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ABSTRACT 

The mechanical properties (Ultimate Tensile Strength (UTS), modulus of elasticity (E), elongation 

and strain (e)) for twenty samples of AISI 4130 Low carbon steel plate were studied in this paper. 

Statistical design of experiment (DOE) using the central composite design method (CCD) was 

employed in Design Expert 7.01 software to generate DOE for twenty (20) experimental runs as 

input variables (current, voltage and gas flowrate) which were used in predicting and optimizing 

the output parameters (maximum UTS and maximum modulus of elasticity with corresponding 

elongation and strain). One out of the 20 welding runs was found to be optimum using the 

Artificial Neural Network (ANN) optimization approach. The same twenty (20) predicted variables 

were subjected to TIG welding experimentation which showed close proximity between the 

predicted and experimental values. Optimized ANN predicted output parameters were UTS of 421 

MPa, modulus of elasticity of 793 MPa, strain of 0.61 and elongation of 61% while experimental 

values using the optimized input variables produced output parameters of 427 MPa for UTS of 421 

MPa, 806 MPa for modulus of elasticity, strain of 0.62 and 62% elongation. Visuals of the 

weldment obtained from Scanning Electron Microscopy with Energy Dispersive Spectroscopy 

(SEM/EDS) revealed a uniformly distributed grain sizes in the weldment primarily composing of 

iron (Fe), chromium (Cr), molybdenum (Mo), and nickel (Ni). To save time, energy and resources 

required for welding experimentation processes, conventional software such as ANN can be used 

to obtain accurate results. 
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1. INTRODUCTION 

Tungsten Inert Gas (TIG) also known as Gas 

Tungsten Arc Welding (GTAW) is a welding method 

that is commonly used for joining thin and dissimilar 

materials, and are more suitably for welding metals 

and their alloys [1]. TIG welding process involves the 

use of non-consumable tungsten electrodes such as 

EWTh-2, EWZR-1, EWLa-2, EWLa-1.5, EWLa-1, 

EWCe-2, EWP, to produce an arc and a filler wire to 

join the desired metals together while simultaneously 

shielding the welding process with inert gas such as 

helium or argon to protect the molten weld pool from 

atmospheric contaminants [2]. According to Kamble 

and Rao [3], heat distribution around the weldment 

usually alters the chemical and mechanical properties 

which depends upon the chemical composition of the 

bead and its geometry. The microstructures and 

mechanical properties obtained from welding steel 

materials depend on certain properties such as 

percentage of carbon and other elements such as 

chromium, nickel, molybdenum, sulphur, etc. For 

example, low carbon steel materials with less than 

0.25% carbon exhibits good welding characteristics 

with minor defects [4]. 

 Experiment carried out by Lin et al. [5] on 

mechanical properties of TIG weldment of Boron Fe-

Ti-B alloy after post-weld heat treatment revealed 

that the weldment had slightly higher yield strength 

and lower tensile strength compared to those of the 

base metal. Huang et al. [6] used GTAW multi-pass 
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welding method to weld two dissimilar metals 

(S355JR carbon steel and 316L stainless steel plates), 

and consequently investigated the microstructural 

characteristics, mechanical properties and corrosion 

behaviour of the welded dissimilar joint. The results 

obtained revealed that the microstructure of the 

weldment was a combination of austenite and 

vermiform δ-ferrite. There was a decarburisation 

layer on the interface of S355JR whereas, the 

damaged phase σ and M23C6 (chromium carbide) 

were not observed in the X-ray diffraction. In 

addition, the corrosion resistance of the weldment 

decreased when compared to 316L base material. 

Hussain et al. [7] studied the influence of TIG 

welding speed on the tensile strength of aluminum 

AA6351alloy and obtained maximum tensile strength 

of 230 MPa at welding speed of 0.6 cm/sec, with a 

conclusion that the base metal was stronger than the 

welded joint. However in the same TIG welding 

experimentation, it was also observed that tensile 

strength tends to increase with lower welding speed.  

Singh et al. [8] evaluated the TIG welding parametric 

influence on Tensile strength of 5083 aluminum alloy, 

and found that tensile strength and welding speed 

increased pari passu, but later decreased by further 

increase in welding speed after attaining a maximum 

tensile strength of 129 MPa at welding current of 240 

A, gas flow rate of 7 L/min and welding speed of 98 

mm/min. Kurt and Samur [9] investigated the 

mechanical properties of 304 stainless steel 

weldment after TIG welding application and observed 

an UTS of 1800 MPa, yield strength of 75 MPa, 

percentage elongation of 25%, with crack initiation in 

the Heat Affected Zone (HAZ). Proper attention is 

required while selecting welding variable input 

process parameters, as improper welding variables 

can produce poor welds with inadequate mechanical 

properties such as tensile strength, toughness, 

hardness etc, [10]. One way of selecting proper 

welding variables is by optimization of the process 

parameters, and conventional numerical techniques 

includes statistical design of experiment such as the 

use of Response Surface Methodology (RSM), 

Artificial Neural Network (ANN), Finite Element 

Method (FEM) and Taguchi method etc. According to 

Benyounis and Olabi [11], optimization of welding 

parameters is essential to obtaining good weldment 

with the required bead geometry and weld quality. 

Kumar and Vijay [12] employed Taguchi approach of 

orthogonal array using analysis of variance (ANOVA) 

to determine the influence of process parameter 

(current, voltage and gas flow rate) on the 

mechanical properties of TIG welding joint of 

austenitic stainless steel (AISI 316) and mild steel.  

The result indicated that these parameters influenced 

the tensile strength and hardness of the welded joint 

if they are not optimised to obtain optimum range of 

values. This study is focused on modelling and 

prediction of the mechanical properties of AISI 4130 

low carbon steel plate using Artificial Neural Network 

(ANN) Approach to generate/predict Design of 

Experiment DOE) for twenty (20) welding runs as 

well as optimization to determine the most suitable 

sets of welding parameters followed by TIG Welding 

Experimentation using the DOE and microstructural 

analysis of the weldment achieved by application of 

the optimized parameter.  

 

2. MATERIALS AND METHOD 

As shown in Table 1, statistical design of experiment 

(DOE) using the central composite design method 

(CCD) was employed in Design Expert 7.01 software 

to generate DOE for twenty (20) experimental runs 

as input variables (current, voltage and gas flowrate) 

for TIG welding experimentation and ANN was used 

in modelling, predicting and optimizing the welding 

output variables. 

 

Table 1: Design of experiment for TIG Input 
Variables 

Weld 

Runs 

Current 

(A) 

Voltage 

(V) 

Gas Flow Rate 

(L/min) 

1 155 22 15.5 
2 155 22 15.5 

3 155 22 15.5 

4 155 22 15.5 
5 155 22 15.5 

6 155 22 15.5 
7 155 27 15.5 

8 96.1 22 15.5 

9 155 22 11.3 
10 155 16.9 15.5 

11 213.8 22 15.5 
12 155 22 19.7 

13 120 19 18 
14 190 19 13 

15 190 25 13 

16 120 25 18 
17 190 25 18 

18 120 19 13 
19 120 25 13 

20 190 19 18 

 

Materials and specifications used for the welding 

experimentation are presented in Table 2 while the 
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chemical and mechanical properties of AISI 4130 low 

carbon steel are presented in Table 3. Figure 1 shows 

the breaking point of each sample after the tensile 

test. 

After welding, each of the welded samples were 

subjected to Scanning Electron Microscopy with 

Energy Dispersive Spectroscopy (SEM/EDS) to check 

the mechanical properties and characterization of the 

weldment. The above input variables were employed 

in the TIG welding process to join the workpiece 

together before being subjected to tensile test. 

 

Table 2: Materials and Specifications used for the Welding Experimentation 

S/N Material Specification Welding Specification 

1 Welding Type Tungsten Inert Gas (TIG) 

2 Material AISI 4130 Low Carbon Steel Plate 
7 Material Thickness 7 mm 

8 Filler Material ER 70 S-6 

9 Joint Type Butt Joint (V-groove) 
10 Joint Preparation Abrasive Clean (Sand paper)/Acetone Wipe 

11 Joint Gap 2 mm 
12 Welding Current D.C.E.N (Direct Current Electrode Negative) 

13 Pulse Width 0.8 Seconds 

14 Filler Rod Angle 15o 
15 Welding Torch Angle 45o 

16 Fixed Frequency 60Hz 
17 Torch Type Pro-torch (TIG Torch) 

18 Tungsten Type 2% thoriated 
19 Tungsten Size 3/1326” Diameter x 25.4 mm 

20 Torch Gas Argon (100%) 

21 Heat Input Ratio 10.75 KJ/min 
22 Weight of Filler Rod 78.5 Kg/m2 

23 Welding machine Dynasty 210 DX 
24 Clamp type G-clamp for clamping the work pieces 

25 Vertical milling machine For milling the V-groove angle 

26 Tensile machine Instron  

 

Table 3: Chemical and Mechanical Properties for AISI 4130 Low Carbon Steel 

Chemical Composition Mechanical Composition 

Element Content % Properties Values (Metric Unit) 

Iron (Fe) 97.0-98.2 Ultimate Tensile Strength 560 MPa 

Chromium (Cr) 0.8-1.1 Yield Strength 460 MPa 

Manganese (Mn) 0.4-0.6 Modulus of Elasticity 190-210 GPa 
Nickel (ni) 0.16-0.25 Poison Ratio 0.27-0.30 

Molybdenum (MO) 0.15-0.25 Brinell Hardness 217 
Carbon (C) 0.280-0.330 Shear Modulus 80 MPa 

Silicon 0.15-0.30 Bulk Modulus 140 MPa 
Sulfur (S) 0.040 Thermal Conductivity (100o) 42.7 W/mK 

Phosphorous (P) 0.035 Machinability 70 

 

 
Figure 1: Samples Subjected Tensile test showing the Breaking Point 
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Instron tensile test machine was used to achieve the 

tensile test and corresponding mechanical properties 

which included the ultimate tensile strength, modulus 

of elasticity, percentage elongation and strain. All the 

twenty (20) specimens subjected to variable loading 

(applied forces) intervals were 7 mm thickness with 

110x35 mm length and width.  

 

3. MODELLING AND PREDICTION USING ANN 

To predict the response variables beyond the scope 

of experimentation, predictive model such as artificial 

neural network (ANN) was employed. Sixty (60) 

experimental data generated by replicating the 

design matrix from the CCD was used for the neural 

network modelling. The experimental data were first 

normalized to avoid the problem of weight variation 

that may consequently results in overtraining which 

is a major limitation in neural network modelling.  

The aim of normalization was to reduce the weight of 

the input and output variables to between 0 and 1 so 

as to allow for effective network training and 

accurate modelling and prediction. To train a neural 

network  for predicting the UTS, Modulus of Elasticity 

(E), percentage elongation and strain a feed forward 

back propagation algorithm was used. The input 

layer of the network uses the hyparbolic targent (tan-

sigmoid) transfer function to calculate the layer 

output from the network input while the output layer 

uses the linear (purelin) transfer function. The  

number of hidden neuron was set at 10 neurons per 

layer and the network performance was monitored 

using the mean square error of regression (MSEREG). 

A learning rate of 0.01, momentum coefficient of 0.1, 

target error of 0.01, analysis update interval of 500 

and a maximum training cycle of 1000 epochs was 

used. The network generation process divided the 

input data into training data sets, validation and 

testing. In this study, 60% of the data was employed 

to perform the network training, 25% for validating 

the network while the remaining 15% was used to 

test the performance of the network. Trainlm is a 

network training function that updates weight and 

bias values according to Levenberg-Marquardt 

optimization. Trainlm is often the fastest back 

propagation algorithm in the toolbox, and is highly 

recommended as a first-choice supervised algorithm, 

since it does require more memory than other 

algorithms. Using these parameters, an optimum 

neural network architecture was generated as 

presented in Figure 2. The same network architure 

was generated to predict the four (4) output 

variables, namely; UTS, Modulus of Elasticity (E), 

elongation and strain  since the same input 

parameters were used.  

 

 
Figure 2: Artificial neural network architecture 

 

3.1. Prediction of UTS using ANN 

The network training diagram was generated for the 

prediction of UTS using back propagation neural 

network. From the network training sequence, it was 

observed that the network performance was 

significantly good with a performace error of 3.81e-

07 which is far lesser than the set target error of 

0.01. The maximum number of iteration needed for 

the network to reach this performance was observed 

to be 14 iterations which is also lesser than the initial 

1000 epochs. The gradient function was calculated to 

be 0.000388 with a training gain (Mu) of 1.00e-12. 

Validation check of six (6) was recorded which is 

expected since the issue of wieght biased had been 

addressed via normalization of the raw data. A 

performance evaluation plot which shows the 

progress of training, validation and testing is 

presented in Figure 3. 

 

 
Figure 3: Performance curve of trained network for 

predicting UTS 

 

From the performance plot of Figure 3, no evidence 

of over fitting was observed. In addition similar trend 
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was observed in the behavior of the training, 

validation and testing curve which is expected since 

the raw data were normalized before use. Lower 

mean square error is a fundamental criteria used to 

determine the training accuracy of a network. An 

error value of 4.7441e-05 at epoch 8 is an evidence 

of a network with strong capacity to predict the 

weldment UTS. The training state, which shows the 

gradient function, the training gain (Mu) and the 

validation check, is presented in Figure 4. 

 
Figure 4: Neural network training state for predicting 

UTS of weldment 

 

Back propagation is a method used in artificial neural 

networks to calculate the error contribution of each 

neuron after a batch of data training. Technically, the 

neural network calculates the gradient of the loss 

function to explain the error contributions of each of 

the selected neurons. Lower error is better. 

Computed gradient value of 0.0021254 as observed 

in Figure 4, indicated that the error contributions of 

each selected neurons is very minimal. Momentum 

gain (Mu) is the control parameter for the 

algorithm used to train the neural network. It is the 

training gains and its value must be less than unity. 

Momentum gain of 1.0e-14 shows a network with 

high capacity to predict the UTS. The regression plot 

which shows the correlation between the input 

variables (current, voltage and gas flow rate) and the 

target variable (UTS of weldment) coupled with the 

progress of training, validation and testing is 

presented in Figure 5. 

Based on the computed values of the correlation 

coefficient (R) as observed in Figure 5, it was 

concluded that the network has been accurately 

trained and can be employed to predict the weldment 

UTS. To test the reliability of the trained network, the 

network was thereafter employed to predict its own 

values of UTS using the same set of input parameters 

(current, voltage and gas flow rate) generated from 

the central composite design.  

 

4. RESULTS AND DISCUSSION 

The aforementioned ANN procedures for UTS were 

adopted to obtain the ANN predicted values for 

modulus of elasticity, ANN predicted strain values 

and ANN predicted percentage elongation 

respectively. The images were taken at 

approximately four millimetres (∼4 mm) of the 

welded joint where high changes in the 

microstructure of the material are produced 

 
Figure 5: Regression Plot Showing the Progress of Training, Validation and Testing 
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Figure 6: SEM images of the samples taken at ∼4 mm of the welded joint 

 
Figure 7: EDS study of the welded samples 

 

The sample in Figure 6a shows a typical low carbon 

steel microstructure where the grain sizes 

constituting mainly of ferrite can be observed 

whereas Figure 6b and c represents a typical low 

carbon steel microstructure where the grain particles 

are barely noticeable across the entire weldment. 

 

It can be observed on the low carbon steel micro 

structure in Figure 6c that the grain particles are 

almost uniformly distributed across the weldment 

after cooling which took less time due to the 

elemental compositions that constitutes the 

weldment. Ferrite number is a standard value for 

designating the ferrite content within an austenitic 

stainless steel. The percentage of ferrite in a 

weldment is due to the amount of oxide addition 

during welding [13, 14]. The elemental composition 

of the weldment cooled at ambient temperature was 

observed through SEM/EDS. The typical EDS study is 

shown in Figure 7. 

The TIG welding process with optimised parameters 

exhibited high energy density of heat source thereby 

resulting in moderate heat input and rapid cooling 

cycle, causing low ferrite. As a result of different 

elemental partitioning, each phase possessed a 

different Pitting Resistance equivalent Number 

(PREN). However, due to rapid cooling rates, the 

partitioning ratio tends to unite for Cr, Mo, and Ni as 

shown in Figure 7. In case of nitrogen, it was 

assumed that ferrite attained its saturation level to 

0.05%. Therefore, the nitrogen content in the 

austenite phase can be determined based on the 

content of nitrogen in the entire material and in the 

phase volume fraction. In cases where the weldment 

of the low carbon steel is exposed to hot air, it 

oxidizes rapidly to form iron oxide (FeO) which 

degrades the exposed part by making it susceptible 

to corrosion, but some element like chromium which 

has a large energy of oxidation dissolved in the steel 

forms thin film layer of its own oxide (Cr2O3) on the 

surface of the steel to partially protect it from any 

oxidizing effect [15]. In TIG welding application, the 

said oxidation is called surface contamination and can 

be prevented through the use of inert gases such as 

argon, helium etc. Argon gas was employed as the 

shielding gas in this investigation to prevent surface 

contamination of the welding process which can 

undermines the integrity of weldment, thereby 

producing poor weld quality. Studies have shown that 

the application of pure argon or helium as shielding 

gas can lead to Nitrogen loss [16], of which the 

addition of Nitrogen to shielding gas can increase the 
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rate of partial transformation from ferrite to austenite 

in the cooling phase after welding, and increase in 

austenite improves the weld pitting corrosion 

resistance [17]. Sathiya et al., [18] reported that the 

use of argon as shielding gas can produce substantial 

amount of ferrite than with helium shielded metal, 

but since the use of helium helps maintain a hotter 

arc, it as well provides a suitable cooling rate for 

phase transformation from α to γ phase for improved 

impact toughness of the weld.   However, protection 

by alloying has a great deal of advantage over 

protection by surface coating, as protection by 

alloying repairs itself when damaged. In other words, 

if the protected film is abraded during service 

condition of the steel material, the chromium content 

immediately oxidises, thereby, compensating for the 

abraded part. This correlates with a review carried 

out by Mohammed et al., [14] on the effects of heat 

input on microstructure, corrosion and mechanical 

properties of welded Austenitic and Duplex stainless 

steels. While nickel in most case decrease the case 

depth of carburized steels, chromium increases it. 

However in the formation of retained austenite for 

the case of carburized and hardened steels, 

chromium is more effective than nickel, whereas, 

nickel and chromium are suitable element required in 

the refinement of austenite grain size of carburized 

steels, but nickel is more effective in austenite grain 

growth inhibition than chromium. The combined 

effect of molybdenum and nickel is much more 

effective than either of these two elements in case 

depth increase, but undissolved grain particles of 

molybdenum carbide (MO2C) plays a significant role 

in austenitic grain size refinement of carburized steels 

[19], as the presence of nickel enhances the effect of 

molybdenum in this case. Hardness value was 

recorded at the weldment, HAZ and area after the 

HAZ. Due to the heating effects on the weldment, 

value of hardness at the welded joint was 118 BN 

and in HAZ (Heat Affected Zone) it was 114 BN and 

away from the HAZ was decreasing up to 98 BN. The 

weldment was found to contain nickel, chromium, 

manganese, carbon, iron etc. from which maximum 

case hardness can be obtained through oil quenching 

and desired mechanical property like tensile strength 

of up to 1360 MPa with adequate toughness through 

proper selection of alloying elements. 

As shown in Figures 8 and 9, both the ANN predicted 

TIG welding values and TIG welding experimental 

carried out under input welding variables of 120A 

current, 19V voltage and 13L/min gas flowrate 

correlated with each other as presented in the 

experimental run serial number 18 in Table 4 and 5. 

 

Table 4: Results of Welding Output Parameters from ANN Prediction 

ANN 

(Runs) 

Force 

(N) 

Area  

(mm2) 

ANN Predicted 
Ultimate Tensile 

Strength UTS (MPa) 

ANN Predicted 
Modulus of 

Elasticity E (MPa) 

ANN 
Predicted 

Strain e 

ANN Predicted 
% Elongation 

(%) 

1 121,000 340 342 663 0.51 51 
2 132,000 333 380 570 0.66 66 

3 114,500 326.8 342 617 0.54 54 
4 62,500 310.6 186 674 0.28 28 

5 46,000 318.2 129 520 0.25 25 

6 51,000 329.8 142 544 0.27 27 
7 81,000 324.9 236 682 0.35 35 

8 78,000 315.2 235 736 0.31 31 
9 85,000 289.8 280 783 0.36 36 

10 94,000 328.3 275 780 0.34 34 

11 115,500 329.8 340 661 0.49 49 
12 132,500 335 383 616 0.61 61 

13 109,000 323 325 618 0.53 53 
14 104,500 329.8 305 692 0.42 42 

15 127,500 313.3 390 689 0.57 57 
16 126,500 320 382 633 0.6 60 

17 105,000 334 302 610 0.48 48 

18 212,000 326.8 421 793 0.61 61 
19 137,000 320.1 362 684 0.54 54 

20 123,000 323 370 738 0.4 40 
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Table 5: Results of Output Parameters from Welding Experimentation 

Experimental 
Runs 

Force 
(N) 

Area  
(mm2) 

Experimental 
Ultimate Tensile 

Strength  

UTS (MPa) 

Experimental 
Modulus of 

Elasticity E 

(MPa) 

Experimental 
Strain (e) 

 

Experimental  
Elongation 

(%) 

1 121,000 340 355.8 671.4 0.53 53 

2 132,000 333 396.4 591.6 0.67 67 

3 114,500 326.8 350.2 625.4 0.56 56 

4 62,500 310.6 201.1 693.7 0.29 29 

5 46,000 318.2 144.5 535.3 0.27 27 

6 51,000 329.8 154.6 552.2 0.28 28 

7 81,000 324.9 249.2 692.4 0.36 36 

8 78,000 315.2 247.4 749.7 0.33 33 

9 85,000 289.8 293.3 792.7 0.37 37 

10 94,000 328.3 286.3 795.3 0.36 36 

11 115,500 329.8 350.2 673.4 0.52 52 

12 132,500 335 395.5 637.9 0.62 62 

13 109,000 323.0 337.4 624.9 0.54 54 

14 104,500 329.8 316.8 704.1 0.45 45 

15 127,500 313.3 406.9 701.6 0.58 58 

16 126,500 320 395.3 648.0 0.61 61 

17 105,000 334 314.3 628.7 0.5 50 

18 212,000 326.8 427.9 806.8 0.62 62 

19 137,000 320.1 370.1 698.4 0.56 56 

20 123,000 323 380.8 732.6 0.42 42 

 

 
Figure 8: Graphical Representation of UTS and E from Table 4 and 5 
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Figure 9: Graphical Representation of Strain and Elongation from Table 4 and 5 

 

5. CONCLUSION 

Artificial Neural Network modelling methodology for 

the TIG welding allowed extensive analysis of each 

input variables for predicting the best possible sets of 

output parameters, as well as optimizing the output 

data to obtain optimum values which particularly 

included maximum UTS which produced 421 MPa and 

maximum modulus of elasticity which produced 793 

MPa. However, the ANN optimised values were 

validated via TIG welding experimentation using the 

same input variables, condition and constraints 

applied in the modelling process and this produced 

maximum UTS of 427.99 MPa and maximum modulus 

of elasticity of 806.83. The slight difference may have 

been due to unaccounted errors in the experimental 

process, but much closer proximity was obtained 

from the modelling (strain of 0.61 and 61% 

elongation) and experimentation (strain of 0.62 and 

62% elongation) for strain and elongation using the 

same input variables and conditions. In spite of the 

difficulty to acquire the TIG welding materials in 

order to ensure suitable welding environment, the 

results obtained from the ANN modelling and 

prediction is observed to be in agreement with 

experimental results. It should be noted that 

accounting for metallurgical transformations of the 

welded material would present great complexity to 

the modelling process, as this aspect is not 

embedded within the operational platform of ANN, as 

such, this was achieved via SEM/EDS which provided 

actual representational views of the welded joint 

metallography. From the standpoint of failure 

prevention, both the simulations and experiments 

have demonstrated that the use of optimum welding 

input variables can have a significant influence on the 

weld quality in terms of reduction in desired 

mechanical properties for longevity of welded 

joints/metal in service condition. 
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