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ABSTRACT 

Most tall columns under axial load fail by buckling. Considering the widespread use of this type of structure and the 

critical role it plays in service delivery, its failure will result in possible loss of lives and property and disruption of 

services. It is therefore necessary to evolve alternative methods of determination of the buckling load of self-

supporting lattice towers.  This paper therefore proposes a simple model for the determination of the critical buckling 

load of self- supporting lattice towers. The proposed model idealizes the lattice tower as an equivalent solid beam-

column whose cross-sectional-dimensions are the unknowns to be determined. The expression      
     

      is 

proposed by the model for the critical buckling load of self- supporting lattice tower, whose equivalent solid beam-

column has a dimension b at its free end. The results obtained using the proposed model are shown to be acceptable, 

with a percentage difference of about0.036% when compared with results obtained using conventional methods. 
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1. INTRODUCTION 

Towers are tall steel frame structures used for different 

purposes such as installation of equipment for 

telecommunication, radio transmission, satellite 

reception, power transmission, air traffic control, 

television transmission, flood lights, meteorological 

measurements, etc. Lattice towers act as cantilever 

trusses since they are usually clamped at the base. They 

resist wind and seismic loads, as well as vertical load 

from self-weight and equipment installed on the tower, 

[1]. 

Lattice towers can be analysed as vertical trusses 

which resist wind load by cantilever action, [2]. Towers 

are subjected to both vertical and horizontal forces, the 

significant horizontal forces being as a result of wind 

action on the vertical part of the tower, [3]. A column 

buckling analysis consists of determining the maximum 

load a column can support before it collapses. The 

critical load is the greatest load that will not cause 

lateral deflection (buckling) of the column. For loads 

greater than the critical load, the column will deflect 

laterally. The critical load puts the column in a state of 

unstable equilibrium, [4, 16]. A load beyond the critical 

will cause the column to fail by buckling. For long 

columns, failure by buckling has nothing to do with 

material yield. It is instead governed by the column’s 

stiffness, both material and geometric, [5, 6]. 

This paper proposes a model for the determination of 

the critical buckling load of self-supporting lattice 

towers by replacing the actual tower with an 

equivalent beam-column. 

 

2. STRUCTURAL MODELLING 

The structural model is a solid beam-column of exactly 

the same height and lateral deflection curve as the 

actual self-supporting lattice tower. The cross sections 

of both the self-supporting tower and the equivalent 

structure should be similar but must not be equal in 

dimensions. (Figure 1). 

Since the self-supporting truss tower is normally 

prevented from movement at its base, the equivalent 

solid beam-column is analysed as a linearly-varying 

cantilever beam, [7]. The equivalent beam-column is 

assumed to have the same values of lateral deflection 

(sway) under the action of the same applied loads at 

exactly the same points along its length as the self-

supporting lattice tower, [8, 9, 10]. The analysis thus 

considers the failure of the tower structure as a whole, 

rather than the failure of the individual truss members. 
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Figure 1: Structural modelling of lattice tower 

 

3. MATHEMATICAL MODELLING 

The analysis consists of the following steps 

(i) an appropriate structural model (equivalent solid 

beam-column) that best suits the actual structure 

(self-supporting lattice tower) under 

consideration was selected. The model must have 

exactly the same height and cross-sectional shape 

as the actual structure. 

(ii) an analysis of the actual self-supporting lattice 

tower with the given dimensions and loadings 

was performed to determine the numerical values 

of lateral deflection (sway) along its length. 

(iii) using the determined deflection values at known 

points on the actual structure, the unknown cross-

sectional dimensions of the equivalent solid 

beam-column were determined by equating 

deflections at the same points along the length of 

the equivalent structure. Thus, the self-supporting 

lattice tower and the equivalent solid beam-

column have to be analyzed under the action of 

the same loadings acting at the same points and 

direction. 

(iv) a dynamic analysis of the equivalent solid beam-

column was performed to determine its natural 

vibration frequencies. 

 

3.1 Cross-Sectional Properties of the Equivalent Solid 

Beam-Column 

Consider a solid beam-column structure of height h 

with a linearly-tapering cross-section and fixed at its 

base, (Fig. 2). 

A horizontal force P is applied at its free end. The 

bending moment along the cantilever solid beam is 

    . (h   )                            ( ) 

 
Figure 2: Solid beam-column with linearly-tapering 

cross-section 

 

From theory of structures, strain energy due to the 

applied load is, [11]: 

     ∫
  

   d 

  I 
                           ( ) 

From Castigliano’s theorem, the deflection of the 

member is expressed as, [11]: 

     
   

  
   ∫

  

 I 

   

  
d             ( ) 

The linearly-tapering dimension of the beam-column 

can be expressed as, [7, 12]: 

   a. c                               ( ) 

where BX is the width of the cross-section at any point x 

along the length of the equivalent beam-column 

structure (Fig.3).  
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Figure 3: Cross-sectional dimensions of the equivalent beam-column 

 

To determine the values of the constants a and c in 

Equation (4), we need to consider the boundary 

conditions of the equivalent beam-column structure 

under consideration, (Fig.3): 

(i)  At x = 0 (base), Bx = Bo 

 (ii) At x = h (top), Bx = b 

        
  h  (b    ) 

h
                       ( ) 

The moment of inertia for the equivalent solid beam 

can be expressed in terms of BX. 

Moment of Inertia, I  
  (  ) 

  
 i.e. 

I  
   h   (b    )  

  h 

 

               ( ) 

Putting Boh =  o and b – Bo   β 

Then the expressions for Bx and Ix can be expressed as 

follows: 

    
    β 

h
                             ( ) 

I  
(    β ) 

  h 
                         ( ) 

The strain energy of the equivalent structure is given 

by Equation (2). Substituting for Mx and Ix in the strain 

energy equation gives: 

   ( )  
   h 

 
∫

(h   ) 

(    β ) 
d                   ( ) 

From Castigliano’s theorem, the deflection of the 

equivalent structure is given by Equation (3). But Mx = 

P (h - x) and Ix = 
(      ) 

    .  hus,
   

  
      h    

     ( )    ∫
  

 I 
(
   

  
)d  

i. e.     
  h  

 
∫

(h   ) 

(    β ) 
d           (  ) 

Integrating Equation (10) by partial fractions, we get 

equation (11)  

 

  ( )  (
   h  

 β 
).  [

 

(   β )
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(    βh)

(    β ) 
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 (    β ) 
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(    βh) 

   
 ]                                   (  ) 

 

In (11)    = Boh and β   b – Bo. The proposed model 

(i.e. the beam-column) can only be said to be 

equivalent to the actual self-supporting lattice tower if 

its deflection curve under the action of the same 

loading is the same as that of the actual tower, [9, 13]. 

Therefore, the self-supporting lattice tower should be 

analyzed statically for deflection along its length and 

the values at x = h and x = 
 

 
 equated to the above 

expression for deflection of the equivalent solid beam-

column (i.e Equation 11) to determine the unknown 

values of its cross-section, b and Bo. If the deflection of 

the free end (tip) is Y, then putting x = h in (11), and 

noting that    = Boh and β   b – Bo, we get     
    

    
 . 

  b  
C

    
                                  (  ) 

 here    c   
 h  

 
                                          (  ) 

If the deflection at the middle is Y1/2, then putting x = 
 

 
 

in Equation (11), we have that: 

    
        

       
                          (  ) 

where,  
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    ),   

  C (  
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The values of b and    are then determined from 

Equations (12) and (14). 

 

3.2 Beam-Column Differential Equation 

In considering the elastic buckling load of a column, it 

is necessary to determine the load at which the 

structure remains in equilibrium in the deformed 

position. In order to derive the necessary equations, 

consider an element of a beam-column in the deformed 

position with the forces acting as shown in Fig.4. It is 

assumed that during the deformation, the axial load 

remains in its original direction. 

 

 
Figure 4: Forces acting on a beam-column in the 

deformed state 

 
Figure 5: Mode of buckling of a Cantilever beam-

column 

 

From vertical equilibrium considerations, 

(   
d 

d 
d )    d      

or
d 

d 
                      (  ) 

Taking moments, 

(   
d 

d 
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d 
d )

   d .
d 

 
   

Ignoring second-order terms, 
d 

d 
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 .  .     
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d 
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d 
                 (  ) 

Differentiating Equation (17) with respect to x: 

d 

d 
   

d  

d  
    

d y

d  
 

But from Equation (16),
   

  
   

 (
d  

d  
   

d y

d  
)      

 ut        
 Id y

d  
 

 hus,
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d  
( I

d y

d  
)    

d y
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                 (  ) 

If it is assumed that EI is constant, then Equation (18) 

can be written as: 

 I
d y

d  
   

d y

d  
                  (  ) 

This equation is generally known as the beam-column 

equation. Note that in a beam-column equation, shear 

force Q is given by Equation (17) as: 

    
d 

d 
  

 dy

d 
   ( I

d y

d  
   

dy

d 
)          (  ) 

The solution to the beam-column equation,(Equation 

19), which is a fourth-order ordinary differential 

equation with constant coefficients, is given by: 

y    Cos       in    C    

  articular Integral                        (  ) 

 here         
 

  
 and A to D are constants of 

integration. Once the value of q is known, then the 

particular integral can be determined. 

 

3.3 Buckling Load of Equivalent Beam-Column  

From Equation (21): 

y    Cos       in    C    ,    
     

    

    I  (   Cos       in   )     (  ) 

From Equation (20),    
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Substituting for 
   

     and   
  

  
 

     I (   in         Cos           in   

       Cos       C)  

      I  C                            (  )  

Note that there are four constants of integration to be 

determined. This requires four boundary conditions. 

For the cantilever beam-column, the boundary 

conditions are: 

(i) Fixed end (base):  y      and  (
  

  
)

   
   

(ii) Free end (top):       = 0 and        

y    Cos       in    C     

y       Cos      in         

        or        
dy

d 
       in        Cos    C  

(
dy

d 
)

   
       in       Cos   C    

Hence,    C       or    C      

   I  (   Cos       in   ) 

      ,   I  (   Cos  h     in  h)     

or   Cos  h      in  h       ) 

     I  C 

      ,   I  C     or C = 0 

Since C = - B,   B = 0 

Thus, Equation (24) becomes: 

  Cos  h     in  h    

Or   Cos  h    

As    ,  Cos  h    

The smallest root is given by  h  
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 h 
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Where Pcr is the  uler’s critical load. 

This is the elastic buckling (critical) load for a beam-

column. For the linearly-tapering beam-column, 

I  I  
(    β ) 

  h 
 

       
   

 h 
[
(   β ) 

  h 
]   

   (   β ) 

  h 
 

A beam-column will, if not restrained in any particular 

place, buckle about an axis with the least value of 

second moment of area, [13, 17]. 

At the free end, x=h 

   β    h  (b    )h  bh 

      
   

  h 
(bh)   

   b h 

  h 
 

  b  

  h 
         (  ) 

 

3.4 Buckling of Self-supporting Lattice Tower 

The stiffness of the cantilever beam-column is given by, 

[11]: 

  
  I

h 
                              (  ) 

where h is the height of the column 

  
 I

h
 

 h 

 
                   (  ) 

The Buckling load of the cantilever column is given by 

Equation (25) as:     
    

     
  

 
.
  

  
.  ut  

  

 
 

   

 
. For 

the four-legged self-supporting Lattice tower, [14, 15]: 

      C(
 h 

 
)(

  

 h
)  

C   h

  
             (  ) 

where C = 0.04008 

 

4. RESULTS AND DISCUSSION 

The self-supporting lattice tower in Fig. 6is subjected to 

a horizontal load P1 = 1000KN at its free end (Point U). 

The truss is assumed to be pin-jointed. The tower, 

being self-supporting, is assumed to be rigidly fixed at 

its base (Points A and B). 

 

 
Figure 6: Self-supporting lattice tower under load. 

 

The tower has the following properties: 

(i) Density = 7850 kg/m3 

(ii)  oung’s  odulus,             6 KN/m2 

Details of the lengths, cross-sectional areas and 

orientation of the truss members are shown in Table 1. 

From Table2, 

(i) Deflection at the free end (tip), (x =h) = Y1 = 

0.59133378m 

(ii) Deflection at mid-height, (x = 
 

 
) = Y1/2 = 

0.073638858m 
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Table 1: Properties of Truss Members 

S/
N 

MEMBE
R 

ANGLE 
(degrees) 

LENGTH 
(m) 

CROSS-
SECTIONAL 

AREA 
(m2) 

 S/N MEMBER 
ANGLE 

(Degrees) 
LENGTH 

(m) 

CROSS-
SECTIONAL 

AREA 
(m2) 

1 UV 0 1.3 0.000225  21 LJ 249.8 2.664 0.00512 
2 US 267.94 1.251 0.000225  22 LK 290.2 2.664 0.00512 
3 VS 223 1.836 0.000225  23 JI 0 0.92 0.00512 
4 VT 272.06 1.251 0.000225  24 KI 180 0.92 0.00512 
5 ST 0 1.39 0.000225  25 JG 267.94 2.502 0.00512 
6 SR 319 1.903 0.000744  26 KH 272.06 2.502 0.00512 
7 TR 272.06 1.251 0.000744  27 IG 248 2.696 0.00512 
8 SQ 267.94 1.251 0.000744  28 IH 292 2.696 0.00512 
9 QR 0 1.48 0.000744  29 GF 0 1.01 0.00512 

10 QO 267.94 1.251 0.000744  30 HF 180 1.01 0.00512 
11 RO 230.66 1.972 0.00151  31 GD 267.94 2.502 0.00808 
12 RP 272.06 1.251 0.0028  32 HE 272.06 2.502 0.00808 
13 OP 180 1.57 0.0028  33 FD 246.25 2.731 0.00512 
14 ON 322.26 2.042 0.0028  34 FE 293.75 2.731 0.00512 
15 PN 272.06 1.251 0.0028  35 DC 0 1.1 0.00512 
16 OM 267.94 1.251 0.00512  36 EC 180 1.1 0.00512 
17 ML 0 0.83 0.00512  37 DA 267.94 2.502 0.00808 
18 NL 180 0.83 0.00512  38 EB 272.06 2.502 0.00808 
19 MJ 267.94 2.502 0.00512  39 CA 244.55 2.769 0.00512 
20 NK 272.06 2.502 0.00512  40 CB 295.45 2.769 0.00512 

 

From Equation (13), c   
    

 
  .     m  

From Equations (15), 

    .    ,       .    ,       .      ,   

  .       

Therefore Equation (14) becomes: 

0.0152 Bo
12 – 0.0382Bo

8 – 0.003797Bo
4 + 0.004578 =  0  

Using Newton-Raphson method, 

Bo = 0.750852 m 

Substituting in Equation (12), b  
 

    
      .     m 

Table 2 gives the results of the deflection analysis of the 

self-supporting lattice tower. 

 

Table 2 – Deflection Values for Self-supporting Lattice 

Tower 

S/N Joint Height from base (m) Deflection (m) 
1 U 15.00 0.59133378 
2 S 13.75 0.390101219 
3 Q 12.50 0.292947928 
4 O 11.25 0.19851868 
5 M 10.00 0.146828164 
6 J 7.50 0.073638858 
7 G 5.00 0.029030528 
8 D 2.50 0.004289548 
9 A 0.00 0.00 

 
a) Critical Buckling Load of the Equivalent Beam 

The critical buckling load of the equivalent beam is 

given by Equation (26). So Pcr = 835.89kN 

b) Critical Buckling Load of the Lattice Tower 

From Table 2, 

 he deflection of the free end, Δu = 0.59133378m 

Force applied at the free end, Fu = 1000 KN 

Hence, stiffness of the structure, K = 
  

  
 = 1691.092296 

  m⁄  

For the linearly-tapering cantilever tower structure, 

the critical buckling load is given by Equation (29) 

where C = 0.04008 so Pcr = 836.19kN. The summary 

of the results is presented in Table 3. The pin-jointed 

self-supporting lattice tower shown in Fig. 6 was 

analysed using both the proposed model and 

conventional method. The tower is made of steel with 

 oung’s  odulus of elasticity           6 KN/m2 and 

density = 7850 kg/m3. The tower, being self-

supporting, is assumed to be rigidly fixed at its base. 

The properties of the tower are given in Table 1. 

The results of the deflection analysis of the given lattice 

tower are displayed in Table 2.The deflection values of 

the tower are used to obtain the unknown dimensions 

(b and Bo) of the model structure, which are in turn 

deployed in the formulation of the model expression 

for the computation of the critical buckling load (i.e 

Equation 26). 

The comparison inTable 3 shows a very close 

agreement between the model result and that obtained 

using conventional method. The percentage difference 

of 0.036% implies that the model result is acceptable. It 

is also pertinent to note that the proposed model 

resulted in a lower value of the critical buckling load. 
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Table 3 – Comparison of Results 

Description Lattice Tower Equivalent beam-column % Difference 
Top dimension 1300 mm 256.90 mm 

 
Base dimension 2380 mm 750.852 mm 
Critical Buckling Load    .         .      0.036 

 

 

5. CONCLUSIONS 

An expression for the computation of the critical 

buckling load of self-supporting lattice towers, based 

on a proposed equivalent solid beam model, was 

derived in this work, (     
     

    )  where b is a 

dimension of the equivalent beam and h is the height of 

the lattice tower). The equivalent beam was analysed 

as a cantilever structure subjected to the same load as 

the actual self-supporting lattice tower. A comparison 

of the critical buckling load values of the actual lattice 

tower and the proposed model shows a marginal 

percentage difference of 0.036%, which is acceptable. 

As can be observed from Table 3, the proposed model 

also gives a lower-bound value of the critical buckling 

load. This is a welcome safeguard against failure by 

buckling, since it is obviously safer to use the lower 

value of the critical buckling load as the basis of 

structural design. The derived model expressions can 

also be easily modified to analyze towers of different 

cross-sectional shapes, such as circular and triangular-

shaped towers. 

 

6. REFERENCES 

[1] Agarwal, S. K., “Wind effect on Structures”,  llied 
Publishers Ltd, 1997. 

[2] AbdulMuttalib, I. S. “ nalysis and Optimum  esign 
of Self-supporting  teel Communication  o er”, 
Journal of Engineering, Volume 19, No. 12, pp. 
1673 – 1687, 2013. 

[3] Khedr, M. A. and McClure, G.  “   implified  ethod 
for Seismic Analysis of Lattice Telecommunication 
 o ers”, Canadian Journal of Civil Engineering, 
Vol. 27, No. 3, pp. 533 – 542, 2000. 

[4] Jones, R.M.  “Buckling of Bars, Plates and Shells”, 
CRC., 2007. 

[5] Thompson, J. M. T., Hunt, G.W. “A General Theory 
of Elastic Stability”, Wiley., 1973 

[6] Zaccaria, D., Bigoni, D., Noselli, G., Misseroni, D. 
“ tructures  uckling  nder  ensile  ead Load”, 
Proceedings of the Royal Society A., Vol. 467, 
2011. 

[7] Bansal, R. K.  “Analysis of Uniformly-tapering 
Rectangular Bar”,   te tbook of  trength of 
Materials, 4th Edition, Laxmi Publications Ltd, 
India, ESM: 0598-535, 2010. 

[8] Ghodrati, A. G. and Mossah, S. R.  “ eismic 
Response of 4-legged Self-supporting 
 elecommunication  o ers”, International 
Journal of Engineering. Transactions B: 
Applications Volume 20, No. 2, 2007. 

[9] Kang W., Albermani F., Kitipornchai S. and Lam H.  
“ odelling and  nalysis of Lattice  o ers With 
 ore  ccurate  odels”, Advanced Steel 
Construction, Vol. 3, No. 2 2007.. 

[10] Mohammadi, S. and Hassanirad, A. “ pplied and 
Theoretical Cantilever Beam Free-Vibration 
 nalysis”, World Academy of Science, Engineering 
and Technology, Vol. 61, 2012. 

[11]  hatt,  . and  elson, H. .: “ arshall &  elson’s 
Structures”, Longman  ingapore  ublishers, 1994. 

[12] Jithesh, R. and Vijaya S.  “ nalysis of 
Telecommunication Tower Subjected to Seismic 
and Wind Loading”, International Journal of 
Advancement in Engineering Technology, 
Management and Applied Sciences, Vol. 1, Issue 2, 
pp. 67 – 69, 2014 

[13] Jackman, D. E.,  “Lattice Transmission Tower 
Analysis”,  merican  ociety of  ngineers. 2002. 

[14] Abermani, F. G. A. and Kitipornchai, S. (2003): 
“ umerical  imulation of  tructural  ehaviour of 
 ransmission  o ers”, Thin-Walled Structures, 
Volume 41, Issues 2-3, ISSN : 0263-8231 

[15] Murty, K. S. “ ynamic Response of Lattice  o ers 
and Guyed  asts”, American Society of Civil 
Engineers, 2001. 

[16] Osadebe,  . . and  ze, J.C., “Comparative  tudy of 
Vlasov and Euler Instabilities of Axially 
Compressed Thin- alled  o  Columns”, Nigerian 
Journal of Technology, Volume 29, No. 1, 2010 

[17] Olanitori, L. .,  foloayan, J.O. and  rum, C., “ ode 
of Collapse of Square Single-panel Reinforced 
Concrete Space-framed Structures with Rigid 
Beam-Column Joints”, Nigerian Journal of 
Technology, Volume 35, No. 1, 2016 

 

 


