

* Corresponding author, tel: + 1 – 617 – 852 – 4399

WEBSOCKET IN REAL TIME APPLICATION

K. E. Ogundeyi1 and C. Yinka-Banjo2,*

1, 2, DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF LAGOS, AKOKA, LAGOS STATE, NIGERIA.

E-mail addresses: 1 kehindeogundeyi@gmail.com, 2 cyinkabanjo@unilag.edu.ng

ABSTRACT

There has been an increase in request for real time data feeds, teleconferencing and group

communication which entails full duplex connection amongst client and server. Real time web

application involves clients which is also known as a browser getting updates from the server as

they happen. with regards to the limit observed in old-style real-time communication which

include long polling, polling server-sent events and comets, this paper recommends using

upcoming Web Socket technology when dealing with real time. The Web Socket offers improved

result as compared to the conventional approaches that are considered to be the good solution of

providing real time information and lessens overhead acquired while communicating over the

internet and offers stateful, efficient communication among Web Servers and Clients.

Keywords: WebSocket, Http Polling, Http Streaming, Server-Sent Events, Comet

1. INTRODUCTION

Real time web application involves clients which is also

known as a browser getting updates from the server

immediately as they occur [1]. An example of real

time web application is google doc in which documents

can be edited by a user and can also see what is been

done by others simultaneously.

A request is initiated by an HTTP client and in which a

Transmission Control Protocol (TCP) connection is

established [2]. After the client’s request has been

received, a response is sent back by the server and

thereafter the connection is terminated. Using this

model, real time data cannot be sent by servers to

clients. Consequently, Technologies like Ajax long

polling and comet have been used to accomplish real

time communication between server and client. Still,

real time communication cannot be accomplished in

these technologies because some of them needs plug-

in to be installed on browser which put heaven burden

on the server. Real time data communication was

achieved with the advent of Web socket protocol and

HTML 5.

WebSocket description depicts an Application

Programming Interface which allow the use of web

socket protocol by a web page for two-way

communication alongside a remote host [3]. Thus, the

HTTP solution can simulate the real time

communication with high tag in price, increased

network traffic and increased latency. The results to

act out the full duplex connection were un scalable

polling and long polling methods. WebSocket offers

the incredible reduction in the quantity of latency and

network traffic in communication system. The

WebSocket is quicker than these old-fashioned

solutions.

2. LITERATURE REVIEW

2.1 Internet Protocol

Internet protocol suite encompass completely

different communication protocols that work over the

web and different remote communication networks,

and it move (from one place to another) most of the

extremely important services which run over the

network. It offers end-to-end connectivity by

establishing, maintaining, and releasing connections

among the sender and receiver. Routing of network,

IP addressing, error management and flow

management is also delivered by the internet protocol

[4].

2.2 1real Time Web Definition

Synchronous communication system also known as

real-time communication system always includes a

large number of passive recipients [5].

Nigerian Journal of Technology (NIJOTECH)

Vol. 38, No. 4, October 2019, pp. 1010 – 1020

Copyright© Faculty of Engineering, University of Nigeria, Nsukka,
Print ISSN: 0331-8443, Electronic ISSN: 2467-8821

www.nijotech.com

http://dx.doi.org/10.4314/njt.v38i4.26

mailto:kehindeogundeyi@gmail.com
mailto:cyinkabanjo@unilag.edu.ng
http://www.nijotech.com/
http://dx.doi.org/10.4314/njt.v38i4.26

WEBSOCKET IN REAL TIME APPLICATION, K. E. Ogundeyi & C. Yinka-Banjo

Nigerian Journal of Technology, Vol. 38, No. 4, October 2019 1011

Web clients is able to poll server-side events because

of the Light comfort provided by AJAX to the HTTP

communication model. Comet presented a better

approach by deviating from HTTP model of

Communication and permitting communication over

HTTP with push-style.

With the advent of HTML 5, web socket brings about

a higher development than Ajax and Comet. The

condition of HTML 5 WebSocket defines a single socket

full duplex (bi directional) connection which is used to

pull and push data between a client (browser) and a

server, thereby delivering a better result than comet

and Ajax polling [6].

2.2.2 Prior Methods for Real Time Data

Communication

HTTP can simulate real time communication

environment. The HTTP long polling and HTTP polling

can be considered as the good solution for delivering

real time information [7]:

2.2.2.1 Http Polling

A common feature of HTTP Polling is its sequence in

request response messages. A request is sent by the

client to the server, when the server receive the

message, it returns a new message if there is a

message to send otherwise an empty response is

returned if there is no message available for them.

After a small intermission say t, called as polling

interval the server is polled again by client to realize if

there is a vacant new message. Examples of

application which use HTTP Polling are chat rooms and

games.

For HTTP Polling to be adequate in providing real time

details, the interval of delivering the message must be

known which implies that the rate of transmitting the

data must be stable. Thus, the client will only be

synchronized by the application developer to request

for data when it is certain to be available. However,

latency is accumulated when the rate of data request

grows which is caused due to the constant repetition

of important header details by the overhead intrinsic

to HTTP polling. Due to the complexity of real-time

HTTPWeb applications, it has been proposed in early

research that HTTP was not conceived for real time full

duplex communication. Thus, the HTTP solution can

simulate the real time communication with high tag in

price, increased network traffic and increased latency.

2.2.2.2 Http Long Polling

A flaw in polling is the large amount of futile request

it sent to the server when it does not have new

message for a client. Therefore, the details which are

pushed from server to client are well handled by HTTP

Long polling which is a variation of polling [8]. With

HTTP long polling when there is no new message to

be sent to the client, the server does reply with an

empty message but instead keep the request until a

fresh message is available to be sent to the client or

timeout occurs thereby decreasing the number of

pointless request to the server but still HTTP

Longpolling did not solve the problem in traditional

polling as there is still increased latency and overhead.

Figure 2: Client Using Long Polling

Figure 1: Client Using HTTP Polling

2.2.2.3 Http Streaming

HTTP Streaming which was first made known to the

web by Netscape in 1992 originates in two kinds

namely page streaming and service streaming. The

content of the server streaming in a long-lived HTTP

Connection is contained in page streaming as well as

service streaming [9]. With HTTP Streaming, the

server does not close the connection but keeps it open

throughout a client session by running a long loop. A

change in state is detected by the server script using

WEBSOCKET IN REAL TIME APPLICATION, K. E. Ogundeyi & C. Yinka-Banjo

Nigerian Journal of Technology, Vol. 38, No. 4, October 2019 1012

some methods like event registration. Once a change

is detected, the new data is streamed and flushed

while the connection remains open. For the meantime,

the new data must be displayed in the user interface

while awaiting the server’s response [9]. A difference

between the forms of streaming is that service

streaming is initialized by client’s request which is

known as XHR-streaming while page streaming uses

the request of the initial page to stream data which

provide flexibility in the duration of connection [10].

Example of HTTP Streaming implementation is Forever

frame (an iframe which obtains script tags from a

server in an everlasting response) Codes are

implemented in script tags when it is been read by a

browser, therefore the data received by a client from

the server are enclosed as JavaScript functions [11].

Table 1 shows the comparison between Http Long

Polling and Http streaming protocols

2.2.2.4 Comet

Comet scheme which exist due to the persistence

attribute of HTTP/1.1 uses the methods practiced by

long polling to accomplish real time behavior [10].

Before the advent of Persistence connection, different

URLS are been fetched by different TCP connection

which cause congestion on the internet because of the

weight being put on the server but with persistence

connection the connection between the client and the

browser are always open till it is closed by either one

of the party sending a precise close connection

message or a time/network error take place. As soon

as the connection is closed, the server cannot start it

back to gain a connection to the browser [11].

With persistence connection, CPU time is saved in both

hosts and routers, fewer TCP connections are opened

and closed and the memory use in the control blocks

of the TCP Protocol can be saved in hosts.

2.2.2.5 Server-Sent Events

Server sent Event uses the text/event stream feature

of HTTP/1.1 content type to send message to the

browser (client). The channel in which server-sent

event use to communicate to the client from the server

is a one-way communication channel. However, the

client has to subscribe to the channel by first

connecting, then when there is a fresh information

available the server post events. The connection is

always open until it is closed by a proxy or the client

itself. The connection can also be configured to close

after a duration of time, same as the client

reconnection time [12]. As shown in Figure4, Server

sent Events behaves quite like long-polling. Server-

sent events can be used by developers to access APIs.

Event Source interface receive access from the API

thereby providing a direct JavaScript code, allowing

events to be triggered by the server to the browser

and updating the content on the client [6]. When an

ID is set on messages sent, the client reconnects and

continue where it stops after a look up is been done

by the server on its ID. This feature makes server sent

event robust.

Figure 3: HTTP streaming

Figure 4: Client Using Server Sent Events

Table 1: Comparison between Http Long Polling and Http streaming protocols

HTTP LONG POLLING HTTP STREAMING

With HTTP long polling when there is no new message to be
sent to the client.

With HTTP Streaming, the server does not close the connection
but keeps it open throughout a client session by running a long
loop.

The server does reply with an empty message but instead keep
the request until a fresh message is available to be sent to the
client or timeout occurs thereby decreasing the number of
pointless request to the server

A change in state is detected by the server script using some
methods like event registration. Once a change is detected, the
new data is streamed and flushed while the connection remains
open

WEBSOCKET IN REAL TIME APPLICATION, K. E. Ogundeyi & C. Yinka-Banjo

Nigerian Journal of Technology, Vol. 38, No. 4, October 2019 1013

The model in which client-side events are transmitted

to the server (i.e. a user clicks on a link to request a

new page from the server) can be referred to as

“client-sent events”. Server-sent events permits

servers to pass information to the client as it becomes

accessible, without client polling. To use Server Sent

Events, an application implements an Event Source

API in the browser and pushes data from the server

with Server Sent Event’s event stream data format.

2.2.3. Drawbacks of Real Time Web with Http

2.2.3.1 Overhead

Achieving real time with HTTP is a naïve approach

because HTTP headers consume excess data which is

in most case not useful for real time application while

WebSocket protocol is intended for it because it makes

available a full-duplex, bidirectional communication

channel for use which is carry out with a single socket

on the web and can develop scalable, real time Web

applications.

2.2.3.2. Unidirectional

HTTP is unidirectional so when using real time

application with HTTP, several TCP connections is used

to achieve a replicated bi-directional communication

[8], even with server sent event, a connection will still

be need to push events from the server to the client

and also to send message to the server but WebSocket

protocol which bring improvement to real time

applications is purposely for the aim of bi-directional

communication which real time application is all about.

2.3 Web Socket

Communication overhead can be intensified by the use

of continuous polling in an application. The WebSocket

protocol allows for a robust real time web application

because it provide a full-duplex bi-directional

communication channel which is done with a single

socket [9].

2.4 Web Socket Architecture

WebSocket protocol consist of two categories; the first

part is the Handshake which contains the handshake

response from the server and the message from the

client, the second of the category is data transfer. The

Web socket also provide a socket that is innate to the

browser which eliminate most of the problems with

using HTTP thereby building a scalable real time

application.

For a WebSocket connection to be established, both

the server and client has to be upgraded from HTTP

protocol to web socket protocol at the early stage of

handshake. When the connection has been

established, WebSocket data, text and binary frame

can be sent at the same time in any direction in full

duplex mode. Replicating the WebSocket bi-directional

communication with HTTP comes with high price to

pay in slow CPU performance, increased latency and

network traffic. This can be very difficult and prone to

error due to the complexity associated with real time

application [12]. Another benefit of WebSocket is that

it has the ability to transverse proxy and firewall which

is an area difficult for many applications. WebSocket

pass by proxy, by spontaneously setting up a tunnel

when it detects the presence of a proxy server.

Figure 5: Web socket Architecture

WEBSOCKET IN REAL TIME APPLICATION, K. E. Ogundeyi & C. Yinka-Banjo

Nigerian Journal of Technology, Vol. 38, No. 4, October 2019 1014

3. THE COMMUNICATION BASED ON

WEBSOCKET PROTOCOL

HTTP has been used for real time web to update data

before the advent of WebSocket protocol, but it

obviously has flaws. To begin with, the packet’s head

of HTTP Protocol is significantly huge, which increases

network overhead. Secondly with HTTP protocol, TCP

connection must be established by the server for each

user which waste resources and put much pressure on

the server. WebSocket Protocol, similar to Socket

whose communication is based on TCP/IP is a full

duplex communication protocol [3]. The major

advantage of WebSocket is that information can be

sent between client and server at any time. Ajax

communication does not restrain WebSocket because

in Ajax technology, it is required that the client initiate

the request. Contemporary browser fully supports

WebSocket protocol so WebSocket client can push

data to the server [2].

3.1 Principle of the Websocket Protocol

The establishment of WebSocket connection is in this

manner, the browser first sends a WebSocket

connection request, in which the browser responds to

the request sent by the client, the process described

above is known as ‘handshake’. The data transmission

at this phase is based on text and use ASCII encoding

and is compatible with existing HTTP/1.1 protocols.

In WebSocket, the browser and server only need to

establish a connection by handshaking as illustrated in

Figure 7. Because the port number is already known

by each process through the WebSocket Protocol,

information can be sent and received between the

browser and the server before the connection is

released [13]. To prevent malicious script attack and

make the communication more secure, the message

needs to be encrypted when the header is being sent

by the browser to the server. This is done by the server

constructing a SHA-1 message digest with the browser

request header “sec WebSocket-Key” and combining it

with a SHA-1 encrypted magic string which is encoded

in BASE-64. This result is then returned as the value

of the Sec-WebSocket Accepted header to the

browser.

3.3 State of the Art Applied Areas of Websocket

in Realtime Application

The following describes the examples in which

WebSocket have been applied to real time

applications:

3.3.1 Social Feeds

WebSocket has been applied to social app so feeds can

be updated in real time which lets you know what

people are doing and when they do them.

3.3.2. Multiplayer Games

Effective interaction between players is very important

as the web is at the verge of being game platform

independent. WebSocket is been used in games to

produce high gaming performance by developers.

3.3.3. Collaborative Editing/Coding

Version control (example is Git) has always been used

to merge edited documents but there is still need to

monitor users when there is a conflict Git cannot

handle. But with a collaborative solution like

WebSocket, it is easy knowing people working on the

same documents and those editing it.

3.3.4. Clickstream Data

Analyzing how users interacts with an application will

help to improve it. The cost of overhead brought by

HTTP has necessitate making important and collecting

only the most useful data.

Then, realizing a different metric which seemed

insignificant but would have been useful in making

important decision should have been collected. With

WebSocket, the movement of mouse can be tracked

and data can also be sent in the back end.

Figure 6: Web socket communication principle

diagram

WEBSOCKET IN REAL TIME APPLICATION, K. E. Ogundeyi & C. Yinka-Banjo

Nigerian Journal of Technology, Vol. 38, No. 4, October 2019 1015

Figure 7: Web socket communication Protocol

3.3.5. Financial Tickers

The finance world is moving fast and human brains

cannot sustain processing data at that speed, so

algorithms are used. When there is need to track

companies worth using a dashboard now and not

some seconds ago, WebSocket can be used to stream

data without delays.

3.3.6. Sports Updates

Another benefit of WebSocket is its application to sport

updates, Users can be kept up to speed if sports

information is to be included in Web app.

3.3.7. Multimedia Chat

Person to person meeting cannot be replaced but

video conferencing is used when everyone cannot be

present. The plug in used in videoconferencing is quite

heavy so WebSocket is been used with HTML5, videos

elements and get User Media API’s as a better option.

3.3.8. Location-Based Apps

Applications are now using GPS capability to get user

locations such as tracking user’s progress along a

route, this will enable useful data to be gathered.

WebSocket is been used to do this as HTTP is

unnecessarily bulky.

3.3.9. Online Education

Online Education is an excellent medium of learning

especially when the cost of education is getting

expensive and the internet continue getting cheaper

and faster. WebSocket provides a great online

education platform for interaction between students

and teachers.

3.4 The Implementation of Web Socket

Technology

3.4.1. Web Socket’s Implementation on the

Client Side

Implementing WebSocket on the browser is quite

simple. The definition of the interface of WebSocket

according to W3c team is explained thus [10]:

Algorithm 1: Implementation of WebSocket on the client side

[Constructor(in DOMStringurl, in optional DOMString protocol)]

interface WebSocket

{read only attribute DOMString URL;

// ready state

const unsigned short CONNECTING = 0;

const unsigned short OPEN = 1;

const unsigned short CLOSED = 2;

readonly attribute unsigned short ready State;

readonly attribute unsigned long buffered Amount;

// networking

attribute Function onopen;

attribute Function onmessage;

attribute Function onclose;

oolean send(in DOMString data);

void close();};

From Algorithm 1, A valid network address and a protocol type are the parameters which can be initialized by

a new WebSocket instance following the definition of construct function and interface. In Algorithm

2,JavaScript handle a WebSocket object and an instance of WebSocket is created with the following code:

WEBSOCKET IN REAL TIME APPLICATION, K. E. Ogundeyi & C. Yinka-Banjo

Nigerian Journal of Technology, Vol. 38, No. 4, October 2019 1016

Algorithm 2: JavaScript handle a WebSocket object

varmyWebSocket = new WebSocket

It is important to check if WebSocket is supported in the browser of the client before initialization is made.

if (“WebSocket” in window)

{varwbs = new WebSocket

(“wbs://exampletest.com/service”);}

else

{alert (“Does not support WebSocket”);}

Functions that will be used for handling events like receiving of messages, closing of the message and

successful connection establishment must be registered before the messages are sent as demonstrated in

Algorithm 3.

Algorithm 3: Establishment of a successful connection

myWebSocket.onopen = function(evnt)

{alert(“opening connection ...”); };

myWebSocket.onmessage = function(evnt) {alert(“Received Message: “+ evnt.data);};

myWebSocket.onclose = function(evnt)

{alert(“Connection closed.”);};

For a message to be sent, the post message method along with the content of the message which will be

used as the default parameter should be called. To terminate the connection after sending the message, the

disconnect method should be called as shown in algorithm 4.

Algorithm 4: Terminating a connection

myWebSocket.postMessage(“HeyWebSocket “);

myWebSocket. disconnect(); stockTickerWebSocket.

disconnect();

3.4.2. Websocket Implementation on the

Server Side

Implementing WebSocket on the server side is more

complex than implementing on the client side

because many of the operations on the client side are

all done automatically by the browser such as

beneficial data extraction, headers generation and

header analysis but these are not executed by the

servers but done manually by the developer. The

server-side implementation of WebSocket depends

mainly on Socket programing which is popular for

languages like C++, C# and Java. Implementing

WebSocket Server side function with C#, to begin

with the new request should be monitored in the

network by creating a new listener.

Private Socket server Listener = new Socket (Address

Family. InterNetwork, SocketType. Stream, protocol

lType. IP);

Since the accept function is in charge of listening to

new request coming in, it should be in a loop which

runs at all time for receiving client request at all

time.

Algorithm 5: Looping a new request

While(true)

{

Socket sck= serverListener.Accept();

//new connection recieved

If (sck!= null){….} //request been processed

}

WEBSOCKET IN REAL TIME APPLICATION, K. E. Ogundeyi & C. Yinka-Banjo

Nigerian Journal of Technology, Vol. 38, No. 4, October 2019 1017

Quite a lot of function need to be registered when a new connection is received for events handling such as

sending of messages, receiving of messages and closing the connection which occur during the communication.

Algorithm 6: Receiving of messages and closing the connection

ci. ReceiveData += new ClientSocketEvent (Ci_ReceiveData);

ci. BroadcastMessage += new BroadcastEvent (ci.SendMessage);

ci. DisConnection += new ClientSocketEvent (Ci_DisConnection)

ci. ClientSocket.BeginReceive(ci.receivedDataBuffer,0, ci.receivedDataBuffer.Length, 0, new

AsyncCallback(ci.StartHandshake), ci.ClientSocket.Available);

Begin Receive method is call to receive messages from the client request and then handshake with the client

browser is made. If the handshake with the client browser is successful then full duplex communication can begin

The Start Hand Shake method is responsible for generating handshake data which is grounded on the clients’

request. Using the method above, the results gotten from key “Sec-WebSocket-Key1” and key “Sec-WebSocket-

Key2” are gotten from the request headers, the computation of MD5 are usually carried out with the two values

generated from the two keys and returned at the end of the result. The result gotten from MD5 serves as a mean

of keeping data safe during the handshake process [10]. If the handshake process is successful, new connection

will be put into the connection poll for reuse next time.

list Connection. Add(ci);

What should be paid attention here is putting the character “\x00” at the beginning of messages and “\xFF” at

the end of the message when sending messages and removing these two characters when reading messages.

Additionally, message should be encoded or decode byUTF-8 before using.

Algorithm 7: Implementation of WebSocket on the server side

public void SendMessage(MessageEntity me)

{

ClientSocket.Send(new byte[] {0x00});

ClientSocket. Send(Encoding. UTF8. GetBytes (Json-

Convert.SerializeObject(me)));

{ ClientSocket.Send(new byte[] { 0xff });

}

Figure 8: Comparison of WebSocket, Server-Sent Events and Long polling

WEBSOCKET IN REAL TIME APPLICATION, K. E. Ogundeyi & C. Yinka-Banjo

Nigerian Journal of Technology, Vol. 38, No. 4, October 2019 1018

Finally, call DisConnection method to close the

connection when communication is over.

3.5 Comparative Analysis of Websocket With

Other Real Time Methods

Comparing other methods such as polling and HTTP

Polling with WebSocket, the demonstrations shows

that WebSocket has more advantages in term of

network utilization and latency.

With polling, Http requests are consistently sent to the

server, Polling was the first method used in real time

application and would have been a good method if the

interval to deliver messages were known but because

of the un predictable nature of real time data request,

using Polling causes opening of several connections

for a low-message situation which are caused by

needless requests been sent to the server.

With longpolling, requests are sent by the client to the

server, when the server receives the message, it

returns a new message if there is a message to send

otherwise an empty response is returned if there is no

message available for them. After a small intermission

say t, called as polling interval the server is polled

again by client to realize if there is a vacant new

message. With long polling, empty request is not sent

back by the server, but it holds the request until there

are available messages, or a timeout occurs.

If HTTP request and the information of the response

header is referred to as the overhead of the network,

considering that the header may be different for

different application,

For example, a header (which has the tendency of

increasing to almost 2000 bytes) contains 923 bytes

excluding data.

Analyzing this data through polling method gives the

below network throughput result for response header

data and HTTP request for different users:

Case A: if 1000 Clients polls every second, then the

network throughput is923 x 1000= 923000 bytes =

7384000 bits per second (6.6 Mbps)

Case B: if 10000 Clients polls every second, then the

network throughput is923 x 10000= 9230000 bytes=

73840000 bits per second (665 Mbps)

Case C: if 100000 Clients polls every second, then the

network throughput is 923 x 100,000 = 92300000

bytes = 92300000 bits per second (665 Mbps)

The example above shows the massive throughput,

which was used during polling method, the below

shows the result when the application is rebuilt with

WebSocket. Analyzing with just 2 bytes as the header

instead of 923, we have:

Case A: if 1000 clients receive 1 message per second,

then the Network throughput becomes 2 x 1000=

2000 bytes= 16000 bits per second (0.015 Mbps)

Case B: if 10000 clients receive 1 message per second,

then the Network throughput becomes 2 x 10000 =

20000 bytes = 160000 bits per second (0.153 Mbps)

Case C: if 100000 clients receive 1 message per

second, then the Network throughput becomes 2 x

100000 = 200000 bytes = 1600000 bits per second

(1.526 Mbps)

As shown in figure 9, with WebSocket, there is great

reduction in network traffic unlike polling methods.

WebSocket also reduces the latency period that could

be incurred using polling method, with polling method,

if it takes 65milliseconds for a message to be sent from

the server to a client, for every poll done to the server,

it takes another 65milliseconds which increases

latency and continuous server memory utilization but

with WebSocket, it takes only 65milliseconds only to

send message from the client to the server.

Figure 9: Comparison of Polling with WebSocket with

respect to above example

3.6 Advantages of Websocket Over the Previous

Methods Used in Real Time Application

1. WebSocket naturally provides a full-duplex bi-

directional communication channel which is done with

a single socket, which means that an HTTP request

uses the same connection from the client to the server

and vice versa thereby reducing overhead. Figure 10

shows that in the search bandwidth overhead was

reduce up to 1000 times as against the HTTP methods.

2. With WebSocket, latency is reduced. For

instance, unlike polling which awaits request from the

server and sends messages to the server constantly

WEBSOCKET IN REAL TIME APPLICATION, K. E. Ogundeyi & C. Yinka-Banjo

Nigerian Journal of Technology, Vol. 38, No. 4, October 2019 1019

without regarding if there are new messages available

to be sent. But with WebSocket, Messages are also

sent and received by the server and client at any time

thereby reducing latency

3. Real time communication with WebSocket

becomes proficient as resources such as the CPU and

bandwidth are well utilized which in return improves

performance unlike server-sent event which consumes

more CPU Power and Bandwidth.

4. With WebSocket protocol, other standard

protocol can be built.

5. Both Polling and Comet can provide robust

end user experience and low perceived latency for a

desktop application but WebSocket provides efficient

web live streaming applications with insignificant

latency.

6. Polling makes needless requests to the server

thereby opening several connections for a low-

message situation.

7. WebSocket lessens complexity when

developing a real time application by eliminating

overhead unlike polling and HTTP long polling which

HTTP headers consume excess data which is in most

case not useful for real time application.

Figure 10: Header information for each character

entered into search bar

4. FUTURE TREND

4.1. Embedded Chat

Chat applications in the future are expected to be

embedded in other software, products and services

which will make real time experience more alive to

use.

4.2. ‘Omnichannel’ And In-Store

Real time Updates can be used in future by in-store to

provide preview and recommendations of available

products by using real time features like real time

communication, updates, notifications combined with

scan technology on the customer preferences.

4.3. Crowdsourcing

Data can be crowd sourced and passed to applications

which publish data in real time to give valuable

services to users and to the community. This can help

in avoiding unforeseen circumstances like avoiding

traffic congestion

4.4. Smart Automation & Internet of Things

(IOT)

With the growth in internet of things, Web socket can

be applied in the future to IOT and smart automation

4.5. Out of Home Media

Outdoor media is becoming more digitalized. When

connected to the internet, it can be applied to

technology like facial recognition and take in live data

fields to alter what is been displayed in real time. An

example is watching a video which show creative

campaign by agency for charity Women’s Aid

4.6. Device-to-Device / Machine-to-Machine

The usual chat human is human interacting in real time

and other example involves human interaction with

machine. In future time machine to machine

interaction and device to device interaction will be

realized with the web socket.

4.7. Marketing Automation

Marketing automation is a reigning trend in digital

marketing and increasingly this involves mobile

experiences that are prompt based on customer

location. These need to happen in Realtime to be

effective.

4.8. Personal Assistants

In future trend, WebSocket can be applied to personal

assistance which will takes these Realtime interactions

to a whole new level which will engage personal

assistance to be more efficient.

4.9. Software

Progressively software runs in the cloud and is always

automatically updated example is Google Chrome the

browser. But the way software works is also changing

to real time.

WEBSOCKET IN REAL TIME APPLICATION, K. E. Ogundeyi & C. Yinka-Banjo

Nigerian Journal of Technology, Vol. 38, No. 4, October 2019 1020

5. CONCLUSION

Even though HTTP has a higher percentage in being

used for real time applications, it still cannot achieve

full duplex communication which WebSocket offers

because it causes heavy load on the server and

increased network overhead. Thus, this article

provided a detail description of various methods that

are used for real time data communication, discussed

various issues involved in designing the application

using traditional methods like polling and long polling.

Also, this paper gives the comparative analysis of

methods like polling, long polling with the WebSocket

while considering various performance measurement

parameters like network overhead and latency.

WebSocket protocol offers the tremendous reduction

in network overhead, Efficient low-latency and high-

throughput transport and latency when real time data

communication is concerned. If you want low-latency,

high-throughput messaging back to the server,

WebSocket can do it, Super easy API and Now

supported in all modern browsers.

6. REFERENCES

[1] Kristian, J. (2014). “Real Time Web Applications,

Comparing frameworks and transport
mechanisms”. UIO Department of Informatics,
vol. 1, Number 1 pp. 15.

[2] Xue, L. and Liu, Z. (2014). “Network Real-time

Communication Based on WebSocket”. Computer
& Digital Engineering, Volume 1 Number 1. pp 5.

[3] Pimentel, V. and Nickerson, G. (2012).

“Communicating and displaying real-time data
with WebSocket”, IEEE Internet Computing, Vol.

16 Number 4, pp. 6.

[4] Anton, D., Yang, Y. A., Bajcsy, R. And Kurillo, G

(2017). Platform for Augmented Telemedicine for

Real Time Remote Medical Consultation. In
Proceedings of the International Conference on

Multimedia Modeling, Reykjavik, Iceland. pp. 77–

89.

[5] Fu-Hau, H., Chia-Hao, L, Cheng-Yu, T., Wei-Tai,
C., Yan-Ling, H. and KaiWei, C. (2016). TRAP: A

Three-Way Handshake Server for TCP Connection
Establishment. Applied Science Journal. pp. 3-4.

[6] Lerner, R. (2011), “At the forge: communication in

HTML5”, Linux Journal, Vol.11, Number 7, pp. 2.

[7] Pereira, R. and Pereira, E. G. (2014). Dynamic

adaptive streaming over http and progressive
download: Comparative considerations. In

Proceedings of the IEEE International Conference
on Advanced Information Networking and
Applications Workshops, Victoria, BC, Canada, pp.

95–99.

[8] https://www.javaworld.com/article/2071232/java-

app-dev/9-killer-uses-for-websockets.html

[9] I. Fette and A. Melnikov. The WebSocket Protocol.
RFC 6455.RFC Editor, Dec. 2011.

url:http://www.rfc-editor.org/rfc/rfc6455.txt.

[10] Puranik, G., Feiock, C and H. Hill. (2013). “Real-

time Monitoring using AJAX and WebSocket”. 20th
IEEE International Conference and Workshops on
Engineering of Computer Based Systems (ECBS).
Scottsdale, AZ, USA: IEEE, pp. 7.

[11] Bozdag, E. (2011). “Push solutions for AJAX

Software”. Engineering Research Group
Department of Software Technology Faculty
EEMCS, Delft University of Technology, pp. 22.

[12] Rakhunde, S. (2014). “Using WebSocket for Real

Time Data Communication in Full Duplex

Network”. IOSR Journal of Computer Science
Conference (IOSR-JCE) e-ISSN: 2278-0661, pp.

17-18.

[13] Pan, R., Zhao, H., Wang, J., Liu, D. and P. Cai.

(2010). “The Design and Implement of TCP/IP

Protocol Cluster on AVR Single chip”. School of
Information Science and Engineering,

Northeastern University, Shenyang, China, pp.
763-764.

https://www.javaworld.com/article/2071232/java-app-dev/9-killer-uses-for-websockets.html
https://www.javaworld.com/article/2071232/java-app-dev/9-killer-uses-for-websockets.html

