
 
* Corresponding author, tel: +234 – 806 – 067 – 6748  

                  

DEVELOPMENT OF A BOOLEAN LOGIC SIMULATOR BASED  

ON QUINE MCCLUSKY ALGORITHM 

 

I. Oghogho1,*, H. Agada2 and A. M. Obiazi3 
1, DEPARTMENT OF ELECTRİCAL & ELECTRONİC ENGİNEERİNG, DELTA STATE UNİVERSİTY, ABRAKA-OLEH CAMPUS, 

DELTA STATE,  NİGERİA 
2, DEPT OF ELECTRİCAL & INFORMATİON ENGR’G, LANDMARK UNİVERSİTY, OMU-ARAN, KWARA STATE, NİGERİA 

3, DEPT OF ELECTRİCAL & ELECTRONİC ENGR’G, AMBROSE ALLİ UNİVERSİTY, EKPOMA, EDO STATE, NİGERİA  

E-mail addresses: 1oghogho.ikponmwosa@delsu.edu.ng, 2caleb.agada@lmu.edu.ng,  
3 biazimoz@gmail.com 

 

ABSTRACT 

This paper presents the development of an educational simulation tool for solving Boolean logic 

equations using Quine McCluskey’s algorithm. Unity3D development environment was used to 

provide an interface for the design of the software front end. A custom built version of Javascript 

was used to write the back end code that drives the algorithm. Based on the output parameters 

decided on by the user for either sum of product (SOP) or product of sum (POS) approaches, the 

software provides an interactive user interface displaying: (i) the truth table with a maximum of 

six inputs (ii) the Karnaugh Map as well as the generated corresponding simplified logic equation 

and (iii) the generated logic circuit diagram. The results of the simplified Boolean expressions and 

logic circuits generated by the developed tool were compared with manually calculated solutions 

and available html and console based implementations and were found to be accurate. 

 

Keywords: Boolean Logic Simulator, Logic Circuit, Quine McClusky Algorithm, Karnaugh Map, Digital 

Electronics. 

 

1. INTRODUCTİON  

Digital Electronics covers Boolean logic expressions, 

their simplification, their representation in truth tables 

and how to plot functional logic circuit diagrams based 

on a desired predetermined result [1]. Further down 

the course, several methods of logic simplification for 

the reduction of more complex expressions are 

introduced. The process generally involves the 

dissolution of redundant components of the 

expressions with the use of Boolean arithmetic or 

graphical methods like Karnaugh maps. In many 

applications, it is required that a Boolean equation is 

solved while excluding irrelevant variables [2, 3]. 

The five key elements in Boolean logic simplification 

are:  

(i) the truth table, which expresses output states 

based on all possible permutations of variable 

input states,  

(ii) the min/max term, which is a simple way of 

describing the system’s “ON” states, as expressed 

by the truth table  

(iii) the Karnaugh map, which is a graphical method of 

simplifying Boolean equations,  

(iv) the simplified Boolean expression, which is the 

shortest and most logical expression for the 

desired outputs with all permutations of inputs for 

the system, and  

(v) the circuit diagram, which is the final logic circuit 

that satisfies any logic equation.  

 

Digital circuit designers use Boolean algebra as the 

basic formal system while digital circuits are the end 

results they seek to produce. Typically, the complexity 

of the raw expressions derived from truth tables and 

in most cases, the final decomposed algorithms, 

increases exponentially with the number of variables 

Nigerian Journal of Technology (NIJOTECH) 

Vol. 38, No. 3, July   2019, pp. 716 – 725 

Copyright© Faculty of Engineering, University of Nigeria, Nsukka,  
Print ISSN: 0331-8443, Electronic ISSN: 2467-8821 

www.nijotech.com 

http://dx.doi.org/10.4314/njt.v38i3.25 

http://www.nijotech.com/
http://dx.doi.org/10.4314/njt.v38i3.25


DEVELOPMENT OF A BOOLEAN LOGIC SIMULATOR BASED ON QUINE MCCLUSKY ALGORITHM,      I. Oghogho, et al 

 

Nigerian Journal of Technology,   Vol. 38, No. 2, July 2019            717 

in question. Because of this, the manual computation 

of systems with higher variable counts is extremely 

tedious and cumbersome even with the use of 

simplified methods like the Karnaugh map. Lecturers 

and students alike have a hard time simulating larger 

systems in class during teaching sessions due to time 

constraints. Examples in class only border around 

simplistic circuit designs with no more than four 

variable inputs and most students of the subject never 

get to fully understand the concepts of Karnaugh 

mapping, or grasp the correlation between the key 

elements in Boolean logic simplification for more than 

four variables. 

It is therefore necessary to create a learning tool 

which assists both students and their teacher, to easily 

and effectively simulate simple and complex Boolean 

equations, and visualize the simplification using 

Karnaugh maps and the final logic circuit diagram. This 

will enable the visual assessment of the correlation 

between each of the elements mentioned above 

without the need for cumbersome manual calculation. 

A Boolean function simplification algorithm such as the 

Quine McCluskey algorithm [4] and a robust 

programming interface such as the Unity engine 

makes this possible. 

 

1.1 Review of Past Work 

Boody [5] created a Quine McCluskey Calculator 

launched on PlayStore in 2012 using Java 

implementation of the algorithm. Boody [5] 

implementation allowed users to calculate for don’t 

care values and showed the “Prime Implicants” (PI) 

charts as they were processed. However the version 

was limited to 4 variables and focused only on 

preparing the Karnaugh map and final result. It did not 

have the functionality of visualizing the resulting circuit 

diagram at a fast refresh rate.  

Cits [6] developed a Karnaugh Veitch Diagram (KVD) 

calculator which calculated up to five variables based 

on Quine McCluskey implementation.KVD calculator 

displays the PI chart calculation and has a remarkable 

refresh rate between calculations. İts results were the 

most accurate of all the programs sampled for this 

review, although it does not generate circuit diagrams. 

Abdelrahman [7] developed an implementation of 

Karnaugh map minimizer for infinite variables using 

C++. The C++ code is relatively compact but does not 

have an explicit user interface which is an obvious 

disadvantage for achieving real time visual learning. 

Although the implementation gives the user the ability 

to input an infinite number of variables for calculation, 

processing limits is dependent on the power of the 

computer’s processor. 

GatePlus developed in this work provides a well 

presented, simple to use simulator for Boolean logic 

operations for up to six variables. It provides a tool for 

simple computation and graphical visualization of the 

results of logic functions and their corresponding 

circuit diagrams. Users will be able to easily see the 

results of any modifications they make, or any new 

methods they wish to employ. This tool will effectively 

make the study of Boolean logic functions easier, more 

interactive and practical. 

 

1.2 Objectives of Study 

The aim of this work was to design and develop a 

simple-to-use application for the simplification of 

Boolean logic expressions which will be optimized for 

User experience (UX) and User Interface (UI) design. 

The objective was to create a learning tool which 

assists both students and their teachers without the 

need for manual calculations to:  

(i) easily and effectively simulate simple and complex 

Boolean equations, 

(ii) visualize both the simplified logic equation and the 

Karnaugh maps solution 

(iii) visualize in real-time circuits resulting from their 

design specifications, so that they can fine-tune 

and apply corrections in real time. 

 

2. MATERİAL AND METHODS 

The design used Unity3D development environment 

which provided an interface for the design of the front 

end of the software. Details on the Unity3D are found 

in [8]. Its development environment was specifically 

designed to handle highly flexible 2D and 3D graphics 

in Cartesian virtual space, but most of those tools are 

used in improvisation for the building of the graphical 

user interface of the software.  

A custom built version of Javascript (Unityscript) was 

used to write the back end code that drives the 

algorithm. JavaScript code works at the back end for 

driving the dissolution of redundancy in the raw output 

from the truth table using the Quine-McCkluskey 

algorithm. The software provides an interactive user 

interface with three scrollable panels displaying:  

(i) the truth table with a maximum of six inputs  

(ii) the Karnaugh Map as well as the generated 

corresponding simplified logic equation.  

(iii) the generated logic circuit diagram.  

The logic conditions can be varied either on the truth 

table or on the Karnaugh Map panels while the logic 

equations and circuit diagrams of the simplified 



DEVELOPMENT OF A BOOLEAN LOGIC SIMULATOR BASED ON QUINE MCCLUSKY ALGORITHM,      I. Oghogho, et al 

 

Nigerian Journal of Technology,   Vol. 38, No. 2, July 2019            718 

expressions are automatically generated from the 

output parameters decided on by the user for either 

sum of product (SOP) or product of sum (POS) 

approaches. The software tool is capable of working 

on multiple solutions on different tabs at the same 

time. Fig 1 shows the Unity3D development 

environment with GatePlus in active development. 

 

2.1 Project Mockup 

The drafting of a mock-up for the interface of the 

software can be done in any graphics compositing 

software. Adobe Photoshop was chosen for its 

flexibility. Before the digital drafting, it is advisable to 

analyse the optimal configuration for the software 

interface to deliver all the information to the user in 

the most minimal way, without cluttering the screen. 

This can easily be resolved by understanding the 

required functionality and drafting the cardinal 

functions. For GatePlus, these functions are:  

i. The display of all possible combinations of input 

states for all current input variables, and the 

resulting output for that configuration. This 

functionality clearly requires the need of a Truth 

Table within the software interface. It will be 

preferable if this element is non-collapsible as it 

displays critical information that may need to be 

visible at all times. 

ii. The visualization of the active circling of variable 

interpretations within a Karnaugh Map, so the 

user can see the graphical resolution of the 

equation generated from the truth table. The 

user must also be able to edit the output directly 

from the k-map, so as to be able to visually alter 

the outcomes of the truth table to simulate 

theories the user might have, or physically refine 

the Boolean relationship to generate a more 

favourable result. 

iii. The software program must be capable of 

automatically generating a Logic Circuit Diagram 

based on the final solution. This element will 

require a lot of screen real-estate and needs also 

to be non-collapsible as the essence of the entire 

project is that the user should be able to at all 

times, visualize the dynamics in the nature and 

size of the circuit while altering ouput 

requirements. 

iv. The software must have the functionality of 

toggling between Sum Of Product (SOP) and 

Product Of Sum (POS) calculations for output 

states. When SOP is selected, the on-state 

variables are active while the off-state variables 

are inactive, and vice-versa for POS calculations. 

This brief analysis shows that the most flexible 

configuration for the software would be to have three 

major panels. These panels will need to be enclosed in 

scrollable spaces to improve the software’s screen 

real-estate management. Depending on the 

complexity of the solution being handled per time, the 

size of the enclosed scroll spaces will change (expand 

or contract) to accommodate the data being handled. 

This will be handled by unity’s BeginScrollView() and 

EndScrollView() classes. 

 

 
Figure 1: Unity3D development environment with GatePlus in active development. 



DEVELOPMENT OF A BOOLEAN LOGIC SIMULATOR BASED ON QUINE MCCLUSKY ALGORITHM,      I. Oghogho, et al 

 

Nigerian Journal of Technology,   Vol. 38, No. 2, July 2019            719 

 
Figure 2: Mock-up for software interface of GatePlus. 

 

Each scrollable space will also have a panel above it 

for simple configurations and information display. For 

instance, the title bar of the Truth Table will have 

options for choosing the number of variables, 

inverting the output (useful for resetting the table to 

no output immediately after a POS-SOP switch), 

resetting the solution or choosing from a list of pre-

set solutions. The Logic Circuit Diagram title bar will 

also have options for toggling colour and grid on or 

off. Figure 2 shows the original project mockup for 

GatePlus 1.0. 

Although the project Mockup of Figure 2 gives the 

developer a great deal of advantage in understanding 

the final product he is working towards, it has its 

limitations. As the project is mostly unstarted when 

the Mockup is designed, the developer might be 

unaware of some intrinsic details related to what 

might be required to be displayed on the interface, or 

what problems may arise in implementing some of his 

decisions. In retrospect to having completed the 

development of the software program, below are a 

few elements of the final application that did not 

appear in the Mockup. 

(i) The addition of inverting gates (NOT gates) to each 

input line of the Logic Circuit Diagram to ease 

processing involved in the otherwise cumbersome 

method of using “symbology” to represent non-

intersection between input lines when they are 

crossed, and channelling the input into the 

inverting gate right before it goes into the first layer 

of logic. Prior to the design, the added computing 

required to calculate for the small but vastly 

repeating non-intersecting elements in the circuit 

were not put into consideration. 

 
Figure 3: Mockup concept of variable roots in circuit 

diagram. 

 
Figure 4: Actual implementation in final software 

design. 
 

In the final actualization, two tiny buttons were added 

to the edge of each scrollable panel, between the 

vertical and horizontal scrollbars, and at border 

intersection points, to help the user navigate quickly 

to the top-left and bottom-right corners of the 



DEVELOPMENT OF A BOOLEAN LOGIC SIMULATOR BASED ON QUINE MCCLUSKY ALGORITHM,      I. Oghogho, et al 

 

Nigerian Journal of Technology,   Vol. 38, No. 2, July 2019            720 

scrollable space when working with large spaces 

during more complex calculations. This was not 

considered in the conceptualization phase. 

(ii) In the chosen “symbology”, capital roman 

alphabets were used to represent input variables, 

with horizontal accent bars symbolizing an off-

state or null value. In the actual implementation, 

plain capital roman alphabets were used to 

represent on-states, while small letters were 

used to represent off states. This is conventional 

in software implementations of Karnaugh maps, 

and was also utilized in this project to simplify 

programming and to reduce the processing 

involved in appending the accent bars to each 

off-state element in the map and circuit.  

(iii) Two labels displaying grey-code and zero-

indexed positions of each block in the 

Karnaughmap were added during active 

development. 

(iv)  A simple button for the addition of new tabs was 

also omitted in the project Mockup. 

 

2.2 Project Checklists 

This subsection describes the checklisting of key 

objectives that will need to be implemented for the 

software to execute its functions optimally. Each 

checklist serves as a landmark in the development 

process and systematically guides the design of the 

software to a desired finish. Below are the cardinal 

objectives that had to be implemented serially for the 

software to execute properly. 

 

2.2.1 Variable definition 

The mainEngine.js script that contains most of the 

code that drives GatePlus contains over 200 variable 

definitions for Arrays, lists, integers, doubles, 

textures, GUI elements, vectors, Booleans and strings. 

One cannot possibly know every single variable 

necessary to develop the software from the start. 

Variables must constantly be created during the 

development process to fulfil constituent tasks as 

they arise. 

 

2.2.2 Easy selection of number of variables to 

work with.  

Users can work with between 2 and 6 input variables: 

This was implemented using a single integer variable 

labelled internally as no Of Parameters with a default 

value of 2. 

 

 

 

2.2.3 Automatically formatted truth table with 

editable output variables 

 This is one of GatePlus’s more robust features. The 

truth table panel is nested within a Scrollable space 

implemented by calling the inbuilt function, GUI. 

BeginScrollView () from within the OnGUI () function, 

the cardinal function that controls the display of all 

GUI elements in Unity. GUI. Draw Texture () is used 

to create the visual elements of the table while a 

complex chain of loops helps to generate and control 

the dynamics of the binary numbers that express the 

possible permutations of configurations of input 

variable states, as well as the dynamics of the table’s 

form as the number of variables (no Of Parameters) 

changes. Finally, the output values toggle from on-

state to off-state by the use of invisible buttons 

behind the text, with a Boolean control. 

 

2.2.4 Editable, realtime, self-solving Karnaugh 

map 

This is another robust feature of GatePlus, whose 

intricate details cannot possibly be explained in its 

entirety in one subsection. The script is nested in a 

similar manner as that explained above for the truth 

table. The circling of PIs is controlled by a reverse-

engineering process due to the complexities involved 

in programming a linear system to compute the 

torus-shaped continuity characteristics of the 

Karnaugh map. The reverse-engineering process is 

realized by writing a custom function to interpret the 

linear results from the Quine-McCluskey algorithm to 

circled groups, and apply the correct outline at the 

right position, to the Karnaugh map. The circle 

shapes are colour-coded to aid their visibility: green 

for unit or square groups, red for vertical groups, 

yellow for horizontal groups and blue for groups that 

circle virtually due to torus characteristics, but not 

always physically. 

 

2.2.5 Easy toggling 

Between Product of Sum (POS) and Sum of Product 

(SOP) states: This is realized using a single button on 

the top-left corner of the Karnaughmap. About three 

if-loops running in the update function tap out of the 

Boolean output of this function to ensure that its 

results are translated to all elements of the software 

that need to be altered when the switch is toggled. 

These elements include (but are not limited to) 

toggling the string stating the Boolean parameters 

from min to max terms or vice-versa, toggling the 



DEVELOPMENT OF A BOOLEAN LOGIC SIMULATOR BASED ON QUINE MCCLUSKY ALGORITHM,      I. Oghogho, et al 

 

Nigerian Journal of Technology,   Vol. 38, No. 2, July 2019            721 

values to be considered from the truth table to off-

state variables in the case of POS or on-state for SOP 

variables and expressing the simplified Boolean 

expression in the appropriate form.  

 

2.2.6 Switch for inversion of output variables 

for sake of ease of implementation of same results 

from SOP to POS and vice versa without having to 

start afresh. This is implemented in a single custom 

function called invert() which is called whenever one 

of the invert buttons on the interface is clicked. 

 

2.2.7 Switch for resetting output variables to 

their default values in POS or SOP form. This is 

implemented in a single custom function called 

reset() which is called whenever one of the reset 

butons on the interface is clicked. 

2.2.8 Dynamic circuit diagram (adjusts itself 

automatically to display the results of the Karnaugh 

map). 

 

2.2.9 Multitasking capabilities: Multiple 

“renamable” tabs can be opened to handle several 

calculations per time. Users can work with between 1 

and 5 renamable tabs. 

 

2.2.10 Professional software interface: The 

software must meet professional standards for 

presentation and user experience. The interface 

design is themed after Adobe Photoshop CS6. Several 

functions and design specifications are implemented 

to make the software meet the required standards 

namely: 

a. Smooth-scroll buttons: To take the scroll-

space directly to the top or bottom with the click 

of a simple button. 

b. Guiding animations: The tabs slide out to 

show that a new tab has been created, or slide 

in to show that a tab has been destroyed. 

c. Colour signalling: The colours of certain icons 

or elements change to show that they are in 

focus or that your attention is needed (e.g. blue 

for focus, and grey for latency on the tab 

buttons). This is especially used in the Karnaugh 

map, to indicate the size and scope of circled 

regions, or demarcations for laterally inverted 

zones. 

 

2.2.11 Status Bar: To display relevant information, 

as well as solutions to problems being solved at that 

particular session. 

 

2.2.12 Menu Bar: To provide a comprehensive list 

of software related options. 

 

2.3 Main Framework of the Driving Code for 

the Application’s Functionality  

Unity Script works by having very different execution 

behaviours for different parts of the script. Below are 

descriptions of the execution behaviours of three 

major functions that are extremely relevant to the 

execution of this project. 

 

2.3.1 Function Mono Behaviour. Start (): void 

{}: This function runs anything enclosed within its 

curly brackets only once—when the application is 

started. This means it is useful for one-time execution 

of portions of the code that need only be executed 

once, like setting initial states for some variables 

(mostly JavaScript arrays). The empty brackets 

indicate that this function accepts no input variables 

when it is called and returns nothing hence the “void” 

after the colon (Note that in Unity Script, the scripting 

convention does not permit the actual addition of “: 

void” when the function is called. This is mentioned 

only for emphasis for the sake of this description). 

 

2.3.2 Function Mono Behaviour. Update (): 

void {}: This function runs in a constant loop, on 

every frame. A frame is a video-based subdivision of 

time during which static elements are displayed on 

the screen. Elements change only when a frame 

changes, thus creating the illusion of motion. Unity’s 

standard is 60FPS (Frames Per Second), so the 

update function runs its enclosed script from top to 

bottom, sixty times every second. Most of the time-

dependent calculations in the code are executed from 

within this function. The function’s unique running 

behaviour can also be adopted on other functions by 

calling them from within this function. 

 

2.3.3 Function Mono Behaviour. On GUI(): 

void{}: All operations directly related to the display 

of two dimensional graphical elements like labels and 

buttons (Virtually the entire interface of the software) 

can only from run within this function. This is due to 

the peculiar way that GUI elements are processed by 

the computer. Depending on the power of the 

graphics card and the processor speed, computers 



DEVELOPMENT OF A BOOLEAN LOGIC SIMULATOR BASED ON QUINE MCCLUSKY ALGORITHM,      I. Oghogho, et al 

 

Nigerian Journal of Technology,   Vol. 38, No. 2, July 2019            722 

need to have a high refresh rate for the elements on 

the screen, as they are being re-rendered constantly 

so changes can be seen immediately by the user once 

they are executed from the back-end. This is different 

from the frame rate because it is processor 

dependent and may run at close to twice the speed 

of the Update function. For this purpose, the running 

behaviour of the Update() and OnGUI() functions had 

to be considered very carefully during the 

development process, especially when they needed 

to synchronise to produce a desired output. Fig 5 

shows: Mono Develop 3.0 interface with simple script 

showing major functions. 

 

3. TESTS, RESULTS AND DİSİCUSSİON 

The testing criteria focused on are start-up speed, 

hardware performance, and accuracy of results 

obtained from the software. Unit tests are executed 

using Unity’s inbuilt profiler, which offers detailed 

diagnostics containing details of the software’s 

performance while running.  

The software is tested on full performance by using 

intermittent ON-states in the truth table as this 

configuration ensures that there is no redundancy, 

thus forcing the script to run the highest number of 

loops. The checked pattern and green outlines on the 

ON-states in the Karnaugh map, as well as the large 

number of AND gates in the logic circuit diagram 

further increase loading since the software has to 

redraw a much larger number of GUI elements for 

every frame.  

Tests were carried out on a HP Envy 14 with a 2.2GHz 

Intel Core i5-5200U quad core processor (overclock 

to 2.7GHz), Intel HD 5500 graphics, 1TB HDD and 

12GB of RAM, running Windows 10 on a 1920x1080p, 

60Hz display. Figure 6 and 7 show GatePlus highest 

loading configuration for four variables for both truth 

Table and Circuit diagram respectively. 

 

3.1 Start-up Speed Test 

On the testing system described in the previous 

section, start-up duration of the core engine is 

between 100ms and 3s, depending on system’s 

processing load at the time of execution. However the 

entire package executes about 5-8 seconds slower 

because of a deliberately timed delay to allow for the 

display of the software’s start-up splash screen 

shown in Figure 8. 

 

3.2 Hardware Impact 

Ten samples for CPU, Memory, and Disk performance 

impact were recorded from the system performance 

analyser within the windows task manager and the 

average taken. Readings were taken on the high 

performance power profile and with no other 

applications open. The results for the application in 

idle state and in full load are recorded in the table 1 

for 2-6 variables. Notice the large rise in CPU usage 

from 5 variables full load and upwards. However 

memory and disk usage did not change appreciably 

as number of variables increased. 

 

  

 
Figure 5: Mono Develop 3.0 interface with simple script showing major functions. 



DEVELOPMENT OF A BOOLEAN LOGIC SIMULATOR BASED ON QUINE MCCLUSKY ALGORITHM,      I. Oghogho, et al 

 

Nigerian Journal of Technology,   Vol. 38, No. 2, July 2019            723 

 

 
Figure 6: GatePlus Truth Table highest loading 

configuration for four variables 

 
Figure 7: GatePlus Circuit Diagram highest loading 

configuration for four variables. 
 

 

 
Figure 8: GatePlus 1.0 splashscreen. 

 

Figure 9 shows Unity profiler monitoring GatePlus’s 

performance on 6 variables with full load. The Truth 

Table, Karnaugh map, logic equation and Circuit 

diagrams provided by GatePlus are also shown in the 

diagram. 

 

Table 1: Hardware Performance of GatePlus 
S/N State CPU (%) Memory(MB) Disk(MB) 

1 2 Variables, Idle 8.6 48.3 0.0 

2 2 Variables, Full 8.7 48.5 0.1 

3 3 Variables, Idle 10.3 48.5 0.0 

4 3 Variables, Full 12.4 45.8 0.2 

5 4 Variables, Idle 12.9 48.9 0.0 

6 4 Variables, Full 13.3 49.0 0.1 

7 5 Variables, Idle 18.3 49.4 0.0 

8 5 Variables, Full 33.8 49.6 0.2 

9 6 Variables, Idle 30.3 50.2 0.2 

10 6 Variables, Full 30.4 50.3 0.2 

Any change effected by the user on the truth Table or 

the Karnaugh map is automatically reflected in real 

time in the Boolean logic equation and the circuit 

diagram. Notice the sharp rise in CPU processing for 5 

variables full and above on Table 1, hence the need 

for the warning pop-up shown in Figure 9 which was 

expanded in Figure 10. 

 

3.3 Speed and Accuracy Test 

GatePlus was tested against hand solved problems and 

other logic solvers, and was found to be completely 

accurate in both Product of Sum and Sum of Product 

implementations. There is absolutely no noticeable 

delay between computation changes due to the use of 

the update function to call the Quine-McCluskey 

solver, and the building of the other essential panels 

directly from the results of the continuously 

synchronizing solution. However it should be noted 

that the simulator was tested on a relatively fast CPU 

and a great deal of RAM, so performance may differ 

slightly on a different platform. 

The results of the simplified Boolean expressions and 

logic circuits generated by the developed tool were 

compared with manually calculated solutions and 

available html and console based implementations and 

were found to be accurate and with a better user 

friendly graphic User Interface [9, 10]. 

 

3.4 Bugs 

Below is a list of recorded bugs in GatePlus 1.0 

i. The drop-down list for number of variables may 

not automatically exit the screen when the user 

clicks away from it, as in standard software. 

ii. Once the quick-scroll corner-button for the Logic 

Circuit scroll space is clicked once before the 

scroll space is large enough to require a vertical 

scrollbar, the horizontal scrollbar will continue to 

orient itself to the right even when pulled away. 

This will continue until the vertical scrollbar 

appears. This is due to conflict in an exponential 

value controlling its animation, and the 

screen.length read-only variable. However it 

does not at all hinder performance or distract the 

user. 

iii. There are a few pixel-position-related 

inconsistencies with the lines in the Logic Circuit 

diagram when some parameters are passed to it. 

The diagram is although, still readable, but may 

not display conventionally. 



DEVELOPMENT OF A BOOLEAN LOGIC SIMULATOR BASED ON QUINE MCCLUSKY ALGORITHM,      I. Oghogho, et al 

 

Nigerian Journal of Technology,   Vol. 38, No. 2, July 2019            724 

iv. In extremely rare occasions, the Karnaugh map 

may not circle a Prime Implicant displayed on the 

Karnaugh map. It is important to note that this is 

a purely visual error from the graphics processing 

and not the Boolean logic simulator engine. The 

simplified Boolean logic solution and the Logic 

Circuit diagram will still be correct. Just make 

sure to check the status bar and Karnaugh map 

header bar to be sure. 

 

4. FUTURE RESEARCH DIRECTION 

Several improvements can be implemented in a future 

build of the software. Listed below are a few of the 

features that will need to be added to what has already 

been done: 

(i) Addition of more than 6 inputs for calculation. 

(ii) NOR and NAND gate implementation in the 

Karnaugh map. 

(iii) Functionality to export circuit diagrams and 

Karnaugh maps as image files for printing and 

reference outside the software. 

(iv) Addition of panel to view Quine-McCluskey prime-

implicant charts during computation. 

(v) Creation of tutorial mode to more interactively 

guide new users 

 

5. CONCLUSION 

The development of a fully functioning Boolean logic 

simulator using the Quine-McCluskey algorithm was 

carried out successfully. Its results are accurate with 

seamless automatic synchronization. The overall size 

of the software package is about 50MB, a considerable 

file size. The procedure was however not without 

challenges. Ideally, the algorithm utilized can be 

computed to an infinite number of variables but due 

to the constraints of computational speed and 

complexity, only six levels were implemented in the 

software.  

 
Figure 9: Unity profiler Monitoring GatePlus’s Performance on 6 Variables with Full Load. 



DEVELOPMENT OF A BOOLEAN LOGIC SIMULATOR BASED ON QUINE MCCLUSKY ALGORITHM,      I. Oghogho, et al 

 

Nigerian Journal of Technology,   Vol. 38, No. 2, July 2019            725 

 

 
Figure 10: Warning pop-up when working above 4 

variables. 

 

This software can be utilized by students and 

professionals for learning purposes and for simple 

Boolean simplification for projects they may be 

working on. It is easy to use and can be learnt in less 

than ten minutes. To the best of our knowledge, the 

developed logic simulator tool has an edge over 

previous implementations [6, 7, 8, 11] because it 

provides a more robust GUI suitable for easy 

visualisation and multitasking needed for educational 

purposes. 

 

6. REFERENCES 

[1]  Petrescu, I., Păvăloiu, I., & Drăgoi, G.: Digital 

Logic Introduction Using FPGAs. Procedia - Social 

and Behavioral Sciences Vol.180, pp1507 – 1513. 

Elsevier (2015). 

 

[2]  Frank M. B.: On the Suppression of Variables in 

Boolean equations. Discrete Applied Mathematics. 

Vol. 159 pp255-258. Elsevier (2011). 

 

[3]  Gribomont, E. P.: Simplifications of Boolean 

verification conditions. Theoretical Computer 

Science. Vol.239 pp165-185. Elsevier (2000). 

 

[4]  Thomas J. Murray & Mohan R. Tanniru. Control of 

inconsistency and redundancy in PROLOG-type 

knowledge bases. Expert Systems with 

Applications, Volume 2, Issue 4, 1991, Pages 321-

331. 

 

[5]  Boody, J.: Quine-Mckluskey Calculator. Google 

Playstore 10/08/2016 at 

https://play.google.com/store/apps/details?id=lu

abear.qm4android&hl=en (2012). 

 

[6]  Cits.: Karnaugh Veitch Diagram Calculator. Google 

Playstore Retrieved 10/08/2016 at 

https://play.google.com/store/apps/details?id=co

m.mhsoft.kvd&hl=en (2013). 

 

[7]  Abdelrahman, E.: A C++ Karnaugh Map 

Minimizer-Infinite Variables. Code Project. 

Retrieved 10/08/2016 at http://www. 

codeproject.com/Articles/649849/A-Cplusplus-

Karnaugh-Map-Minimizer-Infinite-Variab (2014). 

 

[8]  Sometimes I Code.: How does Unity3D Scripting 

work under the hood? Wordpress.com. Retrieved 

9/08/2016 at https://sometimesicode 

.wordpress.com/2014/12/22/how-does-unity-

work-under-the-hood/ (2014). 

 

[9]  Huang, J.: Programming implementation of the 

Quine-McCluskey method for minimization of 

Boolean expression. Department of Biological 

Sciences, Faculty of Science, National University of 

Singapore. Retrieved 29/05/16 at https://arxiv. 

org/ftp/arxiv/papers/1410/1410.1059.pdf(2014). 

 

[10] Habib, A. H. M. A., Salam, M. A., Nadir, Z. & 

Hemen G.: A new approach to simplifying Boolean 

Functions. The Journal of Engineering Research, 

Vol. 1 pp39-45. (2004). 

 

[11] Muhammed M. O.: Karnaugh Map Minimizer 

(Three Variables). Code Project. Retrieved 

10/08/2016 at http://www.codeproject.com/ 

Articles /37031/Karnaugh-Map-Minimizer-Three-

Variables (2013). 

 

http://www.sciencedirect.com/science/article/pii/095741749190038G
http://www.sciencedirect.com/science/article/pii/095741749190038G
http://www.sciencedirect.com/science/article/pii/095741749190038G
http://www/
https://sometimesicode/
http://www.codeproject.com/

