. Blondel, “Automatic
Discovery of Similar Words,” in Survey of Text
Mining, M. W. Berry, Ed. New York, NY: Springer
New York, 2004, pp. 25–43.

[26] M. Kobayashi and M. Aono, “Vector Space Models
for Search and Cluster Mining,” in Survey of Text
Mining II, M. W. Berry and M. Castellanos, Eds.
London: Springer London, 2008, pp. 109–127.

[27] Q. Yang and X. Wu, “10 Challenging Problems in
Data Mining Research,” Int. J. Inf. Technol. Amp
Decis. Mak., Nov. 2011.

[28] R. Kosala and H. Blockeel, “Web Mining Research:
A Survey,” SIGKDD Explor Newsl, vol. 2, no. 1, pp.
1–15, Jun. 2000.

[29] M. Mohania and A. M. Tjoa, Eds., DataWarehousing
and Knowledge Discovery, vol. 1676. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1999.

[30] R. S. J. d Baker and K. Yacef, “The State of
Educational Data Mining in 2009: A Review and
Future Visions,” JEDM - J. Educ. Data Min., vol. 1,
no. 1, pp. 3–17, Oct. 2009.

[31] J. Hipp, U. Güntzer, and G. Nakhaeizadeh,
“Algorithms for Association Rule Mining — a
General Survey and Comparison,” SIGKDD Explor
Newsl, vol. 2, no. 1, pp. 58–64, Jun. 2000.

[32] C. Zhang and S. Zhang, Association Rule Mining:
Models and Algorithms. Berlin, Heidelberg:
Springer-Verlag, 2002.

[33] D. L. Nkweteyim, “Data structures for information
retrieval,” in 2014 IST-Africa Conference
Proceedings, 2014, pp. 1–8.

