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ABSTRACT

Seizure is the clinical manifestation of an excessive, hypersynchronous discharge of a population of cortical neurons
accompanied by indescribable "pins- and needles-like” bodily sensations, smells or sounds, fear or depression,
hallucinations, momentary jerks or head nods, staring with loss of awareness, and convulsive movements (ie,
involuntary muscle contractions) lasting for some seconds to a few minutes. In this work, an attempt is made to
promote a better understanding of seizure disorder by proposing an adaptive neuro-fuzzy simulation model as a tool
for capturing the physiological presentation of the disorder. Decision making was performed in two stages, namely
the feature extractions using Microsoft Excel for corresponding digital value of the waveform of the EEG recordings of
a seizure and those of a non-seizure patient directly from the EEG machine, and the transient features are accurately
captured and localized in both time and amplitude. This extracted data were used for our Adaptive Neuro-Fuzzy
Inference System (ANFIS) training and the ANFIS was trained with the backpropagation gradient descent method in
combination with the least squares method to establish the validity of our ANFIS. The result shows an accuracy of

90.7% of predictions as the number of epochs increase.

Keywords: Adaptive Neuro-Fuzzy Inference System, Electroencephalogram, Seizure Disorder.

1. INTRODUCTION

Derived from a Latin word sacire which literarily
translate to “take possession of”, seizure is a discrete,
time-limited alterations in the brain functions which
involves interruption of motor activity and autonomic
function (lack of consciousness). It is the second most
common neurological disorder next to stroke, affecting
about 50 million people worldwide. According to [1 &
2], 25 % of seizure patient do not respond to available
therapies. In the official release of [3], at least 50 % of
seizure cases begin at childhood or adolescence, and
globally, there are about 2.4 million new cases every
year. Sudden onset may also arise in geriatric
population (people above the age of 65) [4]. According
to the aforementioned world health organization
(WHO) source, seizure patients are two or three times
more likely to die prematurely as a result of the
traumatic manifestations of the disease. Nevertheless,
up to 10 % of the population of the world will
experience a seizure during their lifetime. Epilepsy is a
disorder of the central nervous system characterized
by recurrence of seizures, unprovoked by an acute
systemic or neurologic insult and is also "an occasional,
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an excessive and a disorderly discharge of nervous
tissue" induced by any process involving the cerebral
cortex that pathologically increases the likelihood of
depolarization and synchronized firing of groups of
neurons [5].

1.1 Neurophysiological Analysis of Seizure

A seizure is produced when neurons within an area of
the brain are activated in an unusually synchronous
manner. The focal activation of a group of neurons may
subsequently spread to involve nearby or distant
neurons in an abnormal activation pattern. Thus, any
event or combination of events that disturbs the
delicate balance between neuronal excitation and
inhibition can produce a seizure. According to
literature, neurons are interconnected with one
another to form circuits and many neural circuits
together form a neural system [6]. Neural circuits
present information in the form of a pattern of action
potentials (discovered by Emil du Bois-Reymond in
1848), and this is the means by which information is
transmitted from one point to the next in the nervous
system [7 & 8]. However, the basic mechanism of


mailto:oajibola@unilag.edu.ng
mailto:aladefaadekunle@gmail.com
http://www.nijotech.com/
http://dx.doi.org/10.4314/njt.v37i2.32

AN ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM FOR THE PHYSIOLOGICAL PRESENTATION OF SEIZURE DISORDER, O. O. E. Ajibola & A. N. Aladefa

neuronal excitability is the action potential and the
excitable state can be caused by: increased excitatory
synaptic neurotransmission, a decrease in inhibitory
synaptic neurotransmission and an alteration in
voltage-gated ion channels, or an alteration of intra- or
extra-cellular ion concentrations in favor of membrane
depolarization. Nonetheless, a faulty circuitry network
system can cause excessive firing in a particular
neighbourhood of the central nervous system [9].

In general, depolarization is mediated by synaptic
currents generated by the excitatory neurotransmitters
glutamate and aspartate [10]. Moreover, neuronal
synchronization occurs through local enhancement of
excitatory circuits and an increase in synaptic efficacy
is thought to be due to recruitment of N-methyl-D-
aspartate (NMDA) receptors [11]. Furthermore, as
more NMDA receptors are activated, further
depolarization occurs, additional calcium enters the
cell, and excitability is enhanced. However, as these
excitatory processes increase, there may be a
simultaneous reduction in the activity of inhibitory
circuits that are down-regulated during high-frequency
activation. Neurons can also be synchronized by
extracellular currents that may reflect changes in the
perineuronal environment, such as local edema, or
changes in the extracellular potassium, calcium, or
magnesium concentration [12]. Finally, neurons may
also be synchronized by local ephaptic (nonsynaptic)
contacts, which facilitate the development of excitatory
circuits [13 - 145].

Presynaptic Neuron

Glial cell

Glial cell

Postsynaptic Neuron

Source: www.pinterest.com/art

Figure 1: Neuro-excitability at synaptic cleft
Excitatory amino acids are released from the
presynaptic terminal and act on postsynaptic NMDA
and non-NMDA receptors (NMDAR) to cause excitation.
Gamma-aminobutyric acid (GABA) is an inhibitory
neurotransmitter and acts on postsynaptic GABA
receptors (GABAR). However, the glial cells play a

central homeostatic role in the control of neuro-

Nigerian Journal of Technology,

excitation by controlling extra-neuronal potassium
concentration and by removing  excitatory
neurotransmitters such as glutamate (Glu). Neuronal
excitability may also be influenced by ions such as
magnesium. However, the onset of seizure appears to
occur when a small group of abnormal neurons
undergo a prolonged depolarization that is associated
with the rapid firing of repeated action potentials.
These abnormally discharging epileptic neurons recruit
adjacent neurons with which they are connected into
the process. On the other hand, a clinical seizure occurs
when the electrical discharge of a large number of
neurons become abnormally linked together, it thus
create a storm of electrical activity in the brain. In spite
of that, seizure may then spread to involve adjacent
areas of the brain or through established anatomic
pathways to other distant areas.

1.2 Adaptive Neuro-Fuzzy Inference System

In machine learning and cognitive science, artificial
neural networks (ANN) refers to an information
processing paradigm that is inspired by the way
biological nervous systems, such as the brain, process
information (i.e. an eclectic simulation of biological
neuron, and it consists of its own dendrites, synapses,
cell body and axon terminals), [15]. Nonetheless, it
receives stimulation from nearby cells, or from its
environment, and generates a modified action potential
or nerve signal. It’s a system of interconnected neurons
working in unison to solve specific problems through a
learning process and usually configured for a specific
application. Because it has greater predictive power
than signal analysis technique, ANN have been used as
computational tools for pattern classification including
diagnosis of diseases [16 - 19]. Wilson and Emerson
[20] used ANN for automatic seizure detection. Xu, et a/
[21], used ANN to classify seizures using radial basis
function. On the other hand, [22 & 23] detected
epileptogenic transient waveforms by using wavelet
coefficients as an input to a feed-forward neural
network. In their studies, Guler and Ubeyli [24] and
Yaunanghi, et a/ [25] both deployed extracted EEG to
identify normal and abnormal EEG using back
propagation algorithm.

Fuzzy set theory introduced by [26] plays a vital role in
dealing with uncertainty when making decisions in
biomedical applications. However, Fuzzy logic and
fuzzy set theory are employed to describe human
thinking and reasoning in a mathematical framework.
According to [27], fuzzy-rule based modeling is a
qualitative modeling scheme where the
behavior is described using a natural language.
Nevertheless, fuzzy sets have attracted the growing
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attention and interest in modern information
technology, production technique, decision making,
pattern recognition, diagnostics and data analysis to
mention but a few [28 & 29]. However, when the
underlying physical relationships are not fully
understood, the intelligent computational method of
fuzzy logic comes to real advantage than conventional
crisp modeling.

Neural network and fuzzy logic can be incorporated
into a single framework, thereby capturing the prowess
of both fields. This however has given birth to a Neuro-
Fuzzy system which actually eliminates the basic
problem in fuzzy system design (i.e. obtaining a set of
fuzzy if-then rules) by effectively using the learning
capability of an ANN for automatic fuzzy if-then rule
generation and parameter optimization. Neuro-Fuzzy
utilizes linguistic information from the human expert
as well as measured data during modeling. . However,
this system can be used for signal processing,
automatic control, information retrieval, database
management, computer vision and data classification.
Another approach in neuro-fuzzy development is the
Adaptive Neuro-Fuzzy Inference System (ANFIS),
which produced remarkable results in modeling
nonlinear functions [30]. In ANFIS, the membership
function parameters are extracted from a data set that
describes the system behavior. The ANFIS learns
features in the data set and adjusts the system
parameters according to a given error criterion.
However, in the field of Biomedical Engineering, ANFIS
has been successfully implemented for: classification
[19, 24, 30 - 32], modeling and controlling real
systems, [33] and also in data analysis [34].

2 MATERIALS AND METHOD
This study used electroencephalography (EEG): a
recording of the electrical activity of the cerebral cortex
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through electrodes placed on the scalp. EEG measures
the electrical potentials of cortical neuronal dendrites
near the brain's surface [35, 36]. Its recordings reveals
the epileptiform discharge of a patient with generalized
tonic clonic seizure. Conventionally, the electrodes are
labeled and each electrode is attached to an individual
connector for the onward transmission of signal to the
machine. Basically, electrode locations and names are
specified by the international 10 - 20 system (Figure 2)
for most clinical and research applications except when
high-density arrays are necessary. This system ensures
that the naming of electrodes is consistent across
laboratories, [37].

2.1 Basis for formulating the Model

The EEG data used in this study is a recording of a
patient with generalized tonic clonic seizure and the
outcome is compare with that of a non-seizure Patient.
During the course of the study, the following bipolar
channel were selected for analysis: F4-C4, C4-P4, P4-
02, FP1-F3, F3-C3, C3-P3, P3 -01, FP2-F8, F8 -T4, T4 -
Teé, T6 -02, P1-F7, F7 -T3, T3 -T5, T5 -0O1. In order to
access the performance of the classifier, we selected
129*%15 EEG segments of the pages that show
epileptiform discharges for the patient with seizure
disorder. Both the longitudinal (R) and the transverse
(R) montages were considered during the course of
this study, and the selected pages include the recording
in which the hyperventilation simulation and Photic
simulation were done.

Furthermore, two pages were selected from the
recordings and each page contains sixteen channels but
some portion of the EEG contains Electrocardiogram
(ECG) artifacts.

«—
Inion 10%

Figure 2: The internationall0-20 system of electrode placement. Source: International 10 - 20 system
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Therefore, the channel containing the ECG artifacts (i.e.
the ECG-REF) channels are not included in our selected
channels for analysis. So, a set of fifteen bipolar
channels each were selected as inputs from the EEG
recordings of a seizure and a non-seizure patients. The
abnormal subject is diagnosed of a generalized tonic-
clonic seizure with no other accompanying disorders.
Recordings were done during interictal stage and the
different stages of EEG signals were determined by two
physicians. However, EEG data were acquired with
Ag/AgCl disk electrodes placed using the 10-20
international electrode placement system. The
recordings are band-pass filtered (1-70Hz) EEG, speed
of 30mm/s while sensitivity of 7.5 and 10pV/mm for
seizure and Non-seizure patient respectively. Every
inspected by two
neurologists together with two technologists with
many years of experience in clinical analysis of the EEG
signals and they scored the recordings into Seizure or
non-seizure. However, the judgments of the four
analysts were evaluated and compared twice in order
to check if there were disparities in their scoring of the
EEG signals. When revising this unified event sets, the
human experts by mutual consent marked each state as
seizure or normal. Therefore, this validated set
provided the reference evaluation to estimate the
sensitivity and specificity of computer scorings.

Afterwards, the EEG waveform are converted to a
digital EEG data (i.e. the digital data corresponding to
the analogue data of the selected waveform of the
channels of each page is analyzed and are extracted to

recording was individually

Microsoft Excel sheet). Each page has 10seconds
recording for each channel the EEG
waveforms are generally classified according to their
frequency, amplitude, waveform/morphology and the
sites on the scalp at which they were recorded. The
digital EEG data used in this study were measured in

Basically,

Amplitude. Amplitude is expressed in terms of voltage
in microvolts based on a peak-to-peak measurement
and one needs to know the sensitivity at which a
recording was made. The amplitude varies with the
technique of the recording: the bipolar montages with
short inter-electrode distance will give a smaller
amplitude than the referential montages with large
inter-electrode distance. Ideally, amplitude should be
described in terms of the actual voltage; however, the
term low, medium, and high amplitude are often used
and the same has been adopted in this study: it is low
when it is lesser than 20 puV, Medium when it falls
between 20 pV and 50 pV and it is considered as High
when the amplitude is higher than 50 pV. These digital
values are supplied to the Adaptive Neuro-Fuzzy

Nigerian Journal of Technology,

Inference System as input data set for training. The
digital input of patient with seizure has ‘1’ as its output
while the patient without Seizure has ‘0’ as its data
output.

The sufficiency in the functioning of ANFIS depends on
the size of the training set and test set. In this study, we
used 258 * 15 features in training and 129 *15 features
were used for testing in order to verify the accuracy
and the effectiveness of the trained ANFIS for the
detection of epileptic in patient with
generalized tonic-clonic seizure. And the training data
set is different from the test data set in order to
improve the general capabilities of our ANFIS.

seizure

2.2 Adapting ANFIS to Seizure phenomena

The ANFIS is a fuzzy Sugeno model put in the
framework of adaptive systems to facilitate learning
and adaptation [38]. In 1993, Jang introduced ANFIS as
a model that maps inputs through input membership
functions (MF) and associated parameters, and then
through output MF to crisp output [39]. However, the
initial membership functions and the rule base for
fuzzy inference system can be designed by employing
human expertise about the target system to be
modelled. Such framework makes the ANFIS modelling
more systematic and less reliant on expert knowledge.
Thus, to present the ANFIS architecture, two fuzzy if-
then rules based on a first order Sugeno model are
considered:

Rule 1:

Ifx € A, and y € B, then (f, = p,X+ 0,y +1,)

Rule 2:

If x € Ayandy € B, then (f, = P,X+ 0,y +1,)
where xand y are the inputs; Al and Bl are the fuzzy
sets; fl are the outputs within the fuzzy region
specified by the fuzzy rule; Py Q; and I} are the design

parameters that are determined during the training
process. ANFIS
implement these two rules is shown in Figure 4, in

Moreover, the architecture to
which a circle indicates a fixed node, whereas a square
indicates an adaptive node.

In the first layer, all the nodes are adaptive nodes. Thus,
the outputs of layer 1 are the fuzzy membership grade
of the inputs, which are given by equations (1) and (2)
respectively:

0f = uA;(x); i=1,2 )

0l =uB;i,(y); i=3, 4 (2)

where 14, (X), U ,(Y) can adopt any fuzzy
membership function.
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Figure 3: First Order Sugeno Fuzzy Model
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Figure 4: ANFIS Architecture

For example, if the bell-shaped membership function is

employed, ££,;(X) is given by:

1
Hai(X) = bi 3)

where a, b, and ¢ are the parameters of the
membership function, governing the bell-shaped
functions accordingly. However, each node in this layer
generates a membership grade of a linguistic label,
where ‘X is the input to node. In the second layer, the
nodes are fixed nodes. Thus, they are labeled with Il
indicating that they perform as simple multipliers. The
outputs of this layer can be represented as:

0F = Wi, (g, () 51 = 1,2 *)
They are the so-called firing strengths of the rules.
However, each node in this layer calculates the strength
of the rule via multiplication. In the third layer, the
nodes are also fixed nodes. Thus, they are labeled with
N indicating that they play a normalization role to the
firing strengths from the previous layer. However, the
outputs of this layer can be represented as:

3_—_ W vi—=
0; =w= ;0=1,2 (5)

w; +w,
They are the so-called normalized firing strengths. And
in the fourth layer, the nodes are adaptive nodes. Thus,

Nigerian Journal of Technology,

the output of each node in this layer is simply the
product of the normalized firing strength and a first
order polynomial (for a first order Sugeno model). The
outputs of this layer are given by:

Ot = wif; = W(pix + q; + 1) ;1,2 (6)
In the fifth layer, there is only one single fixed node
labeled with & Thus, this node performs the summation
of all incoming signals. Hence, the overall output of the
model is given by:

2
, (Zwmj
0° =Y wifi= ~2 2 %)
= W, +W,

However, it can be observed that there are two
adaptive layers in this ANFIS architecture namely; the
first layer and the fourth layer. In the first layer, there
are three modifiable parameters {a;; b;; ci}; which are
related to the input membership functions. These
parameters are the premise parameters. In the fourth
layer, there are also three modifiable parameters {p;; q;
ri}; pertaining to the first order polynomial which
represent the consequent parameters.

2.3 Learning algorithm of ANFIS

The task of the learning algorithm for this architecture
is to tune all the modifiable parameters, namely {a;; b;;
ci} and {p;; q; ri}; to make the ANFIS output match the
training data. However, for any premise parameters a;;
b; and c; of the membership function, the output of the
ANFIS model can be written as:

w W
f=——t—fi+ ——— f, (8)
w; +W, w, +W,
Substituting Eq. (6) into Eq. (8) yields:
f=wifi +w,f, 9)

Insert the fuzzy if-then rules into Eq. (9), it becomes:

f=wi(pX+ay+n) +W2(p,Xx+0,y+1r,) (10
After rearrangement, the output can be expressed as:

f =(V_V1 X)p, +(7V1Y)q1 +(7V1Y)r1

+ (W2 X) P, + (Wz y)Qz + (Wz y) I
Equation (11) is a linear combination of the modifiable

(1D

consequent parameters pi, qi, I', P2, qzand r 2.

However, the least squares method can be used to
identify the optimal values of these parameters easily.
When the premise parameters are not fixed, the search
space becomes larger and the convergence of the
training becomes slower. Thus, a hybrid algorithm
combining the least squares method and the gradient
descent method is adopted to solve this problem.
Furthermore, the hybrid algorithm is composed of a

529
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forward pass and a backward pass, the least squares
method (forward pass) is used to optimize the
consequent parameters with the premise parameters
fixed. Once the optimal consequent parameters are
found, the backward pass starts immediately, the
gradient descent method (backward pass) is used to
adjust optimally the premise parameters
corresponding to the fuzzy sets in the input domain.
And the output of the ANFIS is calculated by employing
the consequent parameters found in the forward pass.
Nevertheless, the output error is used to adapt the
premise parameters of a standard
backpropagation algorithm. It has been proven that this
hybrid algorithm is highly efficient in training the
ANFIS [38 & 39]. Therefore, in the present study the
proposed ANFIS model was trained with the
backpropagation gradient descent method in
combination with the least squares method when 15
channels of EEG waveforms were used as inputs.
Finally, the coding of this algorithm is carried out in the
MATLAB (R2013a) environment. The program written
in the MATLAB editor was based on the source data
from the digital extraction of the EEG recordings of
patient with seizure and the non-seizure.

by means

3. RESULTS AND DISCUSSION

In this study, the ANFIS architecture consists of five
layers, the first layer which is an adaptive node
generates the membership grade of a linguistic label,
where X’ in Equation (3) is the input parameter.

However, the Linguistic label (A)) is classified based on
the range of the amplitude namely Low, Medium and
High. Thus, we have three input membership variables
described by (Ai) viz: low, medium and high for each
input channel with the range between 0 and 1. The
following graphs were obtained from the data used in
training the ANFIS model.

Figure 5 shows the outputs of all the 15 inputs in layer
1 of the ANFIS architecture (i.e. the fuzzy membership
grade of all the fifteen inputs), this shows their strength
and spread. It maps non-fuzzy input values to fuzzy
linguistic terms and vice versa. In Equation (3), aj, b;, ¢i
are the parameter set that determine the shape of the
membership function (MF) with maximum of 1 and
minimum of 0. However, the red color is for the low
amplitude, the green color is for the medium
amplitude, while the blue color is for the high
amplitude.

Figure 6 represents the ANFIS test result after the first
training for a seizure patient. However, the data sets
are still far away from the expected output of 1. In
Figure 7 shows the ANFIS test result after the first
training for a non-seizure patient. However, the data
sets were far away from the expected output of 0.
Figure 8 is the ANFIS test result after the second
training for a seizure patient. The figure reveals that
there is converging trend towards the expected output
of 1.

1 T 1 e 1
7 . W i
05} = ™ 054" =~ X 05
- o o e
0 . 0k - — 0
50 0 50 100 -400  -200 0 200 400 600 -500
Input 1 Input 2
1 = e ) B e 1 o ~ "
. RS 5 - P ~ ~ B o
% - W N S 4 P R
05 /A/ \‘\_h\ o 05 = \\\ R 0.5 e < e S R &5
0 s ) o Tl e ) e o 0 L - TS
-50 0 50 100 150 200 250 200 100 0 100 200 300 -150 100 50 0 50 100 150
Input 4 Input 5 Input 6
P P R e
051~ T “\\\ 05 R £ 05 % g
- 53 2o e Sl ot Jatie. -
0 — 0 —— — 0
-200 0 200 400 -200 100 0 100 0 50 100 150 200 250 300
Input 7 Input 8 Input 9
o e 1 e o O 1 -
o - LT - /., =
05 -~ y\\, \\ 05 i o e 05 \\;
ey Bl e e — 5. i
0 — DY 0 - o e | 0 S
0 50 100 150 200 250 -200 -100 0 100 -100 0 100 200 300 400 500
Input 10 Input 11 Input 12
- —— 3 — - — — 1 [ ——
\u\\ A . Bl o \\\ " 5 . "
05 N B 05 R ] Bl T e
b0 P e > S ~. L A
0 = — o= — = ob== : e
-200 -100 0 100 0 50 100 150 200 -100 0 100 200
Input 13 Input 14 Input 15

Nigerian Journal of Technology,

Figure 5: Membership Function for all the Fifteen Inputs
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Figure 9 shows the ANFIS test result after the second
training for a Non-seizure patient. The figure reveals
that there is converging trend towards the expected
output of 0. Figure 10 shows the comparison between
the training data and the test data for a Non-seizure
patient. Figure 11 shows the comparison between the
training data and the test data for a seizure patient.

Figure 12 shows the graphical representation of the

RMSE for the ANFIS model against the Epoch.

The test performance of the ANFIS model was

determined by the computation of the statistical

parameters such as sensitivity, specificity and total
classification accuracy. The sensitivity, specificity and
total classification accuracy are defined as follows:

Sensitivity: The ratio of the number of True
Positives (TP) to the sum of true positives and
False Negatives (FN).

Specificity: The ratio of the number of True
Negatives (TN) to the sum of true negatives and
False Positives (FP)

Accuracy: 1t is the number of patterns detected by
the total number of patterns.

Out of the 129 feature vectors of seizure 129 patterns

were detected (TP) leaving 0 FN. Also, out of 108

feature vectors of non-seizure 86 patterns were
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Figure 9: Training test results after the second ANFIS for
a Non - Seizure Patient

detected (TN) implying that 22 were not detected.
Therefore, the performance of the classifier for normal
and seizure conditions are shown in Table 1 and
success rate in Table 2 respectively.

Diagnosing epileptic seizure on EEG rely on the
detection of a particular signal which requires the
observation of the patient, EEG recordings, and
gathering of additional clinical information.

Table 1: The performance of the classifier for Normal
and Seizure Conditions.

Class Total Correctly Incorrectly
Feature Detected Detected
Normal 108 86 22
Seizure 129 129 0
Table 2: Accuracy of the Network.
Test Total Correctly Accuracy
Outcome Feature Detected (%)
Specificity 129 129 100
Sensitivity 108 86 79.6
Accuracy 237 215 90.7
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However, conventional analysis of EEG recordings by a
trained professional are very tedious and time
consuming especially a long term recordings obtained
from an ambulatory recording systems of a patient
which includes EEG recordings of up to 1 week period
and this can cause errors which may frustrate the
outcomes of clinical analyses. Therefore, the
advantages of using an automatic detection system
cannot be overemphasized. In this study, we described
the detection of epileptic seizures from EEG signals
using statistical features
directly from the EEG machine and a diagnostic ANFIS
to assist an expert to draw inference from EEG without
going through a process of analyzing cumbersome

in amplitude extracted
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recordings in real time. This will provide a valuable
diagnostic decision support tool for physician treating
epileptic seizure. The ANFIS used 258 *15 training data
set in 300 training periods and the step size for
parameter adaptation had an initial value of 0.0075
with the Root Mean Square Error (RMSE) of 0.0122, the
curve of network error convergence of the ANFIS as
shown in Figure 12 is 9.1645 x 1076. However, the
error decreases exponentially as the system epoch
increases. The ANFIS performance as displayed in
Table 2 shows the classification of normal subject and
seizure patient using ANFIS model which were done
with the accuracy of 79.6 and 100% respectively while
total accuracy of 90.7% is achieved. The classification
results, the values of statistical parameters and
performance evaluation parameters indicated that
testing of the ANFIS was successful.

The phenomenon captured in Figure 11 is the EEG
manifestation of the aberrant hyper-excitable state and
these delineates the clinical syndrome of Seizure
disorder (i.e. paroxysmal depolarization shifts, or
interictal spikes) which is an abrupt, all-or-none
depolarization which occurred during
discharges lasting a few hundred milliseconds [40].
However, it consist of giant Excitatory Postsynaptic
Potentials (EPSPs) and these potentials are the
excitation and the manifestation of synchronous burst
firing of many neurons, and the EPSP builds up from
the resting potential to the point of threshold [41].
According to literature, the all-or-none depolarization
(i.e. an action potential) propagates down to induce
neurotransmitter release at the axon terminal [42 -

interictal

44]. However, there exists no such thing as a weak or
partial action potential. Either the threshold potential
is reached and an action potential occurs, or action
potential does not occur [45 - 47]. Therefore, if IPSP
fails to match the EPSP, the excessive precipitation of
excitatory physiological information (EPI) that could
attain threshold level occurs, and this pathologically
increases the likelihood
synchronized firing of groups of neurons, then a frank
seizure activity is initiated.

of depolarization and

4. CONCLUSIONS

In this work, a major headway has been made in
medical practice by formulating an ANFIS that captures
the physiological presentation of seizure disorder for
the purpose of analysing its clinical symptoms. Efforts
targeted at
Electroconvulsive Therapy (ECT) has not yielded any

management of seizure through
encouraging result due to the fact that the point of
trigger of a seizure is not necessarily the same for

successive presentation of seizure even for the same
Vol. 37, No. 2, April 2018 532
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patient. However, it should be possible to deploy an
expert system that would be able to manage the Clinical
Symptoms of Seizure. To achieve this aim, we have
made an efforts to analyze the physiological attributes
of Seizure disorder by using an Adaptive Neuro-Fuzzy
Inference system so that we could proffer a workable
model for the Clinical Symptoms of Seizure. In the
nearest future, we hope to develop a management
model based on the same paradigm as a pedestal for
the development of an Expert system for the
management of seizure disorder.
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Figure 14: FEG recording of a Non-seizure patient
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Figure 15: Data Extraction from the corresponding EEG recordings of a Seizure patient
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Figure 16: Data Extraction from the corresponding FEG recordings of a Non-seizure Patient
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